风能在船舶上的应用

上传人:jin****ng 文档编号:207475071 上传时间:2023-05-06 格式:DOCX 页数:10 大小:123.24KB
收藏 版权申诉 举报 下载
风能在船舶上的应用_第1页
第1页 / 共10页
风能在船舶上的应用_第2页
第2页 / 共10页
风能在船舶上的应用_第3页
第3页 / 共10页
资源描述:

《风能在船舶上的应用》由会员分享,可在线阅读,更多相关《风能在船舶上的应用(10页珍藏版)》请在装配图网上搜索。

1、新能源新技术在船舶上的应用风能技术在船舶上的应用摘要世界经济的现代化,得益于化石能源,如石油、天然气、煤炭与核裂变能的广泛的投入 应用。因而它是建筑在化石能源基础之上的一种经济。然而,由于这一经济的资源载体将在 21 世纪上半叶迅速地接近枯竭。化石能源与原料链条的中断,必将导致世界经济危机和冲 突的加剧,同样对于航运业也是个致命的冲击。因此节能减排成为热门的世界议题。各大航 运企业纷纷加大对新能源的研究,考虑如何开发出新型能源以解决面临的化石能源危机问 题。风能以其自身各种优势成为很多研究机构都在探讨风能在船舶上的应用问题。 本文就风能在船舶上的应用问题进行了介绍与分析,主要在以下几个方面作了

2、讲述:一、课题研究的背景和意义。二、风能在船舶上应用的发展历史与国内外风能在船舶上应用的现状。三、风能在船舶上应用的方式与方法。四、风能在船舶上应用的技术路线。五、风能在船舶上应用所存在的难点和关键技术。六、风能在船舶上应用的创新之处。七、风能在船舶上应用预期的效益。关键词:风能、船舶、节能、效益一、课题研究的背景和意义地球上可供人类使用的化石燃料资源是有限和不可再生的。据联合国能源署报告,按可 开采储量预计,煤炭资源可供人类用200年、天然气资源可用50年、石油资源可用30 年。 特别是近几年世界燃油价格不断飙升,能源危急日趋严重。在此情况下,风能的利用将可能改 变人类长期依赖化石燃料和核燃

3、料的局面。风能是一种无污染的可再生资源,它取之不尽、 用之不竭,分布广泛。随着人类对生态环境的要求和能源的需要 ,风能的开发日益受到重视 , 风力发电将成为21 世纪大规模开发的一种再生清洁能源。在自然界中,风是一种可再生、 无污染而且储量巨大的能源,可以再生,永不枯竭,分布广泛,遍布世界各地,清洁能源 没有污染。随着全球气候变暖和能源危机,各国都在加紧对风力的开发和利用,尽量减少二 氧化碳等温室气体的排放,保护我们赖以生存的地球。我国早在两千多年前就开始利用风来驱动帆船航行,至少在一千七百多年前已开始利 用风来推动风车做功。人类利用风的历史:人类利用风能的历史可以追溯到公元前,我国是 世界上

4、最早利用风能的国家之一。 公元前数世纪我国人民就利用风力提水、灌溉、磨面和 利用风帆推动船舶前进。 东汉刘熙在释书一书中曾写“帆泛也,随风张幔曰帆”,表明 中国 1800年前已开始利用风帆驾船。宋朝是我国应用风车的全盛时代,但是流行的垂直轴 风车一直沿用至今。在国外:公元前2世纪,古波斯人就利用垂直轴风车碾米。 10世纪伊斯兰人用风车提 水, 11 世纪风车在中东已获得广泛的应用。 13 世纪风车传至欧洲, 14 世纪已成为欧洲 不可缺少的原动机。 在荷兰,风车先用于莱茵河三角洲湖地和底湿地的汲水,以后又用于 榨油和锯木。只是由于蒸汽机的出现,才使欧洲风车数目急剧下降。 1973 年石油危机以

5、后, 常规能源告急,全球生态环境恶化,风能发展,对沿海岛屿,交通不便的边远山区,地广人 稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活 能源的一种可靠途径,有着十分重要的意义 美国早在 1974 年就开始实行联邦风能计划。其内容主要是:评估国家的风能资源; 研究风能开发中的社会和环境问题;改进风力机的性能,降低造价;主要研究为农业和其他 用户用的小于 100kw 的风力机;为电力公司及工业用户设计的兆瓦级的风力发电机组。目 前美国已成为世界上风力机装机容量最多的国家,超过2X104MW,每年还以10%的速度 增长。现在世界上最大的新型风力发电机组已在夏威夷岛建

6、成运行,其风力机叶片直径为 97.5m,重144t,风轮迎风角的调整和机组的运行都由计算机控制,年发电量达1000万kw h。根据美国能源部的统计至1990年美国风力发电已占总发电量的1%。风能有悠久的利 用历史,如何借鉴以前的经验结合现如今的先进技术把风能更好的利用在船舶上面成了一个 至关重要的问题。新能源和再生能源的开发利用不仅可以解决目前世界能源紧张的问题,还 可以解决与能源利用相关的环境污染问题,促进社会和经济的可持续性发展。根据国际权威 机构的预测,到21 世纪60年代,全球新能源与再生能源的比例,将会发展到世界能源构成 的 50%以上,成为人类社会未来能源的基石和化石能源的替代能源

7、。目前世界大部分国家 能源供应不足,不能满足经济发展的需要,各国纷纷出台各种法规支持开发利用新能源和可 再生能源,使得新能源和可再生能源在全球升温。在 21 世纪,能源是国民经济发展的动力, 也是衡量综合国力、国家文明发展程度和人民生活水平的重要指标。在航运业,绿色船舶已 成为未来船舶发展的方向,其中研究利用清洁能源船舶辅助系统最具有革新性和代表性。其 将充分利用风能、太阳能以及波浪能等零污染或可再生能源,为船上设施提供相对独立的能 量来源,在降低除暴发电机或主机能耗的同时保证船舶的正常航行。风能是比较容易开发的 新能源,全球范围内都分布着比较丰富的风力资源,将风能应用在船舶上便成为人们研究的

8、 热点。首先,风能的利用有着悠久的历史和丰富的经验;其次,风能是取之不尽用之不竭的 自然能源。风能主要是通过布置在船舶上的风帆借助风的能量,在保证船舶各项性能稳定的 条件下,从而推动船舶前进。因此,对于我国这样一个能源短缺的发展中国家来说,将风能 等新能源应用在船舶上有着重要的意义和深远的影响。二、风能在船舶上应用的历史东汉刘熙在释书一书中曾写“帆泛也,随风张幔曰帆”,表明中国 1800 年前已开 始利用风帆驾船。 宋朝是我国应用风车的全盛时代,但是流行的垂直轴风车一直沿用至今。20 世纪 80、90 年代,日本在风帆助航的研究和利用方面有了新的突破。 1980 年日本 建造了第一艘装有普通翼

9、帆的新爱德丸(Shin A-ito ku Maru)油轮,新爱德丸好装有两个高 12.15m、宽8m的风帆。之后又建造了扇蓉丸、日产丸等机动风帆货船,1984年又设计和 建造了 26000t的臼杵先锋丸(Usuki Pioneer)和另一艘31000t的现代风帆助航远洋货轮。1980 年,巴黎 Pier re 和 Marie Curie 大学和 Cousteau 本部研究小组利用空气动力学方 面的知识,发明了船用涡轮帆。1994年“Aghia Marina”号干散货船安装目前全球最大的“风筝”。据悉,“Aghia Marina” 号长170米,建于1994年,航速14节,通常运输工业和农业原材

10、料等货物,可一次运输大 约28500吨干散货,将成为目前采用德国SkySails风能技术的最大船只。1998 年日本邮船株式会社已在营运的大型远洋煤炭专用船上应用风力发电,该船走日 本至北美和日本至澳洲东岸航线。据统计每往返一次,大约可平均每天可以节省燃油130kg。2000年澳大利亚开发出世界第一艘商用的太阳能和风能混合动力双体客船,是一种既 可将太阳能和风能单独作为动力,又可合二为一的新型船舶。2003年10月15日日本游船公司宣布,它同东海大学等联合开发出船用的风力发电机, 计划搭载在2004年8月起航的大型运送汽车专用船上进行实验。2007年12月15日全球第一艘用风筝拉动的货轮白鲸天

11、帆号(Beluga SkySails)由德国 汉堡市起航。国内的风能应用研究也有很多范例,上海龙泰节能工程有限公司自主研发制造的龙泰牌 5-2000KW系列风力发电机应用系统,在中国长航集团上海宝江实业“长轮29004囤船”上 首次运行取得圆满成功。“长轮29004囤船”长90米,是5000吨级囤船,常年停泊在吴松 口,为驳船提供靠泊、水电供应、应急处理等服务。世界各国在风帆助航方面都有很多的研究,各国都有实船在运行。丹麦、德国、美国、 日本、澳大利亚等过对风能作为船舶推进能源在船舶上的应用都作了研究和实船尝试。有研 究学者认为,利用风力的装置推动船只航行,可节省30%40%的燃料费用。日本对

12、在大型远洋船上应用风能发电系统的可能性展开了多项比较深入的研究评价工 作,已取得很大成功,并已获得不少专利,到2004年日本已有14艘以风做辅助动力的船只 航行在海上,它们的耗油量仅为普通机动船的75%。日本福冈的生态船舶动力公司(EMP)已经开始详细设计其水瓶座系统(Aquarius System)风能和太阳能帆板。目前该公司正同一些开发合作伙伴合作开发水瓶座系统风能和太阳能帆板。这种帆板将 用来收集风能和太阳能,然后用来为船舶提供动力,以便减少燃油耗和温室气体排放。这种 坚固的风能和太阳能帆板将产生一种有助于在海上、港口或抛锚时,船舶利用可再生能源。每张帆板都将通过日本大阪KEI系统有限公

13、司开发的计算机控制系统定位。在这些帆 板不用时,可以收拢和储存起来。在风况不利时,可通过调节这些帆板的定位达到减少风阻 力的目的,不过仍能够收集太阳能。日本生态船舶动力公司深信,水瓶座系统风能和太阳能帆板将给航运公司带来引人注目 的回报。该水瓶座系统风能和太阳能帆板意味着可在不对各种类型的船舶进行重新设计的情 况下使用。水瓶座系统风能和太阳能帆板还可以安装在海军、海岸警卫队和渔业保护船上。图 1 风力发电驱动船的结构图 以上就是风力驱动船的结构图,船上动力系统由风力发电机(1)、和与发电机(1)相联的 变压器(2)、变压器(2)输出端联接的电动机(3)组成。风能驱动船,顾名思义,为一种利用风力

14、发电实现驱动的船舶。它的结构要点是船上动 力系统由风力发电机、和与发电机相联的变压器、变压器输出端联接的电动机组成,并利用 风力发电提供电动机运轮产生的动力,推动船只行驶。随着,低碳、节能、环保理念的推广 以及相关技术的成熟,风能驱动技术能够在内河、沿海的小型船舶中推广应用。我国风能驱动船的应用中国长航集团上海宝江实业“长轮 29004囤船”装备了上海龙泰节能工程有限公司自主研发制造的龙泰牌5-2000KW系列风力发电机应用系统,并圆满运行成功。该船设计的 风力发电机装机容量20kw,选用4台单机功率为5kw的“龙泰牌” LTFD/HY-5KW风力发 电机,按照最长5天无风日计算,当连续5天无

15、风天气下均能满足全船的日常生活需要,体 现了超低风速运行的特性,当风速在2米/秒的情况下即开始发电,并能满足220/380V船载 设备的正常用电,系统全部采用了数字化全自动控制。为了保证系统稳定和运行安全,实现 智能化管理和控制,该项目攻克了数十项技术难题,保证了在全天侯气候条件下的安全运行。 实现了微电脑数字化控制,自动跟踪风向并根据额定风速、电压、电流等,自动实现迎风 30/60/90偏航直至停机,保证了系统的安全。即时液晶显示发电电压、发电电流、当 前风速、输入、输出电压、输出电流、三相输出电源的相电压、频率等。塔架液压自动起降, 方便了安装和维修,解决了船载设备的后顾之忧和降低了建造成

16、本。目前,上海长江沿线港口的类似 1800 余条囤船全部改用风力发电,每年将节约 31320吨柴油,相当于46197吨标准煤,直接产生经济效益23098万余元。随着柴油的紧缺、油价上涨,我国内河运河内许多驳船也都改装为风力发电驱动, 就是安装一种带着螺旋桨的“风力发电机”。由于船舶在航行途中,一般通过风力带动风力 发电设备上的螺旋叶,就可直接给电瓶充电。船舶在停泊中,一般风力只要达到三四级,也 可给电瓶充电。每条驳船一个航次需充电2次,在正常情况下,航行途中给电瓶充电后,还 能基本满足船舶装卸时的用电需求。瑞士日内瓦消息:Cargill已和希腊船东/船舶管理方Anbros Maritime S

17、.A.签署协议,为 其“Aghia Marina”号干散货船安装目前全球最大的“风筝” 据悉,“Aghia Marina”号长170米,建于1994年,航速14节,通常运输工业和农业原材 料等货物,可一次运输大约28500吨干散货,将成为目前采用德国SkySails风能技术的最大 船只。作为全球最大干散货物承租方之一,早在去年2月,Cargill就宣布和SkySails签署供应协议, 在造船业使用风能技术,以减少污染气体排放。位于德国汉堡的SkySails长期以来研发一种 革新的、具有专利的“风筝”技术,飞行在船艏,可产生足够的推进力,在理想海况下,可 减少高达 35%的燃料消耗。根据协议,“

18、Aghia Marina”号将在2012年一季度安装面积达320平方米的“风筝”,将其 通过绳索与船相连,在100-420米高空飞行,配有电脑控制的自动操作,将风能运用至最大 化。Anbros已加入和Cargill与SkySails 一起进行研发和测试。今后五年,由Cargill长期租 运的“Aghia Marina”号使用SkySails系统。SkySails公司负责培训船员如何操作风能推进。三、风能在船舶上应用的方式与方法。 人类社会对于风帆助航的理解和认识有着悠久的历史, 工业科技水平的不断提升对于风帆 技术的应用起到了巨大的推动作用, 根据风帆的形式及其对风力利用性质的不同, 衍生出

19、了普通翼帆、特种翼帆(包括单转子-翼帆组合体帆、转柱帆、转带帆、Walker型风帆)、 三角帆、天帆、Magnus效应帆(涡轮帆、转筒帆)和仿生帆等众多船舶风帆结构。其中以三 角帆和普通翼帆技术应用水平较高, 其他帆型形式在船舶上的应用多是带有试验性质的技 术探索。1. 涡轮帆涡轮帆的基本结构如图2-10 所示,它是一个可定向转动的椭圆形筒,在其后缘左右两 侧各有一个由许多小孔组成的抽气面,当风速超过极限风速时,它置于灵位,椭圆上下设有 端板,在上端板设置一个水平的抽气机,按风速、风向及船速等条件控制抽气量,使帆达到 最佳推进效率。2. 蝉翼型帆概念中的蝉翼型帆可以做成模块布置在船舶上,需要风

20、力助航时可将帆升起,不需要时 可将其折叠收藏。如需对风帆模块进行维修或长期不用时可以拆下,但目前仅仅是一个尚存 诸多不定因素的概念。3. 风筝型帆风筝型帆是在船艏张挂巨大的伞翼状的风筝,通过其拖动作用协助船舶前进,从而减少 船舶燃料消耗。风筝帆相比上述三种帆成本低,结构简单,对船体改造要求低,占用船舶空 间较小,但其释放与控制难度高,对风向的要求更高。四、风能在船舶上应用的技术路线1. 伞形太阳能帆板双体船技术目的:一种伞型太阳能帆板双体船,属于船舶海洋工程设备技术领域。技术方案:本发明包括:单船体、船体连接架、万向接头、主立杆、伞型骨架、拉杆 套筒、牵引索、伞型太阳能帆板、太阳能光伏阵列、卷

21、扬机、液压油缸、太阳能风帆、支承 架、日光感受器、方向控制器。其中,两个单船体之间由船体连接架相联固结组成双体船。 每个单船体长60米,宽约8 米,两单船体中轴线之间的距离16米,双体船左右舷的最大宽 度为 24米。在船体连接架的中心位置上安装有万向接头,主立杆通过万向接头与船体连接 架相铰接。主立杆高120 米,由 1.5 米直径的铜管制成,铜管壁厚0.05米。主立杆的下部, 在双体船中心轴线方向和垂直于双体船中心轴线方向,共设置四个液压油缸。液压油缸的活 塞杆与主立杆各成 45角钱接,形成立体的支承,以便借助四个液压油缸的协同动作,使 主立杆按照控制的要求,以万向接头为中心变动主立杆轴向的

22、倾斜角度。支承架是一个钢制 方管型圆环体,固接在船体连接架两旁的单船体的甲板上。支承架的中心与双体船的几何中 心重合。支承架上沿圆周均匀固接着8 个平面饺链,每个平面铰链上都连接着一根弧形的伞 型骨架。伞型骨架弧形的曲率半径为180 米。伞型骨架由无缝钢管制成。每根伞型骨架的弦 长为 140米,8 个伞型骨架共同组成一个球形面,球形面的中心在主立杆的中轴线上。 8 根 拉杆分别铰接在相应伞型骨架距根部端点弦长60 米处,每根拉杆的末端与套在主立杆上的 套筒 7 饺接,以利用套筒达到张紧和牵引的作用。在每根拉杆上距离主立杆中心轴28米处, 分别有牵引索与之饺接。在主立杆的顶部,安装有8台卷扬机,

23、分别牵引着各自对应的8 条牵引索,以便牵引和垂吊8根拉杆,得以控制8个伞型骨架的位置角度。伞型太阳能帆板 以伞型骨架为支承安装在伞型骨架上,其投影面积为6万平方米。该面积远大于双体船本体 的尺度,尽量扩大了接收太阳能的有效面积。伞型太阳能帆板由尼龙纤维材料制成,质地轻 盈,坚固牢靠。太阳能光伏阵列安置在伞型太阳能帆板的上面,以便尽量吸收太阳光的能量。 太阳能光伏阵列是采用威海蓝星泰瑞光电有限公司生产的不透明非晶硅太阳能电 池模块组装而成。日光感受器和方向控制器置于双体船内,日光感受器的输入端感受太阳光, 日光感受器的输出端通过方向控制器与液压油缸的控制端电连接。技术效果:本发明的技术中,风能和

24、太阳能在船舶推进上协同利用,使双体船完全以 绿色能源驱动。它仅依赖、风能和太阳能驱动,完全不需要常规能源包括燃油和燃气的消耗, 是一种无排放污染的绿色船舶。图1:伞形太阳能帆板的双体船的俯视图图2:伞形太阳能帆板的双体船的正视图图中:1单船体,2船体连接架,3万向接头,4主立杆,5伞型骨架,6拉杆,7套 筒,8牵引索,9伞型太阳能帆板,1 0太阳能光伏阵列,11卷扬机,12液压油缸,13 太阳能风帆,1 4支承架,1 5日光感受器,1 6方向控制器2. 小水线面三体太阳能风帆船技术目的:小水线面三体太阳能风帆船,属于船舶海洋工程技术领域。技术方案:本发明包括:主船、两个辅船、主桅杆、辅桅杆、上

25、帆梁、中帆梁、下帆 梁、横梁、上桅、中桅、下桅、中括板、电流分配器、充放电控制器、超级电容组、电磁接 触器、逆变器、变压器和电力推进器。其中,主船由主船上体、三根主支柱和主下潜体构成。辅船由辅船上体、辅支柱和辅下 潜体构成。主船和辅船穿过水面的部分只是三根主支柱和两根辅支柱,使三体船形成小水线 面的结构,大幅度降低了三体船航行的兴波阻力。三台电力推进器分别安装在主船上体和两 个辅船上体的自尾部,两块中插板分别悬挂在主船上体舷外两侧。主桅杆安装在主船上体上,两个辅桅杆分别安装在两个辅船上体上。它们都可以绕本身 的主轴线转动。上帆梁、中帆梁、下帆梁和横梁自土而下平行安装,并与主桅杆和两辅桅杆 铰接

26、。上桅悬挂在上帆梁下,中桅悬挂在中帆梁下,下跪悬挂在下帆梁下。上桅、中桅和下 桅都由质地致密而坚固的尼龙纤维制成,能够经受狂风的吹席。上桅、中桅和下桅的表面都 粘贴着多块太阳能电池板。多块太阳能电池板由导线互相连接,组成太阳能光伏阵列。上桅、 中桅和下桅的面积大小,不受主船本身尺寸大小的限制,它可以制成面积很大的结构,以便 安装尽可能多的太阳能电池板,组成强大的太阳能光伏阵列,提供浩大的电量,同时接收足 够的风能动力。太阳能光伏阵列的输出端与电流分配器的输入端连接,电流分配器的输出端 分别与充放电控制器的输入端和逆变器的输入端连接。充放电控制器的输出端与超级电容组 的输入端相连接,超级电容组的

27、输出端通过电磁接触器也与逆变器的输入端连接。电磁接触 器的控制端与电流分配器的控制端相连,并由电流分配器控制电磁接触器的动作。逆变器的 输出端通过变压器与主船、辅船的电力推进器联接。太阳能光伏阵列在阳光的照射下,可以持续发电、输出电流。当太阳能充足时,太阳能光伏 阵列发出的直流电,通过充放电控制器调制到适当的电流和电压水平,输送到超级电容组的 输入端,向超级电容组充电。超级电容组存储的电能,可在任何时刻使用,以驱动船舶。用 于驱动推进器的电能通过逆变器转变为交流电,经由变压器引入电力推进器的输入端。当太 阳能光伏阵列达不到足够的电流输出、风力又不足以驱动船舶时,电流分配器控制电磁接触 器联通,

28、使超级电容组向逆变器的输入端放电。电流经逆变器的输出端流出后,经变压器引 入主船、辅船的电力推进器的输入端口。在主船的电力推进器的驱动下,船舶前进。在辅船 的电力推进器的的驱动下,两个辅船协同主船调整相对位置,形成前后直线的排列分布,或 者根据指令,协同调整各自的方位,牵引太阳能风帆的迎风角度发生精确的转变,船舶即使 在侧逆风的情况下,仍然能够顺利前行。图3:太阳能风帆船的正视图图中,1是主船上体,2是主下潜体,3是主支柱,4是辅船上体,5是辅下潜体,6是辅支 柱,7是主桅杆,8是辅桅杆,9是上帆梁,10是中帆梁,11是下帆梁,12是横梁,13是 上桅,14是中桅,15是下跪,16是中括板,1

29、7是电流分配器,18是充放电控制器,19是 超级电容组,20是电磁接触器,21是逆变器,22是变压器,23是电力推进器技术效果:采用了三体船的结构,除了主船以外,左右各有两个辅船承担支撑的任务,使 巨大的太阳能风帆不至失去平衡,整个船上体也不会发生侧翻事故。船上体均采用小水线面 结构,大幅度降低了兴波阻力,使船舶得以快速航行。本发明可在不同的环境条件下,选择 由风能单独驱动船舶;由太阳能单独驱动船舶;由太阳能和风力共同驱动;或是利用超级电 容组储存的电能驱动,使船舶总是可以持续正常航行。四、风能在船舶上应用所存在的难点和关键技术 助航风帆系统要求高效安全:风帆状态(包括帆向角、风帆的启停等)和

30、主机转速控制是风 帆助航控制系统中两个至关重要的控制要素,因此确保在各种条件(气象条件、航行条件等) 下对风帆姿态和主机转速进行最优化控制是风帆助航控制系统的根本目的。综合来说,风帆 助航控制系统有如下一些要求:1、风帆的启停:风帆的启停不但关系到风帆助航系统的节能收益,还关系到风帆助航 系统的安全性。因此需要风帆助航控制系统能够根据气象条件和船舶航行状态等因 素进行合理而优化的自动控制。2、帆向角:风帆在使用时,根据风向,按照风帆的最佳帆向角曲线适时的调整帆向角, 使得在一定条件下风帆获得最大推力从而获得最大节能效果。3、主机转速:风帆助航系统大都采用定航速控制方案,即随着风帆推力的增加,减

31、少 主机的输出功率,使船舶的航速保持不变,以风帆所得到的推进功率部分作为节能 目标。因此需要根据实际情况对主机的转速进行适当的调节,以保持航速不变。同时 1、风能密度低,风能不能集中,不稳定。 2、风力发电装备昂贵,投资大,风险大。3、风能使用方式相对单一,很难和船舶有一个很好的结合。五、风能在船舶上应用的创新之处公元前数世纪我国人民就利用风力提水、灌溉、磨面和利用风帆推动船舶前进。公元前2 世纪,古波斯人就利用垂直轴风车碾米。 10 世纪伊斯兰人用风车提水, 11 世纪风车在 中东已获得广泛的应用。工业科技水平的不断提升对于风帆技术的应用起到了巨大的推动作用 , 根据风帆的形 式及其对风力利

32、用性质的不同, 衍生出了普通翼帆、特种翼帆( 包括单转子-翼帆组合体帆、 转柱帆、转带帆、Walker型风帆)、三角帆、天帆、Magnus效应帆(涡轮帆、转筒帆)和仿 生帆等众多船舶风帆结构。其中以三角帆和普通翼帆技术应用水平较高, 其他帆型形式在船 舶上的应用多是带有试验性质的技术探索。2007年12月15日全球第一艘用风筝拉动的货轮白鲸天帆号(Beluga SkySails)由德国 汉堡市起航。伞型太阳能帆板双体船。 小水线面三体太阳能风帆船。六、 风能在船舶上应用预期的效益1、上海东部沿海和长江口区是我国风力资源较为丰富的地区,有数据表明 2004-2007 年4年间,上海沿江连续3m/

33、s以下的无风日为五天,平均每年3m/s以上的时间在5000小 时以上。目前在风能建设利用方面还存在着;建设风电场在立项选址、投资回报等方面受到 很多的条件限制不能很快的普及,目前民间应用风电的群体主要是在缺电、无电的地区和不 能接通电网的场所,装机功率一般在500-2000W之间,上海地区很少利用。如何广泛应用这一得天独厚天然可再生资源,将大功率风电应用到目前使用柴油机的场 所,在解决企业或投资者对应用新能源的顾虑方面,中国长航集团上海宝江实业“长轮29004 囤船”上的典型案例能给人们一个全新的认识。由上海龙泰节能工程有限公司自主研发制造的 5-2000KW 风力发电机应用系统在中国 长航集

34、团上海宝江实业“长轮29004 囤船”上实践取得圆满成功。长轮 29004 长 90 米是 5000 吨级囤船,常年停泊在吴松口,为驳船提供靠泊、水电供应、 应急处理等服务。由于囤船所需动力全部依靠柴油发电,每天连续不断的机器轰鸣声影响了 船员的工作和休息。随着柴油供应的日益趋紧,和价格的不断上涨,运营成本大幅攀升,急 剧增加了囤船的运营成本。在中国长航和上海宝江集团领导的高度重视下,由上海龙泰承担 该船应用可再生能源的设计和建造。该船设计的风力发电机装机20KW,按照最长5天无风 日计算,当连续5天无风天气下均能满足全船的日常生活需要。更主要的是具有超低风速运 行的特性,当风速在2米/秒的情

35、况下即开始发电,并能满足220/380V船载设备的正常用电, 系统全部采用了数字化全自动控制。由此彻底告别了采用柴油机发电的历史。该项目 2008 年 4 月 18 日通过验收并全部投入运营,各项技术指标均已满足设计要求,从而全面取代了 柴油机发电,使该船第一个享受了清洁的可再生能源。为了保证系统稳定和运行安全,实现智能化管理和控制,该项目攻克了数十项技术难题,保 证了在全天侯气候条件下的安全运行。实现了微电脑数字化控制,自动跟踪风向并根据额定 风速、电压、电流等,自动实现迎风30/60/90偏航直至停机,保证了系统的安全。 即时液晶显示发电电压、发电电流、当前风速、输人、输出电压、输出电流、

36、三相输出电源 的相电压、频率等。塔架液压自动起降,方便了安装和维修,解决了船载设备的后顾之忧降低了建造成本。 该船原柴油发电供电系统设备成本7.5万元, 每年的运行成本约为13.8万元;(柴油按目前 市场价6300元/吨计算费用约8.5万元,机油0.8万元,维修保养费用每年约1.5万元 ,机械 师工资3万元),本次建造的风力发电系统设备、安装费用总计为24万元,使用费用每年不 足 2 万元 。按照 20 年的折旧计算: 柴油系统运行20年的费用为238.5万元,风力发电运行20年的费用为64万元(不含风电高 于柴油三倍的发电量)。实践证明该船每年直接节约成本8.7万元,不足三年全部收回成本。2

37、0年节约柴油240吨, 相当于349.8吨标准煤。直接产生经济效益174万余元。上海长江沿线港口的类似1800余条囤船全部改用风力发电,每年将节约21600吨柴油, 相 当于31482吨标准煤。直接产生经济效益15660万余元。龙泰风电在新技术、建造低成本上的突破,将快速推动风电在我国应用领域的飞跃,绿色能 源将会走进社会的各个领域和百姓生活。2、一种带着螺旋桨的“风力发电机”的新型船舶出现在国内内河航道中。由于船舶在航行 途中,一般通过风力带动风力发电设备上的螺旋叶,就可直接给电瓶充电。船舶在停泊中, 一般风力只要达到三四级,也可给电瓶充电。正常情况下,航行途中给电瓶充电后,还能基 本满足船

38、舶装卸时的用电需求。在京杭运河德清新市段,这种风力发电设备,依靠风力来获取照明用电,给航行助力,既环 保还省钱,目前在安徽和江苏一带比较流行。据介绍,在去年柴油吃紧时,一些“跑江湖”的船老大想出了这个“好点子”。这段时 间来,随着柴油的又一次紧缺,安装风力发电设备的船只就越来越多了,除了外地船只,湖 州本地也有部分船只开始用上了这种风力发电设备。“我的投入成本早就赚回来了。”应用此种风力发电机的已经得到实惠的船老大黄士玉算了 一笔细账:这种风力发电设备,可以给12伏蓄电池充电,风力大时也可以为24伏、36伏 蓄电池充电。以12伏蓄电池为例,每条驳船一个航次需充电2次,以前用柴油时耗费要20 多

39、升燃料,一个船队十条驳船,一个航次下来燃料需200多升。仅此一项支出就达上千元, 而一部风车的投入只需700元,加上电瓶等投入也不过2000元。而风力发电设备可用两三 年,两者一比较,谁费谁省一看就晓得了。随着新技术的发展,风能以其各种优点必定会在船舶航运上应用的更加广泛,利用效率 也会越来愈高,风能在船舶上应用的前景必定更加广阔。文献: 帆船史 杨槱 (上海交通大学出版社 2005 年出版) 运河里行驶着风力发电船一种利用风力发电驱动的船 李积顺风电在船舶中的应用伞形太阳能帆板双体船 上海交通大学小水线面三体太阳能风帆船 上海交通大学太阳能和风能在船舶上的应用分析 武汉理工大学 风能发电在远洋货船上应用的研究 上海船舶运输科学研究所 现代风帆助航船航行模式分析 杨烨 邱立强基于翼型理论的风帆助航技术分析 王宏明 孙培廷 黄连忠 任宏莹

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!