建筑类英文翻译

上传人:d**** 文档编号:217524708 上传时间:2023-06-13 格式:DOCX 页数:10 大小:297.76KB
收藏 版权申诉 举报 下载
建筑类英文翻译_第1页
第1页 / 共10页
建筑类英文翻译_第2页
第2页 / 共10页
建筑类英文翻译_第3页
第3页 / 共10页
资源描述:

《建筑类英文翻译》由会员分享,可在线阅读,更多相关《建筑类英文翻译(10页珍藏版)》请在装配图网上搜索。

1、英语翻译1外文原文出处Geotechnical, Geological, and Earthquake Engineering, 1, Volume 10, Seismic RiskAssessment and Retrofitting, Pages 329-342补充垂直支撑对建筑物抗震加固摘要:大量的钢筋混凝土建筑物在整个世界地震活跃地区有共同的缺陷。弱柱,在一个或多个事故中,由于横向变形而失去垂直承载力。这篇文章提出一个策略关于补充安装 垂直支撑来防止房子的倒塌。这个策略是使用在一个风险的角度上来研究最近实际可行的性能。混凝土柱、动力失稳的影响、 多样循环冗余的影响降低了建筑系统和 组件

2、的强度。比如用建筑物来说明这个 策略的可行性。1、背景的介绍:建筑受地震震动,有可能达到一定程 度上的动力失稳,因为从理论上说侧面 上有无限的位移。许多建筑物,然而,在较低的震动强度下就失去竖向荷载的支撑,这就是横向力不稳定的原因(见图16.1)。 提出了这策略的目的是为了确定建筑物 很可能马上在竖向荷载作用下而倒塌, 通过补充一些垂直支撑来提高建筑物的 安全。维护竖向荷载支撑的能力,来改 变水平力稳定临界失稳的机理,重视可能出现微小的侧向位移(见图 16.2)。在过去的经验表明,世界各地的地 震最容易受到破坏的是一些无筋的混凝 土框架结构建筑物。这经常是由于一些无关紧要的漏洞,引起的全部或一

3、大块地方发生破坏,比如整根梁、柱子和板。去填实 上表面来抑制框架的内力,易受影响的底层去吸收大部分的内力和冲力。这有几种过去被用过的方法可供选择来实施: 1、加密上层结构,可以拆卸和更换一些硬度不够强的材料。2、加密上层结构,可以隔离一些安装接头上的裂缝,从而阻止对框架结构的影响。3、底楼,或者地板,可以增加结构新墙。这些措施(项目 1、2 和 3)能有效降低自 重,这韧性能满足于一层或多层。然而,所有这些都有困难和干扰。在美国,这些不寻 常的代价换来的是超过一半更有价值的建筑。4、在一些容易受到破坏的柱子裹上钢铁、混凝土、玻璃纤维、或碳纤维。 第四个选项可以增加柱子的强度和延性,这足以降低柱

4、子受到破坏的风险在大多数 的建筑物中。这个方案虽然成本比前面低,但是整体性能也会降低,对比较弱的地板破 坏会更加集中。加强柱子的强度在美国很流行,但它的成本依旧是很高的。在发展中国 家,这些先进的技术对某些种类的加料或加强,还不能够做到随心所欲。这个程序的提出包含了另一个选择,美国已经运用这个选择用来降低房子倒塌的风 险。这个方法是增加垂直支撑,来防止建筑在瞬间竖向荷载作用下就倒塌(见图 16.3)。 这是为支撑转移做准备的,当 柱子被剪切破坏和剪切衰弱 时。这个补充支撑通常是钢结 构、管道支撑或木材支撑。他 们通常安装在单独的柱子上, 但(图 16.3)钢柱也可以被放置 在能承担的水平框架上

5、。这种 技术能有效的降低自重,从而 降低了建筑在瞬间竖向荷载 下就遭到破坏。在水平方向的 强烈震动,产生的不稳定大概很少被想到。补充的安装垂直技撑相对比较便宜。一些有 用的空间可能通过安装支撑被影响,可是这是一些微不足道的比较。在美国为建筑安装 一些补充支撑现在非常流行。英文原文1Supplemental Vertical Support as a Means for Seismic Retrofit of Buildings Craig D ComartinGeotechnical, Geological, and Earthquake Engineering, 1, Volume 10,S

6、eismic Risk Assessment and Retrofitting, Pages 329-342Abstract A large number of concrete buildings in seismically active areas throughout the world exhibit a common deficiency. Weak columns, in one or more stories, lose vertical load-carrying capacity as a result of lateral distortion. This chapter

7、 presents a conceptual strategy for retrofit comprising the installation of supplemental vertical supports to prevent collapse. This procedure utilizes a risk-based perspective based on recent research on the realistic capacity of concrete columns, dynamic instability, and the effects of in-cycle de

8、gradation of strength in building systems and components. An example building is used to illustrate the application of the concept.1 Introduction and BackgroundBuildings subject to earthquake shaking have a potential to reach a point of dynamic instability at which they collapse due to theoretically

9、 unlimited lateral displacement.Many buildings, however, lose the ability to support vertical loads and collapse at smaller levels of shaking intensity than that which would otherwise cause lateral dynamic instability (see Fig. 16.1). The procedures proposed here are intendedto identify buildings pr

10、one to preemptive vertical load collapse and improve their safety by the installation of supplemental vertical supports. Maintaining the capability to support vertical loads changes the critical collapse mechanism to lateral dynamic stability which occurs at larger and less probable lateral displace

11、ments (see Fig.16.2).Experience in past earthquakes around the world indicates that concrete frames infilled with unreinforced masonry (URM) have been particularly prone to collapse. This most often is due to a weak first story caused by the omission of all or a substantial portion of the infill to

12、allow for retail, parking, or other uses conducive toopen spaces. The infill in upper stories restrains frame action and forces the flexible lower floor to absorb most of the energy demand and drift.There are several alternatives for retrofit strategy that have been implemented in the past:1. The in

13、fill on upper floors could be removed and replaced with less stiff and less strong materials.2. The infill on upper floors could be isolated from the structure by installing joints with gaps to prevent interaction with the frame.3. The lower floor, or floors, could be strengthened with new structura

14、l walls。 These Measures (Items 1, 2, and 3) are effective in reducing the ductility demand in the weak story or stories. However, all of them are costly and intrusive. In the US, it is not unusual for the costs of these types of retrofit to exceed half of the replacement value of the building.4. Wra

15、p the columns in the weak story with jackets of steel, concrete, fiberglass, or carbon fiber.The fourth option can increase both the strength and ductility of the columns enough to reduce the collapse risk for most buildings. The cost is somewhat less than for the first three alternatives; however t

16、he overall performance would also be less with more damage focused in the weak floor. Column jacketing is popular in the US, but the costs can still be high. In developing countries, the advanced technologies for some types of jackets may not be readilyavailable.The procedure proposed here incorpora

17、tes another alternative that has been used in the US to reduce collapse risk. This strategy is to provide supplemental vertical supports designed to prevent preemptive vertical load collapse (see Fig. 16.3). These are intended to support loads that are transferred from shear critical columns as they

18、 are damaged and begin to fail. The supplemental supports are typically steel shapes, pipe shoring, or timber shores. They are often installed near individual columns, but also can be placed beneath capable horizontal framing. This technique is effective in reducing collapse risk by avoiding the pre

19、emptive vertical collapse mode。 The intensity of shaking required for lateral dynamic instability is generally higher and less likely to occur. The installation of supplemental vertical supports is relatively inexpensive. The functional use of the spaces may be affected by the installation, but ofte

20、n this is minor compared to other alternatives. Installations in the US have been made for a very small percentage of the replacement costs for the building.英文翻译2外文原文出处:NATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Tech

21、nologies and Seismological Data, Pages 147-149动力性能对建筑物的破坏引言:建筑物在地震的作用下,和一些薄弱的建筑结构中,动力学性能扮演了一个很 重要的角色。特别是要满足最基本的震动周期,无论是在设计的新建筑,或者是评估已 经有的建筑,使他们可以了解地震的影响。许多标准(例如:欧标,2003;欧标,2006),建议用简单的表达式来表达一个建筑 物的高度和他的基本周期。这样的表达式被牢记在心,得出标定设计(高尔和乔谱拉人, 1997),从而人为的低估了标准周期。因为这个原因,他们通常提供比较低的设计标准 当与那些把设计基础标准牢记在心的人(例:乔普拉本

22、和高尔,2000)。当后者从已进行 仔细建立的数字模型中得到数值(例:克劳利普和皮诺,2004;普里斯特利权威,2007)。 当数字估计与周围震动测量的实验结果相比较,有大的差异,提供非常低的周期标准 (例:纳瓦洛苏达权威,2004)。一个概述不同的方式比较确切的结果刊登在马西和马里 奥(2008);另外,一个高级的表达式来指定更有说服力的坚固建筑类型,提出了更加准 确的结构参数表(建筑高度,开裂,空隙填实,等等)。联系基础和上层建筑的震动周期可能发生共振的效果。这个原因对于他们的振动, 可能建筑物和土地在非线性运动下受到到破坏,这个必须被重视。通常,结构工程师和 岩土工程师有不同的观点在共振

23、作用和一些变化的地震活动。结构工程师们认为尽管建 筑物和土壤的自振周期和地震周期都非常的接近。但对于建筑物周期而言,到底是因为 结构还是非结构造成的破坏提出了疑问。如果加大振动,建筑物减轻自身的重量对共振 产生的破坏有很大的减轻效果。岩土工程的工程师们还没有完全同意这个观点,因为土 壤可以提高自身的振动周期,与建筑物有相同的振动周期,从而建立了产生共振的条件。 这个问题的处理在于这个增加量到底是多少?一般来说这种答案是不可能的,因为它取 决于建筑类型和土壤类型。例如,一些普通的混凝土建筑物,对这建筑物增加一个非常 大的震动周期,可以知道在平常的振动下就会迅速的遭到破坏,尤其是那些砌体建筑, 比

24、如,马雪凯利建筑(2004)和克劳福建筑(2006)。最后,估计在改装或者加固后参数表数字的变化,通过计算机计算来改变标准的振 动周期,阻尼因数和振动波形。这可以是一个非常好的评估工具对于存在的一些干扰(法 拉斯等,2008)。这种效果也可以作为一种诊断工具,对周围的振动测量很有帮助(布丁 和汉斯,2008)。对以上问题的进一步研究,强烈要求建立更加宽广的原地实验或者是实验室实验, 得出实验结果来估算。用一个经济实用的方式,来营造动态特性。英文原文2Role of Dynamic Properties on Building VulnerabilityNATO Science for Peac

25、e and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages 147-149IntroductionDynamic properties have a major role on the seismic behavior and vulnerability of building structures. Particularly, fundamental per

26、iods of vibration are needed, both in design of new buildings and in assessment of existing ones, so that their seismic response can be evaluated.Several codes (e.g. CEN, 2003; NZSEE, 2006) recommend empirical simplified expressions between the height of a building type and its fundamental period. S

27、uch expressions were calibrated keeping in mind a force-based design (Goel and Chopra, 1997), thus intentionally aim at underestimating period values. For this reason they usually provide rather low values when compared to those ones obtained keeping in mind a displacement-based design (see e.g. Cho

28、pra and Goel, 2000), also when the latter were obtained from numerical simulations performed on carefully set up models (see e.g. Crowley and Pinho, 2004; Priestley et al., 2007). Even larger differences appear when numerical estimates are compared to experimental results based on ambient vibration

29、measurements that provide very low period values (see e.g. Navarro et al., 2004). An overview of the different approaches together with a comparison of the relevant results is reported in Masi and Vona (2008); further, period-height expressions for some reinforced concrete building types are given,

30、where the role of important structural characteristics (building height, cracking, masonry infills, elevation irregularities, etc.) is carefully taken into account.Coupling between soil and building fundamental periods of vibration may cause resonance effects. For this reason also their variation, a

31、s a consequence of possible building damage and/or soil non linear behavior during the motion, needs to be considered. Typically, structural and geotechnical engineers have different points of view about resonance effect and its variation during a seismic motion. Structural engineers say that wherea

32、s building and soil have initially close periods and an earthquake occurs, the building period, as a result of structural and non structural damage, is expected to increase during the motion, so that the building “hides” itself reducing the heaviest aenfcfe.cGtseotoefchrneicsaolnengineers do not com

33、pletely agree with this opinion saying that also the soil period can shift towards higher values, that is in the same direction of the building one, thus the resonance condition could arise again. The question to be dealt with is: how much is the relative amount of that increase? A general answer is

34、 not possible, as it depends on building and soil type. For example, in case of reinforced concrete buildings with masonry infill, a very large increase of the building period can be expected with the level of shaking due to cracking of structural members and, particularly, of brittle masonry infill

35、, see e.g. Mucciarelli et al. (2004), Calvi et al. (2006).Finally, estimating the variation of the dynamic characteristics after retrofitting or strengthening interventions, by computing the modified values of fundamental periods, damping factors and mode shapes, can be a practical tool to evaluate

36、the effectiveness of the intervention (Farsi et al., 2008). To this purpose and also as a diagnosis tool, ambient vibration measurements can be very helpful (Boutin and Hans, 2008).All the above questions strongly require that further studies as well wide in-situ and laboratory experimental campaigns are carried out to set up procedures able to evaluate, in a reliable as well not expensive way, building dynamic properties.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!