机房防雷方案

上传人:d**** 文档编号:225055353 上传时间:2023-08-02 格式:DOCX 页数:19 大小:122.57KB
收藏 版权申诉 举报 下载
机房防雷方案_第1页
第1页 / 共19页
机房防雷方案_第2页
第2页 / 共19页
机房防雷方案_第3页
第3页 / 共19页
资源描述:

《机房防雷方案》由会员分享,可在线阅读,更多相关《机房防雷方案(19页珍藏版)》请在装配图网上搜索。

1、第一章 概述 2第二章 机房概况 4项目背景 4需求分析 4第三章 设计指导思想和相关技术标准 5设计原则 5设计指导思想 6设计依据标准 9机房雷电防护设计的理论依据 10第四章 机房雷电防护总体方案 121电源系统的防雷与过电压保护 122、重要终端设备的防雷与过电压保护 133、通讯、网络系统的防雷与过电压保护 134、接地系统 13第五章 系统防雷方案的优势分析 161产品的优势 162最先进的系统防雷技术理念 163全面的系统电磁脉冲防护设计与用户需求的适配 17第六章 销售服务体系 181售前的技术服务 162售中的技术服务 183售后的技术服务 18第七章 公司简介 19德国菲尼

2、克斯简介 19恒电公司简介 20防雷工程方案附件1防雷设备报价单2防雷系统原理图和防雷保护拓扑图3TRABTECH 系列防雷产品技术参数表4天津市人民政府文件5恒电公司系统防雷部已完成的部分防雷工程列表6菲尼克斯防雷产品保险第一章 概当今人类科学技术的发展已进入了高度信息化的发展阶段,但是仍然在受到能 源、环境和安全这三个因素的困扰,特别是环境和安全,我们中国的古训深切的告 知我们“福莫大于平安”,安全是维持人们正常生活、工作的基本条件,造成不安 全的因素很多,但不外乎天灾和人祸两大类。在不考虑人为因素的情况下,自古至 今我们人类始终以积极探索的精神对自然灾害进行着顽强的抵抗,尤其是对雷电的

3、防护。那么究竟雷电引发的自然灾害,对我们人类生活和工作的环境的影响程度有多 大呢?我们引用欧洲著名的保险机构德国慕尼黑 TELA 保险公司 1994 年所做的欧洲 各国用户由于各种自然灾害造成的损失统计表做一直观的表述。表 61 :那么我们继续以 TELA 公司 1994 年的那次著名调查的资料形象的表明由雷害引 发事故损失已呈上升的趋势。表 62:过电压及雷击(直接、间接)造成的损失二0 0 0年是全球的“国际减轻自然灾害的十年”,由联合国国际十年减灾委 员会公布的对人类造成最严重危害的十大自然灾害中,雷暴由于其对人类生命、财 产的巨大侵害,被列在了显著的地位。雷害(包括过电压)在以下几方面

4、给我们造成的损失和危害:一、人身造成极大威胁在建筑物内的设备操作人员遭受直接雷击的可能情况,雷击发生后引发的问题其 影响对人身安全威胁很大。雷电泄放大地,由于地电阻较大,不能马上泄放,从而 引起地电位升高,由于机房直流逻辑地线和交流配电保护地线不在一点入地,将两 个电位值引入机房,这时如果一个操作人员的一只手摸在 UPS 输出负载外壳上(如 小型机),而另一只手(或身体)摸在交流配电地线上(如空调),两个电位值将 通过操作人员的身体短路,造成操作人员伤亡。美国 1996 年为此而死亡 198 人,广 东省1997年在报导雷击死亡的 170人中,有相当一部分人是为此而伤亡的。所以防 雷保护设备的

5、确很重要,但是保护人身安全更重要。二、可能发生火灾问题:由于雷电流引发的感应电流数值非常大,流过建筑物内的各类导线由于内阻值 存在而产生大量的热量。引起导线周围可燃物体的燃烧,进而引发火灾。造成财产 的大量损失。三、设备损坏: 这是基于近些年来伴随着高新技术的发展,尤其是电子技术的飞速发展,各种先进的测量、保护监控、电信和计算机等电子产品正日益广泛的应用于各行各业 中,特别是计算机技术与通讯技术的发展相互结合,从两种独立的技术单元逐渐成 为推动一个新的技术发展时代相互有机结合的产物一一计算机通信技术,电子器件 的集成化和超大规模集成化及新的网络通信技术的发展都为信息时代的主导技术支 撑产品一一

6、计算机通信技术的发展起到了极大的推动和促进作用,但另一方面,这 些微电子仪器设备普遍存在着绝缘强度低,过电压耐受能力差等致命弱点,一旦遭 受雷击过压的冲击,轻则造成这些电子系统的运行中断,设备永久性损坏,重的是 这些系统所承负的那些须实时运行的后续工作的中断瘫痪所造成的不可估量的直接 与间接的巨大经济损失和影响,对于金融、证券、医疗、保险、航空、航天、国防 等国家重要关键部门,尤其是这样,而且这样的雷击侵害的程度已经越来越严重。 为此,我们认为对雷电电磁脉冲(LEMP)的防护,不但是必要的,而且是必须实施 的。通过实际工作过程的了解,我们以敬佩的心情看到了贵处的领导和工程师们以 高度的责任心和

7、敬业精神,为计算机信息系统防范雷害、保障系统安全运行工作方 面所做出的大量艰苦、细致的工作。同时我们感谢各位领导所给予我们的指导和展 示我们自己实力的机会,为此我们将竭诚的根据贵机房拟防护现场的实际基础环境 情况,及拟进行保护的机房设备情况的要求,本着“经济、实用、高标准、高起 点、高可靠性”的原则,为贵机房做出一设计方案,供领导工作参考之用,请领导 审阅、指正。第二章 机房概况项目背景需求分析依据现代防雷技术,我们将防雷保护分为如下几方面:1、电源系统:ups电源的保护。电源的保护建议采用ups电源输入端加两级防 雷保护,包括第一级自点火间隙防雷保护和一级半导体防雷保护,其中分别 为相零、零

8、-地、相相之间的雷击保护。2、通讯系统:由于其技术参数、接口形式不同,我们会采用相应的菲尼克斯防 雷器件对其进行保护。3、重要终端设备的防雷保护:对于终端设备,建议采用半导体防雷保护,其中 分别为相-地、零-地、相零之间的雷击保护。4、均压等电位的连接 在做设备防雷保护的同时,在防雷区域内全方位的等电位连接,并且将设备 的外壳与等电位相连接。此外,菲尼克斯防雷器件已由中国人民保险公司南京分公司承保产品责任 险,可依法对客户承担相应的赔偿责任。第三章 设计指导思想和相关技术标准设计原则由于机房雷电防护系统对所保护系统的业务正常运行具有非常重要的作用,因此,防雷保护系统应具备先进性、可靠性、易维护

9、、易升级等方面的突出特性。防 雷工程设计及设备的选择应遵从以下的原则:1一切为客户着想原则无论是多大或多小的系统防护工程,都应以一切为用户着想的原则做事,以用户需求作为准绳, 本着务实, 不追求豪华的思想, 但又具扩展性, 通过相互间诚恳的 交流, 协助用户, 使其需求最终达到尽善尽美。2可靠性原则设计系统防雷保护工程应最先考虑的问题就是可靠性。在工程的设计中不一定要求最先进,但一定要用最成熟可靠的产品和技术,有些新技术确实在某些方面有优势,但还需用更多的时间去考验,在网络系统的防雷保护中尽选择被广泛应用和 证实的可靠产品和技术。一个中大型计算机系统每天处理数据量一般都较大 ,系统每个时刻都要

10、采集大量 的数据,并进行处理,因此,任一时刻的系统故障都有可能给用户带来不可估量的损失 , 这就要求系统具有高度的可靠性。提高系统可靠性的方法很多,一般的做法如下:选用备份回路,出现故障时能够迅速恢复并有适当的应急措施;采用热插拔功能,故障处理无须停机; 采用声光报警功能;3先进性原则采用当今国内、国际上最先进和成熟的技术 ,使新建立的系统能够最大限度地适 应今后技术发展变化和业务发展变化的需要,从目前国内发展来看,系统总体设计的先 进性原则主要体现在以下几个方面: 采用的系统结构应当是先进的、开放的体系结构; 采用的技术应当是先进的,可扩充的,能满足今后日益扩充的需要; 4实用性原则本着一切

11、从用户实际角度出发,配置防雷保护系统不是给用户花钱,而是在保 护用户的投资,保证网络系统的正确运行;实用性就是能够最大限度地满足实际工 作要,从实际应用的角度来看,这个性能更加重要。 5开放性,可扩充、可维护性原则防雷保护技术是不断发展变化的,为了保证用户的投资,所选产品必须符合国 际标准及流行的工业标准。这样才能对网络的未来发展提供保证。6经济性原则整个防雷保护的建设要坚持实用为主,根据投资的强度选择有实用价值,在满 足系统需求的前提下,应尽可能选用性能价格最好,可靠性高,可维护性好的产品,选 用性能价格比高的设备,尽快投入使用,并使整个系统能安全可靠地运行,以便节省投 资,以最低成本来完成

12、计算机网络系统防雷保护的建设。设计指导思想系统防雷保护的应用涉及很多行业,在这里我们重点描述的是“计算机信息系 统”的雷电防护设计原则。系统雷电防护设计是一项系统工程,那么从系统论的角 度上讲,系统结构愈合理,系统的各个部分(要素)之间的有机结合就越合理,相 互之间的作用就愈协调,从而才能使整个系统在总体上达到最佳的运行状态。具体 到系统防雷保护设计工作中,我们认为防雷设计工作主要的目的是将第一个工作单 元系统的防雷设计工作与第二个工作单元计算机信息系统根据客观实际条件有机的 结合在一起。通过第一工作单元要素,与第二工作单元相应的要素合理配置,同时 还应保障不能造成对第二个工作单元有任何的影响

13、,使之溶为一体,从而发挥出系 统防护工作最佳效果。具体地说,防护工作的第一步就是首先应确认雷害侵入计算机系统的各种途 径,(即了解客户的实际需求),在这个基础上,依据系统防雷的科学理论和我们 丰富的防雷设计安装经验,采取相应的防护措施,进行有针对性的防护,从而达到 在雷电入侵时能够保障系统安全运行的目的。为此,首先对于计算机信息系统的雷电入侵和危害,我们分别从以下几点进行 分析:1)电力线是雷电入侵电子设备的重要渠道:11 雷电远点袭击电力线:我国电力线输电方式是由发电厂通过升压变压器升压后,输电至低压变压器, 经低压变压器的输出给用户。由于我国的电压基本波形是每秒 50Hz 的正弦波形曲 线

14、,在电力线上形成每秒 50 次的交变磁场。如遇雷害发生时,在雷电未击穿大气 时,将呈现出高压电场形式。根据电学基本原理,磁场与电场之间是相互共存可逆 变化的,那么,雷击高压电场通过静电吸收原理,向大地方向运动。假设电力线杆 有5米高,那么在相对湿度25%时,要击穿5米空气,需要15X106V雷击高压(3000V/mm)。如果在相对湿度95%时(下雨时),击穿5米空气需要5X106V雷 击高压(1000V/mm)。电力线上的交变磁场对雷云的吸引小于大地的静电吸引。如 果,雷云击穿 5 米空气入地,需要很高的电压,雷电首先击在电力线上,并从电力 线的负载保护地线入地释放,这样就击穿了设备。在高压线

15、上的表现为击穿变压器 的绝缘,在变压器低压端与负载的连线上遭雷击,损失的是用电器。由于变压器低 压输出端是三条相线,做一条地线,当作零地合一线,变成三相四线制零地合一方 式给用电器供电,雷电击在火线与大地放电,就等于火线与零线放电通过电力线直 接击穿用电器的电子元件。一般电子设备线与外壳的耐压为每分钟V 1500V,火线与AC零线耐压为工业级Vdc550 650V,这么低的耐压一旦遭受远点雷击,必将击坏用电 器。为此,在选择防雷器时,首先考虑远点雷击。12 雷电近点电力线的侵入:所谓雷电近点袭击电力线,实际上是雷电袭击用电器所在的建筑物避雷针,从 而引起的雷电电磁脉冲的保护问题。雷电打在建筑物

16、避雷装置上,按照 GB5005794 建筑物防雷设计规范规定,定义大楼接闪电能力为波形10x350pS三角波,雷击 电流为150KA。避雷针引下线由于线路电感的作用,IEC1312定义最多只能将50%的 电流引入大地。100余米高的大楼它的引下线电感为155pH左右(1.55pH/米), IEC1312定义电感大于37.5pH,则发生测闪雷击,也就是说,10x350pS直击雷引下 线只能引下5 0%的电流,余下的电流将通过电力线屏蔽槽、水管、暖气管、金属门窗 等与地面有连接的金属物质联合引雷,但也只引下少部分雷电流,余下总电流的 25 %在大楼流窜至 UPS 输入输出负载的电源线、局域网线等,

17、击穿小型机局域网端, 最终由逻辑地线处下泄入地。对设备而言,部分雷电流将由 UPS 输入电源线对交流 地线进行L PE、NPE泄放,UPS输出L-PEZ(逻辑地、NPE泄放,小型机 L PE N-PE泄放,局域网线对逻辑地线等进行泄放。最终结果,将击穿UPS输 出对地线和输入对地线端、小型机电源对逻辑地线、网口对逻辑地线。为此,必须 对 UPS 输入输出火线零线对交流地和直流逻辑地进行保护,必须对小型机、服务器 及其它重要终端进行等电位保护,对网口进行保护,只有堵死一切雷电导入的端 口,才能有效的保护设备免受雷电的侵害。13 错相位雷害美国空军电磁兼容手册中,描述雷电发生时用肉眼可识别闪电为一

18、组雷击,每 次不少于 26 个雷,它有大小和发生先后的区别,如果一个高能量雷打在一条火线 上,而另一个低能量雷打在另一条火线上,线线之间就会产生一个电压差,侵入设 备。这种侵害设备的现象,称错相位雷击,又称雷电的二次破坏,对三相 UPS 而 言,它的输入和输出端,应安装线与线之间的保护,才能更全面更立体的保护电子 设备。小结:堵死雷电由电力线入侵电子设备,应该从远点雷击、近点雷击和错相位 雷击三种雷击现象入手,实施全方位的保护,才能在发生雷击时,有效的保护设 备。2)雷电作用下,建筑物内感应雷害雷电击在建筑物避雷针上,由避雷针通过引下线,将雷电流泄放大地,引下线 自上而下产生一个变化旋转快速运

19、动磁场,建筑物内的电源线、网络线等相对切割 磁力线,产生感应高压并沿线路传输击毁设备。以天津某银行机房为例,假设大楼避雷针引下线或大楼主钢筋距主机房 10 米, 假设机房为7x7m2。di=75KA dt=10pS710 75KA则感应咼压 U = 2xl0-7x7xLnx=52500V1010yS由此可知由雷电产生的感应电压无孔不入,它可以危及机房内所有的用电器, 在上海一座邮电智能大厦一次雷击, 4 台服务器遭受雷击, 80 多条广域网络线端口 及4台网络交换机的 RJ45 端口全部损坏;广东省1996 年计算机系统遭受雷击损失 五亿元人民币。感应雷的能量虽小,但电压较咼。所以,对感应雷害

20、的防护,应该 是全面的防护,但防护的级别可以低一些。3)、雷电作用下的网络雷害3.1、广域网络一般讲,广域网络通常不遭受直击雷的破坏,lmm2的铜线遭受10KA的雷电袭 击,它自身就断了。所以,广域网的雷害主要是感应雷害,击穿方式为线对线和线 对机壳(地),在GA173-1998计算机信息系统防雷保安器标准中,广域网保护 的最大雷电流为5KA,连接广域网一般有以下几类,一类是DDN租用专线,一类是 ISD 专线,一类是帧中继以及微波通讯方式 。对于专线的接收端口,它的耐压应为 5倍工作电压,即Vdc25V,传输速率小于等于2M,插入保安器,使之在雷电作用 下,短路保护5KA电流,而端口残压小于

21、25V;而对于话线备份来说,它的工作电压 为48V加93込V振铃电压共计175V,插入保安器,保安器的启动电压185V,残留 电压小于Vdc330V,因为调制解调器的耐压为Vdc330V。保护模式为线对地和线对 线,广域网遭受雷击的概率较大,一般在28左右。3.2 局域网在局域网的传输电缆中,常常采用 UTP 电缆, UTP 电缆的 4 对线中两对线(1- 2, 3-6 线对)一对线接收一线发送,采用 RJ45 接口方式。既然局域网电缆采用 RJ45 型是一收一发,那么,就应按两对线进行雷电保护。我们做过一次试验,在一条连接服务器的网线旁边,约距网线 0.5 米处,采用 雷击发生器对网线 0.

22、5 米处一条金属线发射雷电流。由小到大,发射电流为 10KA, 周边磁场污染了网线,瞬间服务器端口、芯片被击穿,这时,示波器记忆感应高压 为 100V。在机房的综合布线中,施工人员为了布线工程的美观漂亮,把很多网线放在墙 壁内,没有考虑对 UTP 电缆的屏蔽处理,一旦大楼某些钢筋泄放雷击电流都将引起 感应高压,从而击毁设备。另外,对于网络系统,由于雷电引起的电磁脉冲,在机房内产生 3Gs 的变化电 磁场,必然引起网卡端口芯片的烧毁。3.3综合布线从防雷角度上考虑,布线一定要明确表示:3.3.1 电源线不要与网络线同槽架设,数据插座与电源插座保持一定距离;3.3.2 广域网线缆不要与局域网线缆同

23、槽架设; 3.3.3网线与墙壁布置时,有条件应远距离安装;3.3.4 屏蔽槽有厚度要求,并要求两点接地;4)雷电作用下的二次效应雷电高压反击雷雷电袭击建筑物避雷针,由引下线将雷电流引入大地,由于大地电阻的存在,雷电电荷不能快速全部的与大地负电荷中和,必然引起局部地电位升高,交流配电 地和直流逻辑地将这种高电位引入机房, UPS 输出、输入端被击穿,小型机及其他网 络设备连接断口被击穿。这种反击电压少则数千伏,多则数万伏,直接烧坏用电器 的绝缘部分。在通过具体分析了雷害入侵计算机信息系统的各种途径后,我们得出的结论 是:防雷保护设计工作不是简单的避雷设施的安装和堆砌,而是一项要求高、难度 大的系

24、统工程,涉及多方面的因素。为此我们的设计指导思想的主旨是,本着“经 济、实用、高标准严要求、高起点、高可靠性”的原则,在遵照执行国家有关标准,国家有关行业标准的基础上,还参考和引入 IEC 国际电工委员会的有关防雷技 术标准要求,以期达到更好的防护效果。设计依据标准I. GB2887 89计算机场地安全要求II. GB50174 93电子计算机机房设计规范III. GB50057 94建筑物防雷设计规范W. GB50054 95低压配电设计规范V. GA173 1998计算机信息系统防雷保安器W.GB3482 3483 83电子设备雷击试验W.GB11032 89交流无间隙避雷器训I.邮电部通

25、讯产品入网检定认证细则IX. IEC10241 : 1990建筑防雷X. IE1312 1 : 1995雷电电磁脉冲的防护通则XI. ITU.TS.K20 : 1990电信交换设备耐过电压和过电流能力XH. ITU.TS.K21 : 1998用户终端耐过电压和过电流能力机房雷电防护设计的理论依据在我们方案设计工作中除了遵照执行相关的国家标准要求外,我们还参考和引 入IEC/TC 81有关标准的核心内容做为我们设计的指导思想和理论依据。IEC/TC 81 是在国际电工委员会防雷技术精华的基础上,制订的各项防雷技术标准、规范, 对我们的实际工作具有指导意义。如:在IEC 1024建筑物防雷和IEC

26、1312 雷电电磁脉冲的防护通则标准中,重点提出了防雷分区和等电位连接的概念。根据雷击在不同区域的电磁脉冲强度划分防雷区域,并在不同的防雷区域的界面上 进行等电位连接,能直接连接的金属物就直接相连,不能直接连接的如:电力线路 和通信线路等,则必须依据不同的防雷区域的科学划分,采用不同防护等级的防雷 设备器件,对后续被保护设备进行有效的保护且必须实施等电位连接。实践证明, 这种分区分级等电位均压连接,并以防雷设备来确保被保护设备的防护措施是最好 的解决问题,实现有效防护的方法。关于防雷区划分的问题,在 IEC1312 标准中有详细的论述:“防雷区是指闪 电电磁环境需要限定和控制的区域。各区以在其

27、交界处的电磁环境有无明显的改变 作为划分不同防雷区的特征,具体到我们拟进行的计算机信息系统的防雷保护中, 就是要根据计算机信息系统所在的建筑物按需要保护的空间划分不同的防雷区域, 以确定各防雷区空间的雷电电磁脉冲(LEMP)的强度,来确定不同防雷区所应采取 的具体防护措施和防护手段。在计算机信息系统所在的建筑物一般是这样划分防雷 区的:(一) LPZO区:本区内的各类物体都可能遭到直接雷击,因此各物体都可能导A走全部电流,本区内的电磁场没有衰减。(二) LPZ0 区:本区内的各类物体很少遭到直接雷击,但本区内电磁场没有衰B减。(三) LPZ1:本区内的各类物体不可能遭受直接雷击,流经各类导体的

28、电流比LPZ0 区进一步减小。由于建筑物的屏蔽措施,本区内的电磁场得到了初 B步的衰减。(四) LPZ2:为进一步减少所导引的电流或电磁场而引入的后续防雷区,应按 照需要保护的计算机信息系统所要求的环境选择后续防雷区的要求和条 件。在明确防雷区划分的基础上,结合我们拟进行保护的计算机信息系统来分析, 其中心机房是由以下几部分构成:(1)电源系统,其中又分 UPS 电源系统及市电供电系统( 2)计算机网络系统( 3 )通信系统(4)辅助系统,其中包括空调、照明、消防、门禁等。依据防雷分区的概念,结合机房的具体情况,那么我们工作的主要目的就非常 明确了,即:确保各系统,特别是直接影响业务的系统的正

29、常运行,不受雷电所造 成的过电流、过电压的干扰和破坏,保护机房不致被雷电袭击,首先是要堵塞所有 的雷击入侵渠道,实行分区和等电位连接的原则,并结合机房的实际情况正确按规 范实施。根据防雷分区的概念,我们知道,不同防雷区之间的电磁强度不同,因此首先 作好屏蔽措施,在一定程度上可以防止雷电电磁脉冲的侵入,在此基础上,作好穿 越防雷区界面上不同线路的防雷保护,是我们系统防雷工作的重点。机房所在建筑物的外部接闪体承担了大部分的雷电电磁的能量,是防雷系统中 重要的一环,并与内部防雷工作有着直接的联系。在前面我们分析雷害的入侵渠道 时已做了明确的阐述,如:“雷电作用下,建筑物内感应雷害”及“雷电作用下的

30、二次效应雷电高压反击雷”,基于当时建筑物防雷要求与现在防雷标准的差异, 特别是考虑作为国家重要关键部门的特定作用,为稳妥起见,我们必须强调对计算 机信息系统的直击雷保护问题。综上所述,我们可以借用 IEC/TC-81 的技术定义将系统防雷工作总结为: DBSE 技术即分流( Dividing ) 、均压( Bonding ) 、屏蔽( Shielding ) 、接地 (Earthing)四项技术加之有效的防护设备的综合,如果从设计阶段开始体现这种 综合系统的防护设计原则必将起到事半功倍的理想防护效果。从严格的意义上讲,目前我们拟进行的机房的防雷电保护工作,在实施的过程 必须考虑使用环境的特殊情

31、况。譬如,机房所在的建筑物的主楼供电系统、主变配 电室是否属于机房专门使用。虽然大楼的建筑物避雷装置可确保建筑物本身免遭雷 击损坏和人身安全,但由于大楼的综合管线,如上下水管、电力供电线等等的综合 联接问题,市政建设管线与大楼的相互关系,如入户线的屏蔽问题等原因,加之大 楼内其它部门所作的改造、搭接,实难于逐一考证,就整幢建筑物是否为一完善的 均压系统就难以确定。为此,我们将重点保护的范围集中确定在 LPZ0 防雷区计算B 机信息系统中心机房的范围内,并且以 LPZ0 防雷区与机房范围的界面为一屏障,在A 这里将所有可能雷电入侵渠道全部切断。运用实施 DBSE 技术,并合理选用防雷设 备,来实

32、现我们的目的即对计算机信息系统中心机房实现系统防雷保护。第四章 机房雷电防护总体方案1电源系统的防雷与过电压保护由于贵处机房电力供给是由大楼的建筑物主配电引入。电源高压端的防雷保护 已由电力供电部门实施。因此,对于 UPS 电源系统的雷电防护,我们采取以下的防 雷保护方案:UPS 配电回路设计选用原产德国菲尼克斯防雷器件,安装在防雷配电箱内,(我 们严格按照计算机信息系统防雷保安器、交流无间隙金属氧化物避雷 器的要求组装。)采取两级输入防雷系统保护。(具体方案详见原理图)UPS 电源系统的防雷保护从机房目前的情况来分析,供电线路穿越各级防雷区,考虑到机房各种不同用 电设备的耐过压的能力,我们建

33、议采用如下的电源系统防雷方案,以达到最佳的防 护效果和最经济的投入。由于机房 UPS 不间断电源设备是用于为机房内计算机信息 系统各用电设备提供稳定、可靠和高质量的用电环境唯一的重要设备,并且是由市 电供电输入机房的主要途径,所以我们将电源系统防护的重点放在了对 UPS 不间断 电源的保护上。在计算机专用配电柜、UPS电源做两级输入防雷保护。具体的防护措施为:参考 IEC1312的描述,在LPZ0B区,虽然不会被直接雷击击中,但远端雷电闪击沿电力线 传来雷电电磁脉冲的强度没有衰减,本区内的电磁场也没有减弱。在三级防雷保护 中,第一级防护为粗保护,选用 PHOENIX CONTACT 的雷击电流

34、放电器 FLT 系列产 品,对直击雷进行防护,吸收 90%的大能量雷电流,此产品为 PHOENIX 公司的专利产 品,独有的自点火放电技术;第二级为中级保护,选用浪涌电压雷电放电器,即半 导体放电器,对雷电流进一步吸收;对终端设备的防雷保护为细保护,同样采用浪 涌电压放电器,将残余的雷电流基本吸收,通过地线泄入大地。在第一级我们采用德国菲尼克斯公司的相零之间 3 只 FLT 35 CTRL-0.9/I, 零一地1只FLT 100 N/PE CTRL-1.5。此器件为低压电源中的使用而特别设计,它 是用于主配电系统的采用了密封和自点火技术的 B 级防雷及电涌保护器。它通过一 个电子点火装置来控制

35、放电间隙的点火电压。并且通过了 100KA (10/350us)雷击测 试电流的测试,以抵御脉宽10X350 S波形,单相35KA雷电冲击,残压为900伏。 模块化设计使它便于安装与维护,当器件老化后,本系统设有声光报警系统,并可 将此信息远程传送,及时提醒操作人员更换,对这部分器件采用的是可带电插拔更 换结构(热插拔),无需在维护时切断电源,方便不能随意关机用户使用。在第二级我们采用德国菲尼克斯公司的 VALMS 230 IT 过电压保护器件,进行 有效的吸收,同时还将起到吸收线路上的感性负载和容性负载的“通”“断”引起 的浪涌电压及对相电压可能的误输入线电压的保护,最终输入 UPS 一个洁

36、净的电 源。在本系统中我们除了考虑到相线对零线及地线的保护外,还考虑到远点雷击完 成火线与零地合一线的三级保护,近点雷击,完成火线与交流配电地线的保护,由 自点火放电型雷击电源放电器FLT-35 CTRL-0.9/I(三只)与FLT 100 N/PE CTRL-1.5 (一只)组成新的间隙放电,和VAL230IT过电压保护器件组成UPS输入端二级保护 系统。在错相位雷击时,由相相之间并联 VAL400 半导体过压保护器,由 VAL400 半 导体过压保护器进行残压吸收,最后送给UPS 一个稳定的电压工作环境。电源系统的全部防雷器件集中安装在低压配电系统中,组成两级输入防护的防 雷系统,用于UP

37、S电源系统的保护。由于 VAL400、 VAL-230IT 等器件属易损件,当器件老化后,本系统设有声光 报警系统,并可将此信息远程传送,及时提醒操作人员更换,对这部分器件采用的 是可带电插拔更换结构(热插拔),无需在维护时切断电源,方便不能随意关机用 户使用。2、终端设备的防雷保护外事办机房设备包括服务器、交换机、路由器等,为了确保设备万无一失,而感应雷害又无孔不入,同时因考虑到电网的浪涌可能带来对设备的冲击。(天津市 外事办终端设备共计 11 台)因此我们还将采用以上的防护机理实施同样电源终端防 雷保护,以确保整个计算机信息系统的核心部分的安全运行。3、通讯系统的防雷与过电压保护通讯系统防

38、雷包括由户外引至户内的通讯线路 ,主要线路包括网络通讯线路、专 线、微波通信线(天馈线)等;(由于网络通讯线路、专线线路是由光纤引入可不 予考虑),根据贵方提供的机房情况看:三层有一条微波天馈系统存在感应雷隐患,需要做防雷保护,因此我们建议选 用菲尼克斯的 CF-UB-280DC-SB-SET 对其进行保护。机房有一条DDN专线存在感应雷隐患,需要做防雷保护,因此我们建议选用菲 尼克斯的 D-LAN-A/RJ45-BS 对其进行保护。此外,机房还有一套 ADSL 设备存在感应雷隐患,需要做防雷保护,因此我们 建议选用菲尼克斯的D-FM-A/RJ45-BB对其进行保护。4、接地系统防雷器件首先起

39、到的作用是对雷电流的吸收和泄放作用,同时也是一种“等电 位连接器”。所有的防雷产品器件的防护原理均是在雷击发生的瞬间内,迅速启动 响应,保证设备、大地、建筑物及其附属设备之搭接构成一等电位体,从而避免过 电压的损坏,实现均压等电位的关键就是整个机房的地线系统。所以说接地系统在系统防雷中非常重要的。3.1 接地系统理想的建筑物避雷系统的接地装置,包括从接闪器及引下线的理想状态最好是 无任何电阻,一旦雷击发生,避雷针接闪时,不论雷电流有多大,接地装置上任何 一点对大地的电势差为零,因此,接地的阻值应尽可能的小。依据国家标准GB50174 93电子计算机机房设计规范规定,交流工作接地和 安全保护接地

40、,接地电阻均不应大于40,直流工作接地中,接地电阻应按计算机系 统具体要求确定;(GBJ79-85中规定电信站接地电阻要求W1Q)。据 IEC1024 标准机房交流工作接地、安全保护接地、直流工作接地、防雷接地 等四种接地宜共用一组接地装置。但是由于某些计算机设备的工作状态差异不同,接地系统共地很难实现时,我 们建议应该采用等电位理论,达到瞬间等电位方式,常态独立接地方式(即机房接 地系统与其他交流地、安全保护地、防雷地进行软连接)。3.2 地线装置现状目前机房的市电供电系统采用三相五线制,送入机房。机房地线接地电阻应10。地线与大楼避雷系统接地网相连,具体接地电阻不详,需要进行现场测量。地线

41、为计算机系统的独立接地网,从现场情况看,机房应做等电位连接,安装均压 等电位带。3.3 机房设备对接地系统的要求安装要求 UPS 电源输入为三相四线制,输出为三相五线制,输出端为隔离变压 器型,保证中线对地线电压小于IV,满足计算机系统的需要。3.4 均压等电位连接 另外,机房的各种地线间及地线与大楼结构的主钢筋之间,必须进行有效的连接,即全部采用共用接地系统,当雷电引起地电位高压反击时,整个大楼及机房呈 现系统等电位,防雷系统呈现工作状态,保证网络系统的安全。关于机房设备的金属外壳接地在相关的国标与部标中均提出:机房设备的金属(导电)外壳必须接地的规定(通常称为保护接地,也就是用导线将外壳与

42、PE线相 连)。这一要求的目的是将设备外壳与地线(PE)进行等电位连接,这样不但保证 了操作人员的安全(触摸外壳时不会发生触电的危险);同时还将被保护设备的外 壳(对于输入、输出线)的电位处于相对稳定的状态,并将电磁干扰的大部分杂散 电流导入大地。3.5 线路的屏蔽关于均压等电位带的实施,我们建议在机房的地板下设均压等电位地线带,以 25mmX 3mm的紫铜带,在各室内分别形成网型(M型)结构的均压等电位带,且作好 此带的绝缘支撑,最终以星形( S 型)形式与机房的直流逻辑地线接通,另外机房 UPS供电系统电源插座及信号地均在最近的距离内与均压等电位带相连,避免因设备 间电势差而使设备损坏。关

43、于线路的屏蔽情况我们是这样考虑的:感应雷击很多是由于传输线路在交变 磁场中产生感应高压,使计算机系统遭到破坏,对传输线路采取屏蔽措施,是降低 感应雷击破坏的有效方法。目前机房内的大部分线路采用穿管布线(金属软管或硬 管),但从实际情况看,综合布线的金属护管的屏蔽接地需改进,使每根护管两端 有效接地,并与均压等电位带连接,最大限度的减少感应雷击侵入的渠道。3.6 法拉第笼的问题当机房的均压等电位带与大楼的钢筋网相连时,形成一个稀疏的法拉第笼。或 着我们建议机房装修时做防静电处理,墙壁采用防静电铝塑板,并与机房共地系统 相连。使机房的形成一个法拉第笼。注:1.接地引下线的连接必须在防雷配电柜前进行

44、;2.UPS 电源插座必须就近与均压等电位相连接。第五章 系统防雷方案的优势分析通过前面详细的设计方案的表述及对我们所采用的产品技术指标及产品的技术 原理特点的介绍,我们依托德国菲尼克斯公司防雷产品进行用户具体防护方案优点包括以下几点:1产品的优势欧洲尤其是德国在防雷电电磁脉冲产品方面在全世界防雷产品领域中始终保持 着传统的优势。在美国 IEEE 专刊 1998 年 4 月号的一篇文章中美国人提出“美国在 瞬态过电压保护方面已落后德国 10 到 15 年,.”。由 IEC 的 TC81 防雷专业委员 会的文献了解到目前世界上能够模拟出完全类似真实雷电电流(10/350U S)的实验室 共有 5

45、 家,全部在欧洲并且有 3 家在德国,其中德国菲尼克斯公司全资拥有的菲尼 克斯电磁兼容测试试验室(PHOENIX TEST-LABS)既是德国国家级实验室同时属 于欧洲联合试验室的主要成员。并且我国目前最好的电磁兼容实验室航天部 501 所的 EMC 实验室也是由德国公司提供的。中国科学院高压实验室曾向压敏电阻的主要供应商美国通用电气、日本松下电 工咨询好的防雷器供应商,美国通用电气推荐: PHOENIX CONTACT、DEHN、 OBO,而日本松下电工推荐 PHOENIX CONTACT、OBO、DEHN。从北京图书馆联机检索到的德国电气工程师杂志ETZ上了解到在德国的市场上 PHOENI

46、X CONTACT和DEHN共同拥有78%的占有率,而OBO和其他大约15家 生产厂商占有 22%,而在欧洲市场上 PHOENIX CONTACT 大约占 45%的市场 DEHN大约占20%、OBO占9%、法国占SOULE占8%。国际电工委员会 IEC 的 TC81 委员会是主管防雷保护的委员会,它颁布了许多 的国际标准和规定。在TC81委员会的5人执委中有PHOENIX CONTACT和DEHN 及澳大利亚、法国 SOULE 和英国 FURSE 的科学家,并且在 TC81 下属的 6 个工作 组中有 4 个组的组长是德国 PHOENIX CONTACT 公司的科学家,还有一个组的组 长是澳大

47、利亚的科学家。2最先进的系统防雷技术理念根据 IEC 国际电工委员会 TC81 防雷专业委员会颁布的雷电防护的基本标准 IEC1024-1建筑物防雷和IEC1312-1雷电电磁脉冲的防护通则,雷电分为直 接雷击和感应雷击,雷电直接打在建筑物的避雷针上,由引下线将雷电流引入大地 的同时,引下线上由于雷电流的通过产生快速的运动磁场,用电器相对切割磁力线 产生感应高压,破坏用电设备。雷电流的波形8/20S。由于感应雷击的脉冲宽度较 窄,所以雷电流小,破坏力低。直接雷击是雷电直接打在各种电力线、信号线上,由此直接将雷电高压引入机 房,直接破坏机房内的设备,雷电流波形 10/350 S 由于直击雷脉冲较

48、宽,雷电流 较大,所以破坏力巨大,属于相对毁灭性破坏。直接雷击的防护是 IEC1312 标准的 重点规范和防雷规定。因为,直接雷击引起感应雷击,直接雷击的能量是感应雷击 能量的数十倍。根据国家GB50057-94建筑物防雷设计规范的规定,对国民经济有重要意 义的智能大厦属于2类防护单位,应该执行10/350p S波形,且要防护雷电流 150kA对建筑物的破坏。建筑物内部的计算机机房用电设备也必须承受10/350p S 75kA的雷电流的冲击IEC1312的标准。所以,在考虑机房系统雷电防护时,应首 先考虑机房内10/350p S 75kA的直接雷击防护,其次在考虑8/20p S感应雷击的防 护

49、。另外,经中华人民共和国主席令第二十三号,由中华人民共和国主席江泽民同 志签发批准(一九九九年十月三十一日九届人大第十二次会议)国务院颁布中华 人民共和国气象法已于二零零零年一月一日起公布执行。在该法的第五章“气象 灾害防御”一章中的第三十一条最后一自然段中明确指出“安装的雷电灾害防护装 置应当符合国务院气象主管机构规定的使用要求”。另外配套法的相应执行标准文 件已起草完成。天津市政府已于 1999 年 12 月下发天津市防御雷电灾害管理办 法的通知中明确要求“对有可能遭受雷击的建(构)筑物和其他设施,均应安装 防雷装置,以避免或减轻雷电灾害”。为此,参照 IEC1020 及 IEC1312

50、标准,把直 击雷的防护确定为雷电防护首要任务已势在必行。3全面的系统电磁脉冲防护设计与用户需求的适配按照 IEC 国际电工委员会 TC81 防雷技术委员的推荐方法,在具体的保护设计 及设备安装调试过程中,良好的防雷产品只在系统的防护工作中起 30的效用,而 70的工作量是在详实的用户现场勘查。切实可行的方案设计及配套的实施方案及 执行这些后续技术工作中,我们始终以这一工作程式进行用户的服务,另外防雷产 品器件、装置组配生产过程雷电过压的冲击检测试验,我们认为是对用户的使用我 们产品的最好承诺。第六章 销售服务体系1售前的技术服务本公司设有专门面向用户的工程、维修服务中心,技术中心的防雷工程师在

51、用户 的售前服务过程中负责向用户提供免费的技术服务。其中包括:用户的技术咨询; 详细的现场勘察; 协助用户确定相应的保护设计的种类、数量; 电源容量的确定; 用户拟须防护现场的建议性设计方案; 确定合理安装场地;相关及现场的技术培训。2售中的技术服务在前期的建议性设计方案得到用户首肯及前期的商务接洽落实后,开始在相应 服务合同原则下的用户服务我们将向用户提供完整的设计定型方案及施工方案,基 于我们的产品的应用特性,在产品的交付过程中,我们还辅以严格的雷击过压试验 检测程序,以期确保向用户提供高可靠性和高质量的产品,达到确保用户的现场设 备运行安全。在设备的现场安装、调试完成后,我们将向用户提供

52、相应的项目竣工报告,同 时接受用户及相关方面检测验收,同时我们还将向用户进行现场运行维护及应急情 况的基本培训。3售后的技术服务1)产品保修期内免费维护 凡适配我们产品的用户,在满足使用环境和使用条件及按规定使用操作规范运 行情况下发生故障或器件损坏等意外情况时,用户将享受对损坏的器件和故障进行 免费的更换和检测调维护服务,免费运维期限三年。2)服务形式 为了确保机房雷电防护系统对所保护系统的业务能正常运行,我们配备专业工 程师为您提供 24 小时全方位服务。3)产品保修期后的维护服务 在免费运维期结束,我们仍承担用户的维修责任,维修过程我们只收取元器件 的更换费用和基本的服务费用。4)运维服

53、务的响应时间 在我们接到用户的运维服务通知后,将以最快的速度进行响应,根据用户的位 置、距离及用户的运维要求制定维修方案,在无自然及人为等不可抗力因素影响 下,本埠的现场响应时限在接到通知内三小时。5)本公司承诺对所售设备提供终身的维修服务。德国总部第七章 公司简介德国菲尼克斯简介德国菲尼克斯 PHOENIX CONTACT 集团公司创建于 1923 年,是最早从事雷电 电磁脉冲引起的瞬态浪涌吸收技术的 企业之一。在总部 Blomberg 菲尼克斯全资拥有德 国国家级EMC (电磁兼容)实验室,并且 是欧洲联合试验室的核心成员,该实验室 拥有的10/350“S模拟雷电波测试能力, 是世界范围内

54、仅有不到10家同类试验室之 一。该试验室拥有的CE (欧盟安全认 证)、VDE德国国家安全认证的双重认证 资格。菲尼克斯公司是IEC TC-81(国际电工委员会-雷电防护专业委员会)的K (核心成员)成员, 并且多位专家成为TC81的执行委员,其中菲尼克斯公司的Dr.H.Altmaier多次担任TC-81的首 席执委,先后有5个TC-81的WG(工作组)的组长由菲尼克斯公司的专家担任。菲尼克斯防雷产品目前在欧洲防雷器市场上的占有率排在第一位,客户遍及各种领域,尤其 是移动通信产品的供应商,如 诺基亚、爱立信、阿尔卡特、西门子等。在世界范围内众多的 GSM服务提供商几乎全部采用了菲尼克斯的防雷产

55、品。如:德国的D1、D2、E-PLUS,法国的 SFR 等等。全世界超过15万个GSM基站被菲尼克斯PHOEMX CONTACT保护菲尼克斯PHOENIX CONTACT防雷器件在中国的主要应用客户:德国西门子(中国)有限公司 上海西门子通信电源有限公司 诺基亚(中国)通信有限公司 上海新泰-爱立信通信电源有限公司 深圳华为电气有限公司 上海贝尔通信电源有限公司 爱立信中国公司 西门子移动通信北京西门子国际交换有限公司 上海西门子移动通信有限公司 北京首信通信有限公司 南京熊猫-爱立信通信电源有限公司 中国建设银行总行 诺基亚中国公司 埃默森电气公司 联想集团总部防雷工程方案附件1防雷设备报价单2. 防雷系统配图(UPS防雷箱原理图、均压等电位地线系统图、终端设备原理图、信号保护器件原理图)3. TRABTECH 系列防雷产品技术参数表4. 天津市人民政府文件5. 恒电公司系统防雷部已完成的部分防雷工程列表6. 菲尼克斯防雷产品保险

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!