基于薄材叠层(LOM)快速成型机设计

上传人:m**** 文档编号:227411026 上传时间:2023-08-11 格式:DOC 页数:44 大小:1.30MB
收藏 版权申诉 举报 下载
基于薄材叠层(LOM)快速成型机设计_第1页
第1页 / 共44页
基于薄材叠层(LOM)快速成型机设计_第2页
第2页 / 共44页
基于薄材叠层(LOM)快速成型机设计_第3页
第3页 / 共44页
资源描述:

《基于薄材叠层(LOM)快速成型机设计》由会员分享,可在线阅读,更多相关《基于薄材叠层(LOM)快速成型机设计(44页珍藏版)》请在装配图网上搜索。

1、e题 目 基于薄材叠层(LOM)快速成型机设计 学生姓名 ee 学号 ee 所在学院 机械工程学院 专业班级 ee 指导教师 ee 完成地点 e 2009年 6 月 1 日ee基于薄材叠层(LOM)快速成型机设计ee(ee)指导教师:ee摘要 快速成型技术属于先进制造技术,它以CAD/CAM技术、数控技术、材料科学等为基础,能够以较快的速度将计算机实体模型转化为具有一定结构功能的产品原型,或直接制造出零件。它也是制造领域中倍受瞩目的一种新工艺,它以其优良的产品品质、低廉的制造成本,以及加速产品进入市场等特色,日益成为成功制造厂商的竞争优势。分层实体制造(LOM)技术是快速成型技术之一。本文重点

2、对分层实体制造设备进行了研究,并设计了相应的设备。所设计设备包括机械结构设计和控制系统设计两部分。在机械结构设计中,根据分层实体制造技术的工作原理,对设备各主要部分进行了设计,包括升降装置、热压辊、送纸及激光扫描等部分的设计,控制系统设计包括电气硬件设计和部分控制软件设计两部分。在电气硬件设计中,采用在工控机中插入PCI运动控制器,由运动控制器控制伺服电机的方式来实现设备各动作的驱动,设计了控制系统的硬件关系图和主要电路图。 关键词 快速成型;分层实体制造;设计;控制系统。Rapid prototyping machine design based on laminated object ma

3、nufacturing(LOM) ee (ee)tutor :eeAbstract: Rapid Prototyping (RP) technology belongs to advanced manufacturing technology. It based on CAD/CAM, numerical control technology and material science etc. The RPtechnology can change the modeling made by computer into prototype with some functions, or make

4、 part rapidly. Rapid Prototyping contributions to the quality,cost and products time-to-market is becoming an increasingly competitive edge for the successful manufacturers of products.Laminated Object Manufacturing (LOM) technology is one of the RP technologies. In this paper, LOM machine is studie

5、d and designed. Two main parts of the LOM machineis designed: mechanical part and control system. In the mechanical part design, based on the working principal of the LOM technology and scheme comparison, the main portions of the machine are designed, including lifting device, hot-press roller, pape

6、r transfer and laser scanning portion etc. In electric hardware design, by means of inserting PCI movement controllers in industrial personal computer and controlling the servomotors with movement controllers, the designed movement of the machine is carried out. The hardware topology diagram and mai

7、n electric circuit are also designed. Keywords: Rapid prototyping; Laminated object manufacturing; Design; Control syste目 录1.绪论11.1 概述11.2 快速成形的原理11.3 快速成形的特性31.4 快速成形的历史31.5 快速成形的发展趋势42.LOM型快速成型机设计62.1概述62.2 LOM成型机机械系统总体设计72.2.1 LOM成型机主要设计参数72.2.2 LOM成型机需要的主要装置72.2.3 LOM成型机结构布局设计82.3 升降装置及工作台的设计82.

8、3.1导轨的选择与计算92.3.2滚珠丝杠的选择与计算162.3.3机械传动系统刚度和固有频率的计算172.4 热压辊部分的设计202.5送纸部分的设计212.5.1收纸辊部件的设计212.5.2调偏机构的设计222.6激光扫描部分的设计22I2.7选择激光器232.8其它部分设计242.8.1缓冲装置242.8.2机架243.控制系统的电气硬件设计和软件设计263.1 控制系统硬件的设计263.1.1 驱动装置的选择263.1.2 多功能运动卡的选择273.2 控制系统软件的设计323.2.1 基于STEP标准的CAD模型直接分层处理324.全文总结与展望344.1本文总结344.2展望34

9、致谢35参考文献36II1.绪论1.1 概述 众所周知,制造业是一个国家的立国之本。20世纪下半叶以来,随着科学技术迅速发展,制造业正在经历一场深刻的革命。产品的竞争越来越激烈,产品更新周期越来越短。空前激烈的市场竞争迫使制造业必须以更快的速度设计、制造出性能价格比高并能满足人们要求的产品。因此,产品快速开发的技术和手段成为了企业的核心竞争力。在这种形式下,传统的大批量、刚性的生产方式及其制造技术已不再适应要求,于是先进制造技术就成为世界范围内的研究热点,涌现出了计算机集成制造、敏捷制造、并行工程、智能制造等先进的生产管理模式和净近成形、激光加工、快速成形等先进的成形概念和技术。快速成型(Ra

10、pid Prototyping, RP)技术是集精密机械、材料科学、计算机辅助设计、计算机数控加工等技术为一体的高新技术。快速成型技术的基本原理是:对于实际存在的任何一个零件,都可以将它看成是由许多厚度很小而且平行的二维平面沿这些平面的法线方向迭加而成。因此,对于用CAD软件创建的某零件的三维实体模型,可以先沿着某一方向按照一定的厚度将其分割成一系列的平面几何信息,然后根据这些信息,通过熔结、化学反应或者是聚合作用等方式,逐层且有选择地固化液体材料或粘结固体材料,通过堆积的方式快速制作出对应的模型或零件。可以看出,利用快速成型技术,不需要通过传统的切削方法就能够制作出零件。 快速成型技术自20

11、世纪80年代问世并得到应用以来,得到了迅速的发展。在航天航空、机械、汽车、电器、建筑以及医学等行业中,己广泛利用该技术进行产品概念设计的可视化、造型设计的评估、产品装配的检验以及快速模具制造等多个方面。快速成形经过十多年的发展,目前已有几十种工艺及相应的商品化设备。在这一领域,美国一直处于领先地位,各种新工艺大都在美国最新出现,研究、开发的工艺种类也最多。其次在欧洲、日本发展规律也很快。国内在该领域的研究起步较晚,20世纪90年代初开始涉足,经过几年的努力,在快速成形工艺研究、成形设备开发、数据处理及控制软件、新材料的研发等方面都做了大量卓有成效的工作,赶上了世界发展的步伐,并有新的创新。1.

12、2 快速成形的原理快速成形是80年代末期开始商品化的一种高新造技术它有不同的英文名称,如Rapid Prototyping(快速原型制造、快速成型、快速成形)、Freeform Manufacturing(自由形式制造)、Additive Fabrication(添加式制造)等,常常简称为RP。快速成形将计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机数字控制(CNC)、激光、精密伺服驱动系统和新材料等先进技术集于一体。快速成形技术是由CAD模型直接驱动,快速制造任意复杂形状的三位物理实体的技术。其核心是由CAD模型直接驱动。首先由CAD软件设计出所需要零件的计算机三维曲面或实体模型

13、,即数字模型或电子模型;然后根据工艺要求,按照一定的规则将模型离散为一系列有序的单元,通常在Z向将其按一定厚度进行离散(习惯称之为分层或切片),把三维电子模型变成一系列的二维层片;再根据每个层片的轮廓信息,进行工艺规划,选择合适的加工参数自动生成数控代码;最后由成形机接受控制指令制造一系列层片并自动将它们联接起来,最终得到一个三维物理实体。这种将一个复杂物理实体所需的三维加工离散成一系列二维层片的加工,是一种降维制造的思想,大大降低了加工的难度,并且成形过程的难度与待成形的物理实体的形状和结构的复杂程度无关。快速成形由以下五个部分组成:1)CAD模型设计 主要是解决零件的几何造型,因此需有较强

14、的实体造型或曲面造型功能,并与后续的软件具有良好的数据接口。目前,大多数CAD商业软件配有STL数据接口,如Pro/Engineer,UG,CADKEY,Strim100,SolidWorks,AtuoCAD系列等。2)Z向离散化这是一个分层过程,它将CAD模型在向上分解成一系列具有一定厚度的薄层,厚度通常在之间。 离散化破坏了零件在向上的连续性,使之在向上产生了“台阶”。但从理论上讲,只要将分层厚度定得合理,就能满足零件的加工精度要求。3)层面信息处理为控制成形机对层面的加工轨迹,必须把层面的几何形状信息转化成控制成形机运动的数控代码。4)层面加工与粘接成形机根据控制指令进行二维扫描。同时进

15、行层与层的粘接。5)层层堆积当一层制造完毕后,成形机工作台面下降一个层厚的距离再加工新的一层,如此反复进行直至整个原型加工完成。对完成的原型进行后处理,如深度固化、去除支撑、修磨、着色等,使之达到要求。快速成形彻底的摆脱了传统的“去除”加工法部分去除大于工件的毛坯上的材料来得到工件,而采用全新的增长加工方法用一层层的小毛坯逐层叠加成大工件,将复杂的三维加工分解成简单的二维加工的组合,因此,它不必采用传统的加工机床和模具,只需传统加工方法1030的工时和2035的成本,就能直接制造出产品样品和模型。由于快速成形具有上述突出的优势,所以近些年来发展规律迅速,已成为现代制造技术中的一项支柱技术,是实

16、现并行工程(Concurrent Engineering,简称CE)的必不可少的手段。1.3 快速成形的特性快速成形在成形概念上以离散堆积成形为知道思想;在控制上以计算机和数控为基础,以最大柔性为目标。因此,只有在计算机技术和数控技术高度发展的今天,才有可能产生快速成形技术。CAD技术实现了零件的曲面和实体造型,能够进行精确的离散运算和复杂的数据转换。先进的数控技术为高速精确的二维扫描提供了必要的基础,这是精确高效堆积材料的前提。而材料科学的发展则为快速成形技术奠定了坚实的基础,材料技术的每一项技术带来新的发展机遇。目前快速成形技术中材料的转移形式是自由添加、去除、添加和去除相结合等多种形式,

17、构成三维物理实体的每一层片,一般为2.5维层片,即侧壁为直壁的层片,目前也出现了由三维层片构成的实体工艺,相信在不久的将来,这种技术将形成规模应用。快速成形技术的重要特征是:1)高度柔性,成形过程无需专用工具和夹具,可以制造任何复杂形状的三维实体;2)CAD模型直接驱动,CAD/CAM一体化,无须人员干预或较少干预,是一种自动化的成形过程;3)成形过程中信息过程和材料过程的一体化,适合成形材料为非均质并具有功能梯度或空隙度要求的原型;4)成形的快速性,适合现代激烈竞争的产品市场;5)技术的高度集成性,快速成形是计算机、数控、激光、新材料等技术的高度集成。1.4 快速成形的历史 从历史上看,很早

18、以前就有“增长”制造原理,例如,1892年,J.E.Blanther在他的美国专利(473901)中,曾建议用分层制造法制成地形图。这种方法的原理是,将地形图的轮廓线压印在一系列的蜡片上,然后按轮廓线切割蜡片并将其粘接在一起,熨平表面,从而得到三维的地形图。1902年,Carlo Baese在他的美国专利(774549)中,提出了用光敏聚合物制造塑料件的原理,这是现代第一种快速成形技术“立体平板印刷术”(StereLithography)的初始设想。1940年,Perera提出了在硬纸板上切割轮廓线,然后将这些纸板粘接成三维地形图的方法。50年代之后,出现了几百个有关快速成形技术的专利。其中,

19、Zang(1964)、Richard Meyer(1970)和Gaskin(1973) 等又提出了用一系列轮廓片形成三维地形图模型的新方法。Paul Dimatteo在他的1976年的美国专利(3932923)中,进一步明确提出,先用轮廓跟踪器将三维物体转换成许多二维轮廓薄片,然后用激光切割使这些薄片成形,再用螺钉、销钉等将一系列薄片连接成三维物体,这些设想与现代另一种快速成形技术物体分层制造(Laminated Object Manufacturing)的原理极为相似。1979年,日本东京大学的Nakagawa教授开始采用分层制造技术制作实际的模具,如落料模、压力机成形模和注塑模。 上述早期

20、的专利虽然提出了一些快速成形的基本原理,但还很不完善,更没有实现快速成形机械及其使用原材料的商品化。80年代末之后,快速成形技术有了根本的发展,出现的专利更多,仅在1986-1998年期间,注册的美国专利就有274个。这首先是Charles W Hull 在他1986年的美国专利(#4575330)中,提出了一个用激光照射液态光敏树脂,从而分层制造三维体的现代快速成形机的方案。随后,美国的3D Systems公司据此专利,于1988年生产出了第一台现代快速成形机SLA-250(液态光敏树脂选择性固化成形机),开创了快速成形技术发展的新纪元。在此后的10年内,涌现了10多种不同形式的快速成形技术

21、和相应的快速成形机,如薄形材料选择性切割(LOM)、丝状材料选择性熔覆(FDM)和粉末材料选择性烧结(SLS)等,并且在工业、医疗及其它领域得到了普遍的应用。到1980年为止,全世界已拥有快速成形机4259台快速成形制造公司约27个,用快速成形机对外服务的机构331个。不仅如此,还派生出一个全新的领域快速模具制造(Rapid Tooling),从而使快速成形技术为现代制造业必不可少的支柱技术。 我国自90年代以来也展开了相应的快速成形技术的研究和应用。有几家公司引进了国外的RPM系统。清华大学、华中理工大学、西安交通大学、南京航空航天大学等几所高等院校及北京隆源自动化有限公司均开展了快速成形技

22、术的研究和开发,并开始有产品问世。例如,现已研制出的样机或系统有:华中理工大学基于分层制造方法(LOM)HRP的系统、隆源公司基于选择性激光烧结(SLS)RPS的系统。1995年11月召开了中国第一届快速成形技术(RPM)学术及技术展示会,1997国家科委专门召集了国内有关RPM研究和应用单位,共同探讨了在我国推广RPM应用的战略。 由于各国十分重视快速成形技术,每年都有一批研究成果问世,十分复杂的零部件已能用快速成形技术制造出来,企业应用该技术所取得的效益十分明显。RPM设备的需求量日益增大。1.5 快速成形的发展趋势快速成型技术在其未来发展的方向主要包括以下几个方面:1)提高快速成型系统的

23、工作速度、控制精度以及可靠性一方面,要不断优化快速成型系统的结构,并且选用寿命长、性能价格比高的元器件,从而使系统的操作更简洁,可靠性更高、工作速度更快。另一方面,要根据用户的不同要求,所开发的设备具有不同的档次和不同的设备。例如:对于对制件的形状精度、尺寸精度和表面质量要求都很高、或者是有各种特殊要求的用户,应为他们开发精度很高、性能很好的快速成型设备。此外,还应专门开发一些用于模拟制品可视化、设计检验,但对制件的形状精度、尺寸精度和表面粗糙度要求并不是很高的概念机,以降低成本,扩大用户的范围。2)开发用于快速成型的新能源在当前的主流成形技术中,LOM技术、SLA技术和SLS技术均以激光作为

24、能源。用于产生激光束的激光系统包括激光器、冷却器、电源以及外光路等,它们的价格昂贵,而且传输效率较低,所以制件的成本直接受激光系统的影响。因此,快速成型技术的重要研究方向之一是研究新的成形能源。3)研究开发快速成型新型成形材料从快速成型的工艺特点出发,结合各种应用要求,研发新的成型材料,特别是研发复合材料,如非均质材料、纳米材料、以及用其它方法难以制作的复合材料等。4)扩大快速成型技术的应用范围快速成型技术的应用范围在不断地扩大。通过对现有快速成型系统的不断改进,以及不断研发新的成型材料,可以使快速成型技术较为经济地制造出直接可以使用的模具、工业产品和民用消费品,如制造用于治疗疾病的人工器官等

25、。第 34 页 共 36页2.电机选择2.1电动机选择(倒数第三页里有东东)2.1.1选择电动机类型2.1.2选择电动机容量电动机所需工作功率为:;工作机所需功率为:;传动装置的总效率为:;传动滚筒 滚动轴承效率 闭式齿轮传动效率 联轴器效率 代入数值得:所需电动机功率为:略大于 即可。选用同步转速1460r/min ;4级 ;型号 Y160M-4.功率为11kW2.1.3确定电动机转速取滚筒直径1.分配传动比(1)总传动比(2)分配动装置各级传动比取两级圆柱齿轮减速器高速级传动比则低速级的传动比2.1.4 电机端盖组装CAD截图 图2.1.4电机端盖2.2 运动和动力参数计算2.2.1电动机

26、轴 2.2.2高速轴2.2.3中间轴2.2.4低速轴2.2.5滚筒轴3.齿轮计算3.1选定齿轮类型、精度等级、材料及齿数1按传动方案,选用斜齿圆柱齿轮传动。2绞车为一般工作机器,速度不高,故选用7级精度(GB 10095-88)。3材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280 HBS,大齿轮材料为45钢(调质)硬度为240 HBS,二者材料硬度差为40 HBS。4选小齿轮齿数,大齿轮齿数。取5初选螺旋角。初选螺旋角3.2按齿面接触强度设计由机械设计设计计算公式(10-21)进行试算,即3.2.1确定公式内的各计算数值(1)试选载荷系数1。(2)由机械设计第八版图10-3

27、0选取区域系数。(3)由机械设计第八版图10-26查得,则。(4)计算小齿轮传递的转矩。(5)由机械设计第八版表10-7 选取齿宽系数(6)由机械设计第八版表10-6查得材料的弹性影响系数(7)由机械设计第八版图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。13计算应力循环次数。(9)由机械设计第八版图(10-19)取接触疲劳寿命系数; 。(10)计算接触疲劳许用应力。取失效概率为1%,安全系数S=1,由机械设计第八版式(10-12)得(11)许用接触应力3.2.2计算(1)试算小齿轮分度圆直径=49.56mm(2)计算圆周速度(3)计算齿宽及模数 =2mm

28、h=2.252.252=4.5mm49.56/4.5=11.01(4)计算纵向重合度0.318124tan=20.73(5)计算载荷系数K。已知使用系数根据v= 7.6 m/s,7级精度,由机械设计第八版图10-8查得动载系数由机械设计第八版表10-4查得的值与齿轮的相同,故由机械设计第八版图 10-13查得由机械设计第八版表10-3查得.故载荷系数11.111.41.42=2.2(6)按实际的载荷系数校正所算得分度圆直径,由式(10-10a)得(7)计算模数 3.3按齿根弯曲强度设计由式(10-17)3.3.1确定计算参数(1)计算载荷系数。 =2.09(2)根据纵向重合度 ,从机械设计第八

29、版图10-28查得螺旋角影响系数(3)计算当量齿数。(4)查齿形系数。由表10-5查得(5)查取应力校正系数。由机械设计第八版表10-5查得(6)由机械设计第八版图10-24c查得小齿轮的弯曲疲劳强度极限 ;大齿轮的弯曲强度极限 ;(7)由机械设计第八版图10-18取弯曲疲劳寿命系数 ,;(8)计算弯曲疲劳许用应力。取弯曲疲劳安全系数S1.4,由机械设计第八版式(10-12)得(9)计算大、小齿轮的 并加以比较。=由此可知大齿轮的数值大。3.3.2设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数 大于由齿面齿根弯曲疲劳强度计算 的法面模数,取2,已可满足弯曲强度。但为了同时满足接触疲劳强

30、度,需按接触疲劳强度得的分度圆直径100.677mm 来计算应有的齿数。于是由取 ,则 取 3.4几何尺寸计算3.4.1计算中心距a=将中以距圆整为141mm.3.4.2按圆整后的中心距修正螺旋角因值改变不多,故参数、等不必修正。3.4.3计算大、小齿轮的分度圆直径3.4.4计算齿轮宽度圆整后取.低速级取m=3;由 取圆整后取表 1高速级齿轮:名称代号计 算 公 式 小齿轮大齿轮模数m22压力角2020分度圆直径d=227=54=2109=218齿顶高齿根高齿全高h齿顶圆直径表 2低速级齿轮:名称代号计 算 公 式 小齿轮大齿轮模数m33压力角2020分度圆直径d=327=54=2109=21

31、8齿顶高齿根高齿全高h齿顶圆直径4.轴的设计4.1低速轴4.1.1求输出轴上的功率转速和转矩 若取每级齿轮的传动的效率,则4.1.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为圆周力 ,径向力 及轴向力 的4.1.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据机械设计第八版表15-3,取 ,于是得输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩, 查表考虑到转矩变化很小,故取 ,则:按照计算转矩应小于联轴器公称转矩的条件,查标准GB/T 5014-2003或手册,选用LX4

32、型弹性柱销联轴器,其公称转矩为2500000 .半联轴器的孔径 ,故取 ,半联轴器长度 L=112mm ,半联轴器与轴配合的毂孔长度.4.1.4轴的结构设计(1)拟定轴上零件的装配方案 图4-1(2)根据轴向定位的要求确定轴的各段直径和长度1)根据联轴器为了满足半联轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3段的直径 ;左端用轴端挡圈,按轴端直径取挡圈直径D=65mm.半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故1-2 段的长度应比 略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工作要

33、求并根据,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承30313。其尺寸为dDT=65mm140mm36mm,故 ;而。3)取安装齿轮处的轴段4-5段的直径 ;齿轮的右端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为90mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 。齿轮的左端采用轴肩定位,轴肩高度 ,故取h=6mm ,则轴环处的直径 。轴环宽度 ,取。4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取 低速轴的相关参数:表4

34、-1功率转速转矩1-2段轴长84mm1-2段直径50mm2-3段轴长40.57mm2-3段直径62mm3-4段轴长49.5mm3-4段直径65mm4-5段轴长85mm4-5段直径70mm5-6段轴长60.5mm5-6段直径82mm6-7段轴长54.5mm6-7段直径65mm(3)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=20mm12mm,键槽用键槽铣刀加工,长为L=63mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为。滚动轴承与轴的周向定位是

35、由过渡配合来保证的,此处选轴的直径公差为m6。4.2中间轴4.2.1求输出轴上的功率转速和转矩4.2.2求作用在齿轮上的力(1)因已知低速级小齿轮的分度圆直径为:(2)因已知高速级大齿轮的分度圆直径为:4.2.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取 ,于是得:轴的最小直径显然是安装轴承处轴的直径。图 4-24.2.4初步选择滚动轴承.(1)因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承,参照工作要求并根据,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承。其尺寸为dD*T=35mm72mm18.

36、25mm,故,;(2)取安装低速级小齿轮处的轴段2-3段的直径 ;齿轮的左端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为95mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 。齿轮的右端采用轴肩定位,轴肩高度,故取h=6mm,则轴环处的直径。轴环宽度,取。(3)取安装高速级大齿轮的轴段4-5段的直径齿轮的右端与右端轴承之间采用套筒定位。已知齿轮轮毂的宽度为56mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取。 4.2.5轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=22mm14mm。键槽用键槽铣刀加工,长为63mm,同

37、时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。中间轴的参数:表4-2功率10.10kw转速362.2r/min转矩263.61-2段轴长29.3mm1-2段直径25mm2-3段轴长90mm2-3段直径45mm3-4段轴长12mm3-4段直径57mm4-5段轴长51mm4-5段直径45mm4.3高速轴4.3.1求输出轴上的功率转速和转矩若取每级齿轮的传动的效率,则4.3.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为

38、4.3.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取 ,于是得:输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩 , 查表 ,考虑到转矩变化很小,故取 ,则:按照计算转矩 应小于联轴器公称转矩的条件,查标准GB/T 5014-2003 或手册,选用LX2型弹性柱销联轴器,其公称转矩为560000 .半联轴器的孔径 ,故取 ,半联轴器长度 L=82mm ,半联轴器与轴配合的毂孔长度.4.4轴的结构设计4.4.1拟定轴上零件的装配方案图4-34.4.2根据轴向定位的要

39、求确定轴的各段直径和长度1)为了满足半联 轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3 段的直径 ;左端用轴端挡圈,按轴端直径取挡圈直径D=45mm .半联轴器与轴配合的毂孔长度 ,为了保证轴端挡圈只压在半联轴器上 而不压在轴的端面上,故 段的长度应比 略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工作要求并根据 ,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承。其尺寸为d*D*T=45mm*85mm*20.75mm,故 ;而 ,mm。3)取安装齿轮处的轴段4-5段,做成齿轮轴;已知齿轮轴轮毂的

40、宽度为61mm,齿轮轴的直径为62.29mm。4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取。 5)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按 查表查得平键截面b*h=14mm*9mm ,键槽用键槽铣刀加工,长为L=45mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。高速

41、轴的参数:表4-3功率10.41kw转速1460r/min转矩1-2段轴长80mm1-2段直径30mm2-3段轴长45.81mm2-3段直径42mm3-4段轴长45mm3-4段直径31.75mm4-5段轴长99.5mm4-5段直径48.86mm5-6段轴长61mm5-6段直径62.29mm6-7段轴长26.75mm6-7段直径45mm5.齿轮的参数化建模5.1齿轮的建模(1)在上工具箱中单击按钮,打开“新建”对话框,在“类型”列表框中选择“零件”选项,在“子类型”列表框中选择“实体”选项,在“名称”文本框中输入“dachilun_gear”,如图5-1所示。图5-1“新建”对话框2取消选中“使

42、用默认模板”复选项。单击“确定”按钮,打开“新文件选项”对话框,选中其中“mmns_part_solid”选项,如图5-2所示,最后单击”确定“按钮,进入三维实体建模环境。图5-2“新文件选项”对话框(2)设置齿轮参数1在主菜单中依次选择“工具”“关系”选项,系统将自动弹出“关系”对话框。2在对话框中单击按钮,然后将齿轮的各参数依次添加到参数列表框中,具体内容如图5-4所示,完成齿轮参数添加后,单击“确定”按钮,关闭对话框。图5-3输入齿轮参数(3)绘制齿轮基本圆在右工具箱单击,弹出“草绘”对话框。选择FRONT 基准平面作为草绘平面,绘制如图5-4所示的任意尺寸的四个圆。(4)设置齿轮关系式

43、,确定其尺寸参数1按照如图5-5所示,在“关系”对话框中分别添加确定齿轮的分度圆直径、基圆直径、齿根圆直径、齿顶圆直径的关系式。2双击草绘基本圆的直径尺寸,将它的尺寸分别修改为、修改的结果如图5-6所示。 图5-4草绘同心圆 图5-5“关系”对话框 图5-6修改同心圆尺寸 图5-7“曲线:从方程”对话框(5)创建齿轮齿廓线1在右工具箱中单击按钮打开“菜单管理器”菜单,在该菜单中依次选择“曲线选项” “从方程” “完成”选项,打开“曲线:从方程”对话框,如图5-7所示。2在模型树窗口中选择坐标系,然后再从“设置坐标类型”菜单中选择“笛卡尔”选项,如图5-8所示,打开记事本窗口。3在记事本文件中添

44、加渐开线方程式,如图5-9所示。然后在记事本窗中选取“文件” “保存”选项保存设置。图5-8“菜单管理器”对话框 图5-9添加渐开线方程4选择图5-11中的曲线1、曲线2作为放置参照,创建过两曲线交点的基准点PNTO。参照设置如图5-10所示。曲 线1曲 线 2图5-11基准点参照曲线的选择 图5-10“基准点”对话框5如图5-12所示,单击“确定”按钮,选取基准平面TOP和RIGHT作为放置参照,创建过两平面交线的基准轴A_1,如图6-13所示。图5-12“基准轴”对话框 图5-13基准轴A_16如图5-13所示,单击“确定”按钮,创建经过基准点PNTO和基准轴A_1的基准平面DTM1,如图

45、5-14所示。5 5-15基准平面对话框 5-15基准平面DTM17如图5-16所示,单击“确定”按钮,创建经过基准轴A_1,并由基准平面DTM1转过“-90/z”的基准平面DTM2,如图5-17所示。图5-16“基准平面”对话框 图5-17基准平面DTM28镜像渐开线。使用基准平面DTM2作为镜像平面基准曲线,结果如图5-18所示。图5-18镜像齿廓曲线(6)创建齿根圆实体特征1在右工具箱中单击按钮打开设计图标版。选择基准平面FRONT作为草绘平面,接收系统默认选项放置草绘平面。2在右工具箱中单击按钮打开“类型”对话框,选择其中的“环”单选按钮,然后在工作区中选择图5-19中的曲线1作为草绘

46、剖面。再图标中输入拉伸深度为“b”,完成齿根圆实体的创建,创建后的结果如图5-20所示。图5-19草绘的图形 5-20拉伸的结果(7)创建一条齿廓曲线1在右工具箱中单击按钮,系统弹出“草绘”对话框,选取基准平面FRONT作为草绘平面后进入二维草绘平面。2在右工具箱单击按钮打开“类型”对话框,选择“单个”单选按钮,使用和并结合绘图工具绘制如图5-21所示的二维图形。图 5-21 草绘曲线图 5-22显示倒角半径3打开“关系”对话框,如图5-22所示,圆角半径尺寸显示为“sd0”,在对话框中输入如图5-23所示的关系式。图5-23“关系“对话框(8)复制齿廓曲线1在主菜单中依次选择“编辑” “特征

47、操作”选项,打开“菜单管理器”菜单,选择其中的“复制”选项,选取“移动”复制方法,选取上一步刚创建的齿廓曲线作为复制对象。图5-24依次选取的 菜单2选取“平移”方式,并选取基准平面FRONT作为平移参照,设置平移距离为“B”,将曲线平移到齿坯的另一侧。图5-25输入旋转角度3继续在“移动特征”菜单中选取“旋转”方式,并选取轴A_1作为旋转复制参照,设置旋转角度为“asin(2*b*tan(beta/d)”,再将前一步平移复制的齿廓曲线旋转相应角度。最后生成如图5-26所示的另一端齿廓曲线。图5-26创建另一端齿廓曲线(9)创建投影曲线1在工具栏内单击按钮,系统弹出“草绘”对话框。选取“RIG

48、UT”面作为草绘平面,选取“TOP”面作为参照平面,参照方向为“右”,单击“草绘”按钮进入草绘环境。2绘制如图5-27所示的二维草图,在工具栏内单击按钮完成草绘的绘制。图5-27绘制二维草图3主菜单中依次选择“编辑” “投影”选项,选取拉伸的齿根圆曲面为投影表面,投影结果如下图5-28所示。图5-28投影结果(10)创建第一个轮齿特征1在主菜单上依次单击“插入” “扫描混合”命令,系统弹出“扫描混合”操控面板,如图5-29所示。2在“扫描混合”操控面板内单击“参照”按钮,系统弹出“参照”上滑面板,如图6-30所示。图5-29 “扫描混合”操作面板 图5-30“参照”上滑面板3在“参照”上滑面板

49、的“剖面控制”下拉列表框内选择“垂直于轨迹”选项,在“水平/垂直控制”下拉列表框内选择“垂直于曲面”选项,如图5-30示。4在绘图区单击选取分度圆上的投影线作为扫描混合的扫引线,如图5-31示。扫描引线图5-31选取扫描引线5在“扫描混合”操作面板中单击“剖面”按钮,系统弹出“剖面”上滑面板,在上方下拉列表框中选择“所选截面”选项,如图5-32所示。图5-32“剖面”上滑面板 图5-33 选取截面6在绘图区单击选取“扫描混合”截面,如图5-33所示。7在“扫描混合”操控面板内单击按钮完成第一个齿的创建,完成后的特征如图5-34所示。图5-34完成后的轮齿特征 图5-35“选择性粘贴“对话框(1

50、1)阵列轮齿1单击上一步创建的轮齿特征,在主工具栏中单击按钮,然后单击按钮,随即弹出“选择性粘贴”对话框,如图5-35所示。在该对话框中勾选“对副本应用移动/旋转变换”,然后单击“确定”按钮。图5-36 旋转角度设置 图5-37复制生成的第二个轮齿2单击复制特征工具栏中的“变换”,在“设置”下拉菜单中选取“旋转”选项,“方向参照”选取轴A_1,可在模型数中选取,也可以直接单击选择。输入旋转角度“360/z”,如图6-36所示。最后单击按钮,完成轮齿的复制,生成如图6-37所示的第2个轮齿。3在模型树中单击刚刚创建的第二个轮齿特征,在工具栏内单击按钮,或者依次在主菜单中单击“编辑” “阵列”命令

51、,系统弹出“阵列”操控面板,如图6-38所示。图5-38 “阵列”操控面板图5-39 完成后的轮齿 图5-40齿轮的最终结构4在“阵列”操控面板内选择“轴”阵列,在绘图区单击选取齿根园的中心轴作为阵列参照,输入阵列数为“88”偏移角度为“360/z”。在“阵列”操控面板内单击按钮,完成阵列特征的创建,如图5-39所示。5最后“拉伸”、“阵列”轮齿的结构,如图5-40所示致谢本论文是在ee老师的悉心指导下完成的。e老师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远。不仅使我树立了远大的学术目标、掌握了

52、基本的研究方法,还使我明白了许多待人接物与为人处世的道理。本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血。在此,谨向e老师表示崇高的敬意和衷心的感谢! 本论文的顺利完成,离不开各位老师、同学和朋友的关心和帮助。感谢CAD培训中心老师的指导和帮助。后文是被我人为屏蔽掉了,想要原版吗?小伙伴,在第2章电机选择中CAD图里找我联系方式吧参考文献1王定.矿用小绞车M.北京:煤炭工业出版社,1981.2程居山.矿山机械M.徐州:中国矿业大学出版社,2005.8.3王洪欣,李木,刘秉忠.机械设计工程学M.徐州;中国矿业大学出版社,2001.4唐大放,冯晓宁,杨现卿. 机械设计工程

53、学M.徐州;中国矿业大学出版社,2001.5成大先.机械设计手则M.北京;化学工业出版社,2002.6寿楠椿,弹性薄板夸曲M.北京;高等出版社.1987.7刘鸿文.材料力学M. 北京;高等出版社.2004.8夏荣海,赫玉深.矿井提升设备M. 徐州:中国矿业大学出版社,1987.9国家发展和改革委员会.调度绞车M.北京:机械工业出版社 ,2007. 10编委会,新编机械设计知识百科-常用技术资料、计算方法、标准数据速查手册M.北京工业出版社,2000.11李洁,最新国内外起重机械使用技术性能及安全管理规章制度实务全书M.北京:机械工业出版社,2001.12编委会,煤矿机械设备选型、安装、检修维护

54、技术守则M.北京:机械工业出版社,2003.13李洁,煤矿机械设备设计方法、机械制图、制造加工与故障排除实用手册M.北京:机械工业出版社,2005.14于文景、李富群,现代化煤矿机械设备安装调试、运行监测、故障诊断、维护保养与标准规范全书M.北京:机械工业出版社,2003.15编委会,煤矿机械设备选型安装检修维护技术手册M.北京:机械工业出版社,2001.16 罗名佑.行星齿轮传动M.北京:高等教育出版社,1984.17 吴宗泽,罗圣国.机械设计课程设计手册M. 第五版.北京:高等教育出版社,2006.18 孙恒,陈作模,葛文杰.机械原理M. 第七版.北京:高等教育出版社,2006.19 濮良

55、贵,纪明刚.机械设计M 第八版.北京:高等教育出版社,2006.20 付丰礼,唐孝稿.异步电动机设计手册M. 第二版.北京:机械工业出版社,2007.21 日本机械学会.齿轮强度设计资料M.北京:机械工业出版社,1984.22 刘鸿文.材料力学M.4版.北京:高等教育出版社,2004.23 曹惟庆,徐曾萌.机构设计M.北京:机械工业出版社,1995.24 李发海,陈汤佑.电机学M. 第二版.北京:高等教育出版社,2000.25 张勇.电机拖动与控制M.北京:机械工业出版社,2003.26 马从谦.渐开线行星齿轮传动设计M.北京:机械工业出版社,1993.27 齿轮手册编委会.齿轮手册M.北京:机械工业出版社,1990.28 佟纯厚.近代交流调速M. 第二版.北京:冶金工业出版社,1995.29 刘竞成. 交流调速系统M.上海交通大学出版社,1984.30 韩安荣.通用变频器及应用M.第二版.北京:机械工业出版社,2000.31 杨兴瑶. 电动机调速的原理及系统M. 第二版.北京:水利电力出版社,1979.32 B.H.鲁坚科.行星与谐波传动结构图册M.北京:机械工业出版社,1986.33 HuI1 CChapter l,Rapid prototyping and manufacturing:funda

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!