20mw分布式光伏发电建设项目可行性研究报告书

上传人:沈*** 文档编号:205001348 上传时间:2023-04-27 格式:DOC 页数:83 大小:1.68MB
收藏 版权申诉 举报 下载
20mw分布式光伏发电建设项目可行性研究报告书_第1页
第1页 / 共83页
20mw分布式光伏发电建设项目可行性研究报告书_第2页
第2页 / 共83页
20mw分布式光伏发电建设项目可行性研究报告书_第3页
第3页 / 共83页
资源描述:

《20mw分布式光伏发电建设项目可行性研究报告书》由会员分享,可在线阅读,更多相关《20mw分布式光伏发电建设项目可行性研究报告书(83页珍藏版)》请在装配图网上搜索。

1、聊城协昌光伏电力限公司20MW分布式光伏发电项目可行性研究报告聊城协昌光伏电力有限公司20MW分布式光伏发电项目可行性研究报告设计单位:设计资质: 咨询资质: 2015年2月目录1.项目概况81.1项目概况及编制依据81.2自然地理概况82.项目建设必要性92.1缓解能源、电力压力92.2太阳能光伏发电将是未来重要能源102.3缓解环境压力102.4符合国家和当地宏观政策112.5充分利用当地资源112.6促进我国光伏发电产业的发展122.7促进当地经济的可持续发展133.项目规模和任务134.光伏电站地址的选择及布置134.1选址原则144.2场址描述144.3场址选择综合评价145.太阳能

2、资源分析145.1我国太阳能资源条件155.2聊城市太阳能资源条件及综合评价156.并网光伏发电系统设计与发电量估算166.1发电主设备选型166.1.1太阳能组件选型166.1.2并网逆变器选型176.2光伏方阵安装设计196.2.1发电系统电气设计196.2.2光伏农业大棚的设计196.3系统年发电量预测216.3.1系统发电效率分析216.3.2光伏发电系统的发电量预估227 电气部分227.1电气一次227.1.1接入电力系统方式227.1.2 电气主接线227.1.2.1 电气主接线方案227.1.2.2 光伏电站站用电237.1.2.3主要电气设备选择237.1.2.4过电压保护及

3、接地237.1.2.5全所照明247.1.2.6电气设备布置247.2电气二次257.2.1电站运行方式257.2.2 调度自动系统257.2.2.1 调度关系257.2.2.2 远动信息内容257.2.3电站继电保护267.2.4二次接线267.2.4.1电力调度数据网接入设备297.2.4.2二次系统安全防护设备297.2.4.3 电源系统307.2.4.4 自动化信息传输通道307.2.4.5通信308 电站总平面布置及土建平面设计328.1电站总平面布置328.2 土建工程设计338.2.1 建筑设计338.2.2结构设计338.2.3 给排水设计368.2.3.1 主要设计标准和规范

4、368.2.3.2 用水量378.2.3.3 站内给排水388.2.3.4 光伏电池面板清洗用水398.2.3.5 生活用水398.2.3.6 雨水排水398.2.3.7生活污水排水398.2.4暖通空调398.2.5抗风沙设计409 施工组织设计419.1施工条件419.2施工总布置419.2.1施工总布置规划原则419.2.2 施工用电439.2.3 施工水源439.2.4 施工通信439.2.5 地方建筑材料439.2.6 场地平整439.3 主题工程施工449.3.1 太阳能光伏支架安装449.3.2 太阳能光伏组件安装459.3.3 汇流箱安装479.3.4 逆变器安装479.3.5

5、 电缆敷设489.3.5.1 电缆设施的要求489.3.5.2 施工准备措施489.3.5.3 电缆敷设实施方案499.3.5.4 电缆接线499.3.6 电气管线工程509.3.7 防雷接地装置安装519.3.7.1 接地系统的安装519.3.7.2 接地系统的检验519.3.8 综合办公楼等建筑施工529.3.9箱式变电站安装529.3.10冬季雨季施工措施529.4施工总进度539.5施工管理组织架构549.6附表5510环境保护和水土保持设计5810.1设计依据及目标5810.1.1法律依据5810.1.2技术导则5910.2环境影响和评价5910.2.1粉尘的控制6010.2.3污水

6、处理6010.2.3 噪声控制6010.2.4生态环境影响6010.2.5水土保持6010.2.6运行期的环境保护6110.2.7光污染控制6110.2.8温室气体6110.3结论6111投资估算及经济分析6211.1 投资估算范围6211.2投资估算依据6211.3投资估算办法及说明6211.4 建设期利息6311.5项目总投资6312财务效益初步分析6412.1工程进度设想6412.2财务评价依据6412.3产品销售税金及附加6412.4所得税6512.5清偿能力分析6512.6销售收入6512.7经济评价6512.8结论6513项目建设中存在问题与建议6613.1发挥减排效益,申请CDM

7、6713.2建议6814附件681.项目概况1.1项目概况及编制依据 在当今油、碳等能源短缺的现状下,各国都加紧了发展光伏的步伐。美国提出“太阳能先导计划”意在降低太阳能光伏发电的成本,使其2015年达到商业化竞争的水平;日本也提出了在2020年达到28GW的光伏发电总量;欧洲光伏协会提出了“setfor2020”规划,规划在2020年让光伏发电做到商业化竞争。在发展低碳经济的大背景下,各国政府对光伏发电的认可度逐渐提高。“十二五”时期我国新增太阳能光伏电站装机容量约1000万千瓦,太阳能光热发电装机容量100万千瓦,分布式光伏发电系统约1000万千瓦,光伏电站投资按平均每千瓦1万元测算,分布

8、式光伏系统按每千瓦1.5万元测算,总投资需求约2500亿元。尽管我国是太阳能产品制造大国,不过我国太阳能产品只用于出口。在2010年时,全球太阳能光 伏电池年产量1600万千瓦,其中我国年产量1000万千瓦。而到2010年,全球光伏发电总装机容量超过4000万千瓦,主要应用市场在德国、西班牙、日本、意大利,其中德国2010年新增装机容量700万千瓦。不过,我国太阳能资源十分丰富,适宜太阳能发电的国土面积和建筑物受光面积也很大,其中,青藏高原、黄土高原、冀北高原、内蒙古高原等太阳能资源丰富地区占到陆地国土面积的三分之二,具有大规模开发利用太阳能的资源潜力。1.2自然地理概况1.2.1地理位置 琉

9、璃寺镇与禹城市接壤,版图面积94.5平方公里,耕地面积85,023亩,辖7个管理区,62个行政村,人口36,901人,人均耕地2.5亩。琉璃寺镇政府驻地位于琉璃寺村东, 建国后,该村一直为区、社、乡、镇驻地。浓郁的文化底蕴,便利的交通环境,使该镇成为“民营企业的摇篮,投资兴业的宝地,经济发展的重镇”。1.2.2气候特征琉璃寺镇属暖温带半干旱季风区域大陆性气候。主要气侯特征是:季节季风变化显著,光照充足,热量丰富,降水量较少。春季,降水少,风速大,气候干燥;夏季,温度高,湿度大,降水多。降水期一般集中在78月份;秋季,气温急降,天气凉爽,降水量少,天多晴朗,风和光充足;冬季,低温寒冷,雨雪稀少。

10、1.2.3地形地貌 高唐县的地貌是微波起伏、类型不同的黄泛冲积平原。总趋势是由西南向东北倾斜,平均坡降为1/7000-1/9000。平均海拔27米,最高点在清平镇张庄西、海拔32.1米;最低点在涸河镇三甲王村西北,海拔22.6米。2.项目建设必要性2.1缓解能源、电力压力据有关资料报道,我国人均能源探明储量只有135t标准煤,仅相当于世界人均拥有量264t标准煤的51%。通过1999年中国一次能源资源储量和世界平均储量的对比情况看,中国的一次能源资源的储量远低于世界的平均水平。同时我国是一个能源产生和消费大国。2006年一次能源消费总量为24.6亿吨标准煤,比2005年增长9.3%。在经济快速

11、增长的拉动下,中国能源的生产和消费高幅度增长,中国已经成为世界第二大能源生产国和消费国。根据中国电力科学院预测,我国电力供应缺口在2010年约为37GW,2020年预计为102GW。常规化石燃料资源在地球中的储量是有限的。随着大规模工业开采和不断增长的能源消费需求,全球的化石燃料资源正在加速枯竭,全世界都面临着化石能源资源日益枯竭的巨大压力。按照目前的经济发展趋势和中国的资源情况,2010年和2020年的电力供应单靠传统的煤炭、水、核能是不够的。目前我国探明的煤炭资源将在81年内采光,石油资源将在未来15年左右枯竭,天然气资源也将在未来30年用尽。根据近年来中国能源消费总量的增长情况分析,其增

12、长速度大于2020年GDP翻两番、能源翻一番的规划速度,我国人口众多,人均能源资源占有量非常低。说明中国的能源形势比世界能源形势要严峻得多,同时也清楚的表明,中国可再生能源的替代形势比世界要严峻得多、紧迫得多。2.2太阳能光伏发电将是未来重要能源 由于能源消费的快速增长,环境问题日益严峻,尤其是大气污染状况日益严重,影响经济发展和人民的生活健康。随着我国经济的高速发展,能耗的大幅度增加,能源和环境对可持续发展的约束越来越严重。因此,大力开发太阳能、风能、地热能和海洋能等可再生能源利用技术将成为减少环境污染的重要措施,同时也是保证我国能源供应安全和可持续发展的必然选择。 太阳能是一种可利用的非常

13、宝贵的可再生能源,相对于人类发展历史而言是一种取之不尽、用之不竭的清洁能源。在全球气候变暖、人类生态环境恶化、常规能源资源短缺并造成环境污染的形势下,太阳能光伏发电技术普遍得到各国政府的重视和支持。迄今为止,太阳能的开发和利用已经历了几十年的发展,逐渐成为绿色领域的前沿技术。 在技术进步的推动和逐步完善的法规政策的强力驱动下,光伏产业自1990年代后半期起进入了快速发展时期。近几年,随着光伏组件成本的不断下降,光伏市场发展迅速,光伏发电由边远地区和特殊应用向城市应用过渡。由补充能源向替代能源过渡,人类社会向可持续发展的能源体系过渡。并网光伏发电在整个可再生能源技术中也是增长最快的技术,成为世界

14、最关注的可再生能源之一,并成为电力工业的重要组成部分。2.3缓解环境压力2013年我国能源消费结构有所优化。根据国家能源局初步统计显示,煤炭消费占一次能源消费的比重为65.7%,同比下降0.9个百分点;非化石能源消费占一次能源消费比重由2012年9.1%提高到2013年的9.8%。可以看出,煤炭在我国能源结构中比例接近2/3,而其他化石燃料(如石油和天然气)比例较小,与世界能源结构形成鲜明对照。“十一五”开局以来,在经济快速增长的拉动下,煤炭消费约占商品能源消费构成的75%,已成为我国大气污染的主要来源。中国是世界SO2排放最为严重的国家,因而也是酸雨污染最严重的国家。煤炭燃烧排放的污染物占全

15、国同类排放物的比例SO2为87%,CO2为71%,NOx为67%,烟尘为60%。2007年,除中国SO2排放持续为世界第一外,中国CO2排放也超过美国,成为世界第一。这给中国节能减排、改善能源结构以及能源可持续发展带来了巨大压力。加快可再生能源发展,优化能源消费结构,增加清洁能源比例,减少温室气体和有害气体排放是中国能源和环境可持续发展的当务之急。2.4符合国家和当地宏观政策国家可再生资源中长期发展规划中,确定到2020年可再生能源占到能源总消费的15%的目标,并具体提出:到2010年,建成大型并网光伏电站总容量2万kW、太阳能热发电总容量5万kW;到2020年,全国太阳能光伏电站总容量达到2

16、0万kW,太阳能热发电总容量达到20万kW。 2014年,根据国务院关于促进光伏产业健康发展的若干意见以及光伏电站项目管理暂行办法和分布式光伏发电项目管理暂行办法有关要求,自2014年起,光伏发电实行年度指导规模管理。2014年度全年新增备案总规模1400万千瓦,其中分布式800万千瓦,光伏电站600万千瓦。山东省2014年度全年计划新增光伏发电建设总规模120万千瓦,其中分布式80万千瓦,光伏电站40万千瓦。2.5充分利用当地资源太阳能光伏产业的发展方向是针对用电负荷较大地区发展大规模并网电站及分布式能源,尤其是我国中东部地区用电负荷很大,随着经济发展的加速,城市对外扩张加快,用电需求将日益

17、增加,土地需求缺口,土地使用成本快速上升,而农用地与光伏结合不仅不破坏原有的土地性质,而且还能缓解当地电网压力。聊城市是我国光照资源较丰富地区,年平均日照时数在1716小时。 琉璃寺镇大气透明度好,加上这里地势平坦,无山峦遮挡。而且靠近电力线路和负荷中心,并网条件优越,是建设光伏电站、建立太阳能电力输出基地的优选区域。2.6促进我国光伏发电产业的发展据欧洲光伏行业协会(EPIA)公布的2013年全球光伏产业统计数据,2013年度全球光伏新增装机容量达37007MW,较2012年同期增长7142MW,增幅为23.9%。其中中国光伏产业装机容量的增长是推动全球新增装机上升的主要因素。2013年中国

18、光伏新增装机容量达到11.3GW,同比增长22.9%,中国年度新增装机占全球总量的30.5%。大型并网光伏电站与分布式光伏电站的建设将有力地推动聊城市光伏产业的发展,并带动相关产业的技术进步。通过并网光伏示范电站技术的进一步研究,将为大规模开发建设太阳能并网光伏电站提供技术支持。光伏并网发电是太阳能发电进入大规模商业化应用的必由之路,示范电站的建设将提供光伏并网发电商业化管理模式,促进光伏产业的发展。2.7促进当地经济的可持续发展新能源是国家积极鼓动投资的产业,光电的发展可以带动聊城光伏产业投资,促进地方经济的发展。作为一种新的旅游形式,科技旅游不仅能推动旅游产业的发展,而且有助于提高公众的科

19、学文化素质,是弘扬科学精神、普及科学知识、传播科学理念和科学方法的有效途径。光伏电站的高科技理念和宏伟的规模,将会有力的促进当地旅游业的发展。综上所述,山东省聊城市高唐县琉璃寺镇分布式农业大棚并网光伏电站的建设,符合国家和当地的能源发展政策,能充分利用当地的可再生能源,对于当地的能源和经济的可持续发展、改善当地的能源结构、带动产业投资和促进我国光伏发电产业发展都有重要的意义,并具有重要的环境意义。山东省具有发展太阳能产业得天独厚的优越条件,聊城市电力基础好,大电网基本覆盖全区,交通便利,是国内建设太阳能并网电站的理想场所,而且项目的实施有助于拉动地方经济发展,具有一定的社会效益和经济效益,具有

20、良好的示范和带动作用,因此建设此项目十分必要。3.项目规模和任务 聊城协昌光伏电力有限公司农业大棚光伏并网电站项目位于山东省聊城市境内,根据当地的能源资源情况、电力供需情况、未来电力需求预测情况、电力系统状况等因素,本项目建设规模为20MW,预计投资额1.85亿元,安装20个光伏子系统,每个子系统由8000片250Wp多晶硅太阳能电池组件组成。4.光伏电站地址的选择及布置4.1选址原则结合光伏电站建设的特点、场地地形、地貌、气候条件以及我国现行的政策进行场址选择。场址选择一般遵循一下原则:1.丰富的太阳光照资源,大气透明度较高,气候干燥少雨。2.靠近主干电网,减少新增输电线路的投资。主干电网具

21、有足够的承载能 力,有能力输送光伏电站的电力。3.场址处地势开阔、平坦、无遮挡物。4.距离用电负荷中心较近,以减少输电损失。 l 5.便利的交通、运输条件、和生活条件。6.能产生附加的经济、生态效益,有助于抵消部分电价成本。7.当地政府的积极参与和支持,提供优惠政策和各种便利条件。 8.场址内无名胜古迹、文物保护区、自然保护区、居室设施及地下矿藏等。遵循以上原则,经过综合建设条件比对,最终确定琉璃寺镇为项目建设地,场址建设条件均满足项目选址要求。4.2场址描述 本次工程选用聊城市聊城区琉璃寺镇耕地,占地面积大致为670亩。4.3场址选择综合评价 综合考虑太阳能资源、工程地质条件、建设条件、交通

22、条件、接入系统便利、政策条件等多种因素,该处场址在技术上是可行的,具备良好建设光伏电站的条件。5.太阳能资源分析5.1我国太阳能资源条件地球上太阳能资源的分布与各地的纬度、海拔高度、地理状况和气候条件有关。资源丰度一般以全年总辐射量和全年日照总时数表示。就全球而言,美国西南部、非洲、澳大利亚、中国西藏、中东等地区的全年总辐射量或日照总时数最大,为世界太阳能资源最丰富地区。 我国属太阳能资源丰富的国家之一,全国总面积2/3以上地区年日照时数大于2000小时。 2013年8月30日,国家发改委出台了关于发挥价格杠杆作用促进光伏产业健康发展的通知,明确对光伏电站实行分区域的标杆上网电价政策。根据各地

23、太阳能资源条件和建设成本,将全国分为三类资源区,分别执行每千瓦时0.9元、0.95元、1元的电价标准。5.2聊城市太阳能资源条件及综合评价聊城年平均日照小时数在1716小时以上,属于太阳能资源较丰富地区,为类资源区,所建设光伏电站标杆电价为1元/千瓦时。6.并网光伏发电系统设计与发电量估算6.1发电主设备选型6.1.1太阳能组件选型 (1)选型依据选择目前市场上流行的电池组件,以便于大批量采购;同时还应该兼顾 a.在易于搬运条件下,选择大尺寸、高效的电池组件,目前工程应用中单块组件的功率多在250wp-300WP; b.组件各部分抗强紫外线; c.组件必须符合UL、IEC61215、TUV标准

24、,保证每块组件的质量。 (2) 太阳能电池组件的选择太阳能电池组件事太阳能发电系统的核心部件,其光电转换效率、各项参数指标的优劣直接影响整个光伏发电系统的发电性能。表征太阳能电池组件性能的各项参数有标准测试条件下组件峰值功率、最佳工作电流、最佳工作电压、短路电流、开路电压、最大系统电压、组件效率、短路电流温度系数、开路电压温度系数、峰值功率温度系数、输出功率公差等。 本项目选用市场常规型号组件,多晶硅250Wp国内一线厂商组件。技术参数如下表:编号项 目 名 称数 据1太阳电池种类多晶硅组件2太阳电池组件型号3组件标准峰值参数3.1标准功率 (Wp)2503.2峰值电压 (V)30.5 3.3

25、峰值电流 (A)8.23.4短路电流 (A)8.903.5开路电压 (V)37.8 4组件效率15.3% 5峰值功率温度系数(%/)-0.41 6开路电压温度系数(%/)-0.32 7短路电流温度系数(%/)0.053 810年功率衰降10% 950年功率衰降0.99 / 0.9 超前- 0.9滞后 夜间自耗功率 100 W防护等级IP20通讯协议Ethernet (OF optional), RS485最大总谐波失真(额定功率时)3%6.2光伏方阵安装设计6.2.1发电系统电气设计 本方案将采用分块发电、集中并网方式。本次项目建设规模为20MW,由80000片250W多晶组件组成。分成20个

26、1MWp 的光伏并网发电部分,每个1MWp的系统由两台集成式500KWp逆变器、,1台315V/35KV,1000KVA油浸式双分裂变压器组成。太阳能电池阵列经光伏防雷汇流箱汇流后,接至逆变器直流配电侧,再分别经过变压配电装置汇总至35KV母线实现并网。6.2.2光伏农业大棚的设计(1)主要设计参数多年最大风速: 18.3m/s 多年平均风速: 2.9m/s多年最大积雪厚度: 29cm多年极端最高气温: 39.8多年极端最低气温: -18.5抗震设防烈度: 0.05g多年最大冻土深度: 0.3m地基承载力特征值: 120kPa(2)主要材料:钢材:冷弯薄壁型钢、材料应具有钢厂出具的质量证明书或

27、检验报告;其化学成分、力学性能和其他质量要求必须符合国家现行标准规定。所有钢结构均应热镀锌防腐处理。钢材采用 Q235-B 钢;焊条:E43;螺栓: 檩条、支撑的连接采用普通螺栓,性能等级4.6级;钢筋:采用 HPB235、HRB335 钢;混凝土强度等级:其余 C30。(3) 荷载组合:根据建筑抗震设计规范,对于一般结构地震荷载与风荷载不进行组合,由于电池组件自重很小,支架设计时风荷载起控制作用,因此最不利荷载组合中不考虑地震荷载。荷载组合考虑下列两种组合:a) 自重荷载+正风荷载+0.7 雪荷载;b) 自重荷载+逆风荷载。本次项目为农业大棚光伏并网发电项目,采用的设计方案示意图如下所示:6

28、.3系统年发电量预测6.3.1系统发电效率分析(1) 光伏温度效应光伏电池的效率会随着其工作时的温度变化而变化。当他们的温度升高时,不同类型的大多数电池效率呈现降低的趋势。根据统计光伏组件平均工作在高于气温25度下,效率取97.075%。(2) 光伏阵列的损耗 由于组件上有灰尘或积雪造成的污染,本项目所在地降水量少,多风沙,污染系数高,折减系数取5%,即污染折减因子取95%。(3)逆变器的平均效率 并网光伏逆变器的平均效率取96%。(4) 光伏电站内用电、线损等能量损失 初步估算电站内用电、输电线路、升压站内损耗,约占总发电量的4%,其配电综合损耗系数为96%。(5) 机组的可利用率虽然太阳能

29、电池的故障率极低,但定期检修及电网故障依然会造成损失,其系数取4%,光伏发电系统的可利用率为96%。 考虑以上各种因素通过计算分析光伏电站系统发电总效率: =97.075%*95%*96%*96%*96%=81.59% 6.3.2光伏发电系统的发电量预估本次项目建设规模为10MW,结合聊城区气象条件,为使全年发电效率达到最大,通过专业光伏设计软件模拟出最佳阵列倾角为30,考虑晶体硅太阳能电池板输出第1年功率衰减不大于2.5%,2-10年每年衰减不超过0.8%,11-25年每年衰减不超过0.7%来计算,可计算出首年发电量为2745.6万kWh ,25年平均发电量2425.58万kWh ,25年总

30、发电量约6.12亿kWh。7 电气部分7.1电气一次7.1.1接入电力系统方式根据初步规划方案,本期光伏电站项目装机规模20MWp,通过20个光伏逆变单元升压至35KV后,经35KV线缆送入光伏电站内35kV配电装置,以一回35kV 专线送至南镇变110kV 变电站35kv间隔并网。7.1.2 电气主接线7.1.2.1 电气主接线方案根据初步规划方案,本期光伏电站项目装机规模20MWp,通过20个光伏逆变单元升压至35KV后,经35KV线缆送入光伏电站内35kV配电装置,以一回35kV 专线送至南镇变110kV 变电站35kv间隔并网。35kV 主接线拟采用单母线接线的方式。根据现有资料计算,

31、本期35kV侧单相接地电容电流约8A,满足规程不大于10A的要求,待后期接入系统设计完成后校核送出线路部分电容电流,必要时需在35kV母线上装设一套消弧消谐装置,以消除弧光接地过电压。7.1.2.2 光伏电站站用电光伏电站以1MWp为一个光伏发电单元,每个单元通过逆变器整流逆变后输出0.315KV低压三相交流电,再通过一台1000kVA箱式升压变升压后与站内集电线路相连,全站20MWp容量共安装20台1000kVA箱式升压变,通过电缆线路送至站内35kV配电装置。站内设一台站用变压器为全站提供站用电源。7.1.2.3主要电气设备选择短路电流计算 根据现有规模,35kV短路电流水平暂按50kA设

32、计,待下一阶段接入系统设计完成后进行核算。 (1)35kV高压开关柜选用户内金属封闭铠装移开式高压开关柜,内配真空断路器,额定电流630A,开断电流50kA。(2)箱式变电站变压器:选用S11-1000/35 38.52x2.5%/0.315kV逆变器:500kVA7.1.2.4过电压保护及接地所有电气设备的绝缘均按照国家标准选择确定,并按海拔高度进行修正。考虑到太阳能电池板安装高度较低,且项目所在地为少雷区,本次太阳能电池方阵内不安装避雷针和避雷线等防直击雷装置,只在主控制室屋顶安装避雷带对控制室和综合楼进行防直击雷保护。站内设一个总的接地装置,以水平接地体为主,垂直接地体为辅,形成复合接地

33、网,将电池设备支架及太阳能板外边金属框与站内地下接地网可靠相连,接地电阻以满足电池厂家要求为准,且不应大于10欧。7.1.2.5全所照明本所照明分为正常照明和事故照明,正常照明电源取自所用电交流电源,事故照明电源取自事故照明切换箱,正常时由交流电源供电,交流电源消失时自动切换至直流蓄电池经逆变器供电。综合楼内,在主控室采用栅格灯作为正常照明,其他房间采用节能灯,屋外道路采用高压钠灯照明。在主控室、配电室及主要通道处设置事故照明,事故照明也采用荧光灯或节能灯,由事故照明切换箱供电。7.1.2.6电气设备布置根据本工程的建设规模,20个箱式变电站分别布置于太阳能电池方阵中,通过35kV电缆汇集至综

34、合楼35kV配电室内,各个单元变压器及逆变器均放置于就地箱式变电站中。35kV配电室与所用电室并排布置于站内生产管理区综合楼一层,35kV配电装置采用户内成套开关柜,单列布置。 高、低压配电室电缆采用电缆沟敷设,控制室电缆采用电缆沟、活动地板下、穿管和直埋的敷设方式;太阳能电池板至汇流箱电缆主要采用太阳能板下敷设电缆槽盒的方式;汇流箱至集中型逆变器室的电缆采用直埋电缆敷设方式;箱式变电站至35kV配电装置的电缆主要采用直埋电缆的方式敷设。低压动力和控制电缆拟采用ZRC级阻燃电缆,消防等重要电缆采用耐火型电缆。控制室电子设备间设活动地板,10kV配电室、所用电室设电缆沟,其余均采用电缆穿管或直埋

35、敷设。电缆构筑物中电缆引至电气柜、盘或控制屏、台的开孔部位,电缆贯穿墙、楼板的孔洞处,均应实施阻火封堵。电缆沟道分支处、进配电室、控制室入口处均应实施阻火封堵。开关站主控室、配电室及主要通道处设置事故照明,事故照明采用荧光灯或节能灯,由事故照明切换箱供电。7.2电气二次本工程采用光伏发电设备及升压站集中控制方式,在综合楼设集中控制室实现对光伏设备及电气设备的遥测、遥控、遥信。7.2.1电站运行方式本工程采用光伏发电设备及升压站集中控制方式,在综合楼设集中控制室实现对光伏设备及电气设备的遥测、遥控、遥信。7.2.2 调度自动系统7.2.2.1 调度关系根据电网“统一调度、分级管理”的要求,该光伏

36、电站由聊城地调调度,电站的远动信息向聊城地调传送。7.2.2.2 远动信息内容依据电力系统调度自动化设计技术规程(DL/T 5003-2005)并结合各调度端需要,光伏电站本期工程的远动信息内容如下:遥测内容升压变压器高压侧有功功率、无功功率、电流;35kV线路有功功率、无功功率、电流;35kV母线电压。遥信内容全场事故总信号;与调度相关的断路器位置信号;反映运行状态的隔离开关位置信号。7.2.3电站继电保护本项目光伏电站工程规划容量20MWp。光伏电站以1回35kV线路接入对侧35KV电站。光伏电站35kV系统采用单母线接线方式。系统继电保护配置方案1) 线路保护 光伏电站本期的1回35kV

37、线路配置一面微机线路距离保护柜,以保证该35kV线路发生故障时能够以较快时限切除故障。2) 母线保护光伏电站35kV母线配置一面微机母线保护柜,当35kV母线发生故障时能够快速切除母线故障,以保证系统的安全性。3) 故障录波器光伏电站系统侧配置一面微机型故障录波器柜,用于电站的线路保护、母线保护等开关量及电流、电压等模拟量信息的录波。7.2.4二次接线 电量计量装置的配置原则按照国家电网公司输变电工程通用设计和电能计量装置技术管理规程(DL/T 448-2000)的要求,光伏电站电量计量装置的配置原则如下:1) 关口计量点按I类设置计量装置,考核点按II类设置计量装置。2)I、II类计量装置配

38、置专用电压0.2级、电流0.2S级互感器或专用二次绕组。3) 互感器计量绕组的实际二次负荷应在50100额定二次负荷范围内。4) 互感器计量绕组二次回路的连接导线应采用铜质单芯绝缘线。对电流二次回路,导线截面至少应不小于4mm2;对电压二次回路,导线截面至少应不小于2.5mm2。5) I、II类用于贸易结算的电能计量装置中电压互感器二次回路电压降应不大于其额定二次电压的0.2。6) 接入中性点绝缘系统的电能计量装置,宜采用三相三线有功、无功电能表。接入非中性点绝缘系统的电能计量装置,应采用三相四线有功、无功电能表。7) 电能计量表计的通信规约符合DL/T645-2007多功能电能表通信规约的要

39、求。8)电能表辅助电源宜采用独立的交/直流回路供电,交流电源宜引自UPS电源。9)电能表与试验接线盒采用一表一盒接线方式,试验接线盒安装在电能表下侧对应位置,电能计量屏按满屏6只电能表布置。10)选用电子式多功能电能表,有功准确度等级0.2S级,无功准确度2.0级,失压计时功能满足DL/T 566-1405.3电压失压计时器技术条件。11)对于三相四线制电能表,电流互感器二次绕组采用三相六线制接线方式;对于三相三线制电能表,电流互感器二次绕组采用两相四线制接线方式。 计量点确定按照电能计量装置技术管理规程的有关规定,光伏电站的计量关口确定如下:光伏电站至地区35kV变电站的线路出口、光伏电站所

40、用变高压侧为电量关口点。另外,光伏电站升压变高压侧应设置电量考核点。 电能计量装置配置方案1)远方电量计量表配置本期工程,所有计量关口点按照1+1原则配置远方电量计量表,表计精度为0.2s级;所有计量考核点按照1+0原则配置远方电量计量表,表计精度为0.2s级。因此,本期工程光伏电站至地区35kV变电站的线路出口、#2所用变高压侧应按照1+1原则配置远方电量计量表;升压变高压侧应按照1+0原则配置远方电量计量表,根据国网公司通用设计要求,每台远方电量计量表还应配置相应的接线盒2)电能量远方终端在光伏电站内设置一套电能量远方终端,以RS485串口方式与电度表通信,采集全站的电量信息。电能量远方终

41、端以IEC60870-5-102规约向聊城市地调计量主站传送电量信息。电能量远方终端除了能以拨号方式与调度端通信外,还应具备网络传输能力。3)电能量现场监视设备为实现电厂上网电能量的计量、分时存储、处理及制表打印功能,根据电能量计量系统设计技术规程(DL/T 5202-2004)要求,在光伏电站内配置电能量现场监视设备一套。通过现场监视设备收集发电厂的电能量数据,进行电站自身的经济核算工作。电能量信息传输示意图如图7-2所示:电能量信息传输示意图 组屏方案本期工程在继电器室内设1面电能量远方终端屏,安装电能量远方终端设备。同时设置1面远方电量计量表屏,安装1回线路、1台所用变高压侧共计2块远方

42、电量计量表及相应的接线盒。继电器室远方电量计量表屏与电能量远方终端屏之间通过双绞屏蔽电缆连接。7.2.4.1电力调度数据网接入设备按照山东省电力调度数据网的建设规划,光伏电站为山东省电力调度数据网的接入节点。为满足调度端对光伏电站数据网络通信的需要,本期工程应在光伏电站内配置电力调度数据网接入设备一套。其具体配置原则应与山东省电力调度数据网的建设保持一致。所有数据网接入设备均组屏安装,安装在继电器室内。7.2.4.2二次系统安全防护设备按照电力二次系统安全防护规定(电监会5号令)要求,“电力二次系统安全防护工作应当坚持安全分区、网络专用、横向隔离、纵向认证的原则,保障电力监控系统和电力调度数据

43、网络的安全。”因此,本期工程应当在光伏电站内设置经过国家指定部门检测认证的二次系统安全防护设备一套,包括两台纵向加密认证装置等。以确保电力调度数据网的安全运行,具体配置原则参照电监安全200634号电力二次系统安全防护总体方案执行。光伏电站二次系统安全防护设备与站内调度数据网接入设备统一组屏安装在继电器室内,原则上不单独组屏。7.2.4.3 电源系统根据电力系统调度自动化设计技术规程(DL/T 5003-2005)要求,调度自动化专业设备应配备两路独立电源。因此,本工程光伏电站调度自动化设备考虑采用两路独立的直流电源或者UPS电源供电,当采用UPS电源供电时,其维持供电时间按不少于1小时考虑。

44、由于电厂具备全站公用的UPS电源和直流电源,因此调度自动化设备不再单独配置专用电源系统。7.2.4.4 自动化信息传输通道 远动信息传输通道光伏电站对聊城市地调的远动通道均采用主备通道,其中主通道采用电力调度数据网通道。以2M方式接入电力调度数据网的骨干点。光伏电站对聊城市地调的远动备通道均采用常规模拟通道,信息传输速率1200波特,要求在通道信噪比为17dB时,误码率不大于10-5。 电量信息传输通道光伏电站对聊城市地调电量计量主站的电量信息传输通道采用主备通道,其中主通道采用电力调度数据网通道,备通道为电话拨号通道。7.2.4.5通信1)通信监控由于光伏电站不设置通信运行岗位,因此通信设备

45、的配置及运行管理按照无人值守通信站的设备标准考虑,为保证通信系统的安全、可靠运行和维护管理,需配置通信监控屏1台,本站通信设备、设施通过网络方式接受调度端的远方监控。2)场内建筑的通信电缆敷设根据本工程建设规模,生产管理办公楼内的各房间均根据岗位情况设置电话端口,其布线系统按照常规布线考虑。对于光伏电站方面根据建筑功能使用要求和建筑布局技术规划提出的综合布线方案和闭路电视系统等需求,由于超出设计规程范围,需另行商议。3)通信机房工艺及接地本工程通信机房按照无人值守设计,除通信机房外,不设置通信用值班室、办公室及其它通信用功能性房间。安装的设备包括程控电话交换机、通信电源屏、系统通信设备、配线设

46、备等;蓄电池单独设置通信蓄电池室。通信机房的建筑及电气工艺要求在施工图阶段设计。机房接地系统:通信机房铺设防静电活动地板,并在活动地板下设置闭合的环形均压带,均压带通过2条铜缆与场区接地网连接,接地电阻要求1。4)通信电源根据本期工程通信设施建设规模,本工程配置1套48V/100A高频开关电源与2组48V/100Ah蓄电池组。通信电源同时满足系统通信的容量需求和场内通信负载的需求。8 电站总平面布置及土建平面设计8.1电站总平面布置本项目装机容量20MWp,全厂占地670亩。建筑为光伏电站的配套工程,站内布置要利于生产,便于管理,适应当地环境,在此前提下,尽可能创造好的工作环境。本工程建筑物的

47、功能应满足变电站内生产、生活及办公的需要,造型及外观与电场及当地的环境相协调,并体现新能源发展的现代特色。综合楼占地面积320m2,配电装置占地600m2。8.2 土建工程设计8.2.1 建筑设计整个20MWp电站设综合房一座,包括电气室、监控室、值班室、接待室、储藏室、卫生间等。另特别设置开敞的展览空间及休息空间,为光伏发电项目的展示、介绍与交流提供较好的场所。该部分建筑面积为320平方。综合楼为一层建筑,是集生活、生产、办公于一体的综合建筑。8.2.2结构设计综合楼建筑为钢筋混凝土框架结构,内外填充墙均采用加气混凝土砌块,外墙370mm厚,内墙200mm厚。外墙装修采用铝塑板及点支玻璃幕墙

48、相结合。建筑物内墙涂高档内墙涂料,顶棚纸面石膏板吊顶,地面铺地面砖或抛光花岗岩地面,控制室、通讯机房铝合金板吊顶,地面铺防静电活动地板。窗为中空玻璃段桥铝合金密闭窗,外门采用复合保温钢板门,综合楼主入口采用玻璃门,装修标准采用二级装修。土建工程采用的主要设计技术数据:(1) 站址场地土地基承载力持力层的地基土承载力特征值按500kPa考虑。(2) 抗震设防站址场地地震设防基本烈度为8度(0.2g)。综合楼、材料库、水泵房属丙类建筑物,按基本烈度(8度)设防。(3) 电站设计风、雪荷载固定支架的抗风能力满足当地基本风压值0.55kPa,雪荷载0.20kPa。(4) 混凝土强度等级地上结构:一般建

49、筑物如砖混结构,混凝土强度等级采用预制混凝土构件混凝土强度等级为C30C40,框架结构现浇混凝土结构为C20C30。基础:混凝土基础为C20。基础垫层采用C10混凝土。辅助设备基础采用C20混凝土。(5) 水泥采用#450#650普通硅酸盐水泥。(6) 钢筋一般结构的主筋可采用HPB235、HRB335、HRB400钢筋;箍筋可采用HPB235、HRB345钢筋。(7) 钢材型钢、钢板主要用Q235级钢,其材料应具有钢厂出具的质量证明书或检验报告;其化学成分、力学性能和其他质量要求必须符合国家现行标准规定。所有钢结构均应热镀锌防腐处理。(8) 螺栓檩条、支撑的连接采用普通螺栓,性能等级4.6级

50、。支架构件之间的连接采用承压型高强螺栓,强度等级采用10.9级,12MnTiB钢。底脚板与基础连接采用Q235锚栓。(9) 焊缝金属的性能应与焊件金属母材相适应。(10) 手工电弧焊应采用符合国家标准碳钢焊条(GB5117)或低合金钢焊条(GB5118)规定的焊条。对Q235级钢的焊接应选用E43型焊条,对Q345级钢的焊条应选用E50型焊条。建筑物结构形式;综合楼等采用框架结构,天然地基,独立基础;其它辅助建筑物采用砖混结构体系,天然地基,条形基础。8.2.3 给排水设计8.2.3.1 主要设计标准和规范 室外给水设计规范(GB50013-2006) 室外排水设计规范(GB50014-200

51、6) 建筑给水排水设计规范(GB50015-2003) 污水综合排放标准(GB8978-1996)8.2.3.2 用水量站内的用水主要包括:光伏电池面板清洗用水,绿化、生活等用水。本工程生活用水量如下表8-4 (本项目劳动定员10人)。表8-4 全站生活用水量表序号项 目使用对象数量用水量标准小时变化系数用水量每日最大班最高日(m3/d)最大小时(m3/h)平均小时(m3/h)1站内人员用水10人8人35升/人班2.50.350.0880.0152绿化和浇洒地面10010m22升/m2d20.020.8343冲洗汽车小车1辆400升/辆d0.400.0164小计20.770.8655未预见水量

52、按用水量20%计4.1540.1736合计24.9241.038本工程全站用水量如下表8-5所示。8-5 全站用水量一览表序号项 目用水量(m3/h)回收水量(m3/h)耗水量(m3/h)贮水量(m3)备 注1光伏电池面板清洗用水5.0405.0440.322生活用水(含汽车冲洗)1.0401.048.323小计6.0806.0848.644未预见用水1.221.225.73按用水量20%计5合计7.307.354.37注:(1) 清洗用水考虑2只给水栓同时使用的用水量。(2) 贮水量按8小时计。(3) 回收水经简易沉淀处理后重复用于光伏电池面板清洗、场区绿化、和浇洒地面用水的补充水源。8.2

53、.3.3 站内给排水站内给水管道直径为DN100。场内管网沿场内主要道路敷设。主管道采用De100的PE管道。在站内设置清水箱及升压设备,以确保站内用水的水量和水压。站内设50m3清水箱,布置在综合楼屋顶,综合楼内用水由水箱直接供给。光伏电池面板清洗用水由位于材料库内水泵房的升压水泵升压后供给。水泵房内设有2台升压泵,1用1备,参数为:Q=6m3/h,H=0.6MPa,N=2.2kW。8.2.3.4 光伏电池面板清洗用水电站总占地面积约为300亩,站内布置大面积的光伏电池组件,由于灰尘堆积在电池组件上,将影响电池组件对太阳能的吸收效率,因此要定期对光伏电池面板进行清洗。光伏电池面板的清洗方式为

54、软管接有压水定期进行冲洗。在站区内每隔67排光伏电池面板间的通道内设置有给水栓。给水栓处设置截止阀及固定水带接口,便于接软管对电池组件进行冲洗工作。单个给水栓水量为2.52 m3/h,水压为0.1MPa。冲洗水管主管管径为De100mm,支管管径为De50mm,采用PE管。热熔连接、丝扣连接或法兰连接。8.2.3.5 生活用水综合楼内设有卫生间及配餐室,配餐室内布置有洗涤池,卫生间内布置有热水器、脸盆、淋浴器、卫生器具及污水斗等。上水道屋顶水箱,进户管管径为De32mm,设置水表计量用水量。室内生活排水管采用UPVC塑料管,粘结连接,生活给水管采用PP-R塑料管,热熔连接。8.2.3.6 雨水

55、排水根据本区气象资料年平均降水量以及年平均蒸发量 得知,蒸发量与降水量相当,无洪水侵扰。可见本地区雨水充分。站前区道路标高高于场地,道路雨水利用坡度排入场地,场地为自然地坪,雨水自流到场地周边地带排放。8.2.3.7生活污水排水建筑物室内生活污水与废水分流,排至室外生活污水自流管网。站内设有生活污水处理站,处理水量为1m3/h,处理后达到中水回用标准,用作站内绿化用水。生活污水管采用UPVC管。8.2.4暖通空调按火力发电厂设计技术规程(DL50002000)规定,本工程属采暖区。所以电站控制室、办公室、职工宿舍等有人停留房间均采用冷暖空调。高低压配电室、站用电配电室的通风采用自然进风、机械排

56、风的通风方式。排风机兼作事故排风机。综合水泵房采用自然通风8.2.5抗风沙设计光伏发电站在运行过程中,确保光伏发电设备的不因多年不遇风沙而损坏或倾倒,按照要求,固定支架的抗风能力按照42m/s风速下不受损坏进行设计。光伏组件抗风沙设计本工程场内地表土质为未利,泥土含量较多,为防止大风天气引起的扬尘。工程施工建设中形成的坑凹,采取回填、推平或垫高、整平覆土后,采用压路机进行碾压,再铺盖粒径12Mm40mm碎石或卵石的方法进行防护。有效控制大风天气引起的扬尘和水土流失,保护了光伏组件表面光洁度,提高发电效益。房屋建筑抗风沙设计房屋建筑抗风能力按国家规范要求进行设计,均能保证抗风能力。建筑抗风沙主要是门窗。沙尘暴对门窗的环境威胁,主要表现在4个方面:A、沙尘暴对门窗的渗透效应和瞬时强风荷载,要求建筑门窗的密封性能、防尘性能、抗风性能必须提高;B、门窗表面在沙尘暴的作用下,产生较强的静电效应,沙尘颗粒粘结物长期吸附于门窗表面,加速电化学腐蚀,危及面层使用寿命和装饰色调效果,门窗抗静电性能必须提高;C、沙尘对按等压原理设计而设置的减压孔、腔、槽隙、排水孔槽以及新型换气装置通风孔道等处产生封闭效应,造成功能性孔隙的严重堵塞,清理十分困难,危及门窗使用功能和技术性能;D、沙尘暴危及的门窗附件:门窗启闭件、开启定位件、紧固件、锁具等金属制品,要有较高的机械强度;密封元件、配套件等非金属制品,要

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!