白鹭MHC-II-DAB-I第二外显子基因的多态性与进化

上传人:h****6 文档编号:204401384 上传时间:2023-04-26 格式:DOC 页数:13 大小:1.12MB
收藏 版权申诉 举报 下载
白鹭MHC-II-DAB-I第二外显子基因的多态性与进化_第1页
第1页 / 共13页
白鹭MHC-II-DAB-I第二外显子基因的多态性与进化_第2页
第2页 / 共13页
白鹭MHC-II-DAB-I第二外显子基因的多态性与进化_第3页
第3页 / 共13页
资源描述:

《白鹭MHC-II-DAB-I第二外显子基因的多态性与进化》由会员分享,可在线阅读,更多相关《白鹭MHC-II-DAB-I第二外显子基因的多态性与进化(13页珍藏版)》请在装配图网上搜索。

1、白鹭MHC II DAB I其次外显子基因的多态性与进化李 力1,罗斯特1,林清贤1,2*,陈小麟1,2 收稿日期:2015-04-16基金项目:国家自然科学基金(41476113,31272333);福建省自然科学基金(2010Y2007).*通信作者:lqxxmu.edu (林清贤);xlchenxmu.edu (陈小麟)*(1.厦门高校生命科学学院,2.厦门高校环境与生态学院,滨海湿地生态系统教化部重点试验室,福建 厦门361102)摘要:克隆测序白鹭(Egretta garzetta)5个种群138份个体组织样本的主要组织相容性复合体(MHC)II类B基因(DAB I)第2外显子(ex

2、on2)序列,分析探讨第2外显子基因的多态性、进化选择、系统关系和种群遗传结构. 主要结果如下:白鹭MHC II DAB I 第2外显子基因序列长度为270 bp,共计定义了139个等位基因;序列分析显示第2外显子基因有101个核苷酸变异位点(37.4%)和31个氨基酸变异位点(34.4%);基于贝叶斯法构建的系统树显示白鹭MHC II DAB I 第2外显子基因有5个高支持率的谱系;肽结合位点(PBR)、非肽结合位点(non-PBR)的非同义替换率(dN) 和同义替换率(dS)比值计算显示,PBR的dN/dS为1.99 (p0.05),而non-PBR的dN/dS则小于1,表明白鹭MHC I

3、I DAB I第2外显子基因受到正选择作用;依据等位基因在群体中的分布频率作分子方差分析(AMOVA),得到FST为0.1941(p1时该位点可认为受到了正选择作用. 分别计算PBR、non-PBR的dS和dN,结果如表1所示, PBR区的dN/dS 显著大于1,而non-PBR的dN/dS 则小于1,这表明白鹭MHC II DAB I exon2的PBR区在进化过程中受到剧烈的正选择作用(positive selection)(表1). 分别利用PAML软件包CODEML程序中的模型M1与M2以及M7与M8 检测exon2所受的选择作用,比较分析结果显示,模型M2相对于M1(p0. 01)、

4、M8相对于M7(p0. 01)对本文数据有更好的拟合度. 在模型M2当中共检测到10个氨基酸位点受到正选择作用,其后验概率均大于95%;而在M8检测到11个受正选择作用的氨基酸位点,其中有10个位点与M2的位点完全相同(表2). 表1 白鹭MHC II DAB I exon2 的肽结合位点(PBR)、非肽结合位点(non-PBR)的dN和dS Tab.1 dN and dS of PBR and non-PBR of MHC II DAB I exon2 in little egret区域氨基酸数dN(S. E.)dS(S. E.)dN/dSpPBR240. 22160. 03440. 115

5、30. 04961. 920. 0074Non-PBR660. 03590. 01120. 04050. 01530. 881.000Total900. 08690. 01540. 06570. 01761. 320. 2257表2 不同密码子进化模型对白鹭MHC II DAB I exon2吻合度检验的参数与似然值Tab.2 Parameter estimates and likelihood values of different codon evolution models for MHC II DAB I exon2 in little egret模型似然值估算参数(LRT)2L受正选

6、择位点M12153. 152p0 =0. 52803p1=0. 46082154. 63(p0. 001)Not allowed0 =0. 042231 =1. 000006S* 23E* 32Y* 33A* 42Y* 55Y* 66A* 80V* 81A* 84S*M22073. 833p0 =0. 04938p1=0. 03889p2=0. 120810=0. 090221 =1. 000002=14. 16431M72152. 096p =0. 10623q=0. 86031Not allowed6S* 23E* 32Y* 33A* 42Y* 55Y* 65N* 66A* 80V* 81

7、A* 84S*M82073. 652p0 =0. 04938p=0. 03889155. 52q=0. 11054 =15. 20752(p1=0. 18863)(p0. 001)注:*表示位点的后验概率大于0. 95,*表示后验概率大于0. 99. 2.4 MHC II DAB I exon 2等位基因的系统关系基于白鹭139个等位基因序列与其他3种外群鹭科鸟类(黄嘴白鹭、岩鹭、夜鹭)的MHC II DAB I exon2序列,通过贝叶斯方法所构建的系统发育树显示,白鹭的MHC II DAB I exon2可分为5个谱系(RY、JY、ZS、NB、XY),这些谱系均有较高的支持率,并且每个谱系

8、内只包括与之相对应的地理种群序列(图2). 在这5个谱系中,谱系XY与NB关系较亲近,并与RY谱系聚为一支,而谱系JY则与ZS关系更亲近. 图中仅大于0. 50的后验概率显示在系统树的分支上.图2 白鹭及3种鹭科鸟类MHC II DAB 1 exon2序列的系统关系树Fig.2 Phylogenetic relationship of MHC II DAB I exon2 sequences among Egretta garzetta,Egretta eulophotes, Egretta sacra and Nycticorax nycticorax2.5 MHC II DAB I exo

9、n 2的种群遗传结构在白鹭MHC II DAB I exon 2等位基因分布中,浙江舟山种群拥有49个,是等位基因数量最多的种群,然后依次是福建宁德种群(35)、贵州遵义种群(20)、福建厦门种群(19),而河南信阳种群最少(16). 用Arlequin v3.1软件分析群体间分化指数(Fst)(表3),结果显示5个白鹭群体间的Fst均较大,并且这5个群体两两之间Fst值差异显著性检验值p0.05,表明白鹭这5群体间的遗传分化显著,群体间缺乏基因沟通.对白鹭5个群体的AMOVA分析显示群体内个体间的变异占总变异来源的80.59%,同时群体间的变异则占19.41%( p0.0001),该结果进一

10、步说明5个群体间的遗传差异显著(表4).表3 白鹭5个不同种群群体之间的Fst值Tab.3 Fst value between 5 different populations of Egretta garzetta群体鸡屿(JY)南白(NB)日屿(RY)信阳(XY)舟山(ZS)鸡屿(JY)南白(NB)0.10155日屿(RY)0.127820.19392信阳(XY)0.331930.247480.28177舟山(ZS)0.048320.192250.160260.36019表4 白鹭种群MHC II DAB I 第2外显子基因遗传差异的分子方差分析(AMOVA)Tab. 4 Analysis

11、of molecular variance of MHC II DAB I exon2 among 5 little egret populations变异来源自由度平方和方差重量变异百分比Fstp群体间4211. 6811. 7321819. 410.19410.0001群体内个体间134963. 7147. 191980. 59总计1381175. 3968. 924081003 讨 论聚合酶链式反应-单链构象多态性技术(PCR-SSCP)能够检测DNA片段上不同位点的多态性或单个碱基的突变、缺失、插入或置换等改变37-39.本文利用PCR-SSCP技术探讨白鹭5个地理种群的MHC II

12、DAB I 基因第2外显子的遗传多态性. 结果显示第2外显子拥有数量众多的等位基因,表现为较高多态性特点. 全部等位基因序列均未发觉插入或缺失突变,经翻译成氨基酸序列后,也没有发觉终止密码子,这间接表明所分别到的等位基因可能来源于表达的基因座,能够行使正常的功能表达.为了探究白鹭MHC II DAB I基因多态性的维持机制,本探讨对第2外显子编码抗原结合区肽结合位点(PBR)以及非抗原结合区肽结合位点(Non-PBR)的dN与dS值进行了统计分析. 结果显示,PBR区dN显著大于dS(p0. 01),提示白鹭MHC II DAB I第2外显子基因曾经验过剧烈的正选择作用(表2). 在CODEM

13、L程序选择压力检验模型的比较分析结果中,模型M2和M8分别较M1和M7具有更好的拟合度(p 0.001)(表2),同样也支持上述的正选择作用. 由此我们推想正选择作用在维持白鹭MHC II DAB I 第2外显子基因多态性起着重要作用,该结论与其他鸟类MHC探讨报道一样. Alcaide等在探讨黄爪隼(Falco naumanni)时发觉其MHC II B第2外显子具有较高的遗传多态性,他们从21个黄爪隼个体样品中共分别获得26种等位基因,其选择压力分析结果显示了黄爪隼的MHC II B 第2外显子基因受到了剧烈的正选择作用40. Bollmer等在比较分布于加拉帕戈斯群岛的特有种加岛鵟(Bu

14、teo galapagoensis)和其近缘广布种斯温氏鵟(Buteo swainsoni)在MHC II B 基因第2外显子的遗传多样性差异时发觉,广布种斯温氏鵟相对于特有种加岛鵟在MHC II B 基因上有更高的遗传多样性,他们在20个斯温氏鵟个体上共发觉了20种等位基因,而在32个加岛鵟个体上则只有3种等位基因,同时剧烈的正选择作用也在斯温氏鵟的MHC II B基因第2外显子基因上被检测到41. Dearborn等基于巢式PCR和高通量测序技术探讨白腰叉尾海燕(Oceanodroma leucorhoa)的MHC II B 基因第2外显子,共获得21种等位基因(48个个体),探讨结果揭示

15、白腰叉尾海燕MHC II B 基因第2外显子存在较高遗传多态性的重要缘由是由于曾经长期受到病原体侵扰所引起正选择作用的结果19.基于系统树、群体间分化指数(Fst)和AMOVA分析结果显示,5个白鹭种群的MHC II DAB I第2外显子等位基因存在显著的种群分化.有探讨表明当动物在不同环境下的微生物和病原体侵扰时,由于受到选择压力的长期作用,会导致与机体免疫反应重要相关的MHC基因会出现不同种群在等位基因数量上出现较大差异42, 43. 因此本探讨推想导致白鹭5个种群间的MHC出现种群分化的缘由可能是这5个地理种群的白鹭在应对不同生境时受到了不同病原侵扰,诱发了不同的免疫反应,这种等位基因数

16、量的差异反映了不同的环境选择压力的影响.由于MHC多样性、等位基数量受不同生境的病原种类和数量所影响,因此MHC多样性能够反映不同种群对各自环境的适应实力12, 44, 45.今后的探讨有必要针对不同种群生境中的寄生虫和微生物种类进行调查,以深化探讨白鹭种群MHC等位基因数量差异的成因.参考文献:1 Klein, J, Satta Y, Ohuigin C, et al. The Molecular Descent of the Major Histocompatibility Complex J. Annual Review of Immunology, 1993, 11: 269-295.

17、2 Nikolich-Zugich J, Fremont D H, Miley M J, et al. The role of mhc polymorphism in anti-microbial resistance J. Microbes and Infection, 2004, 6(5):501-512.3 Babik W. Methods for MHC genotyping in nonmodel vertebrates J. Molecular Ecology Resources, 2010. 10(2):237-251.4 Boehm T N, Hess I I. Evoluti

18、on of the Immune System in the Lower Vertebrates J. Annual Review of Genomics and Human Genetics, 2012, 13:127-149.5 Bordon Y. MHC molecules: Cods wallop? Its first class! J. Nature Reviews Immunology, 2011, 11(9):570-571.6 Boehm T N, Hess I I. Evolution of the Immune System in the Lower Vertebrates

19、 J. Annual Review of Genomics and Human Genetics, 2012, 13:127-149.7 Blum A, Miller H. The major histocompatibility complex and inflammation J. Southern Medical Journal, 2000, 93(2):169-172.8 Kaufman J, Salomonsen J, Flajnik M. Evolutionary conservation of MHC class I and class II moleculesdifferent

20、 yet the same J. Seminars in Immunology, 1994, 6(6): 411-424.9 Rodgers J R, Cook R G. MHC class IB molecules bridge innate and acquired immunity J. Nature Reviews Immunology, 2005, 5(6):459-471.10 Reche P A, Reinherz E L. Sequence variability analysis of human class I and class II MHC molecules: Fun

21、ctional and structural correlates of amino acid polymorphisms J. Journal of Molecular Biology, 2003, 331(3):623-641.11 Furlong R F, Yang Z. Diversifying and purifying selection in the peptide binding region of DRB in mammals J. Journal of Molecular Evolution, 2008, 66(4):384-394.12 Yao Y, Dai Q, Li

22、J, et al. Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles J. BMC Evolutionary Biology, 2014, 14(1):130.13 Radwan J, Biedrzycka A, Ba

23、bik W. Does reduced MHC diversity decrease viability of vertebrate populations? J. Biological Conservation, 2010, 143(3):537-544.14 Vetenkov imkov A, Civov K, Gettov L, et al. Genomic porosity between invasive Chondrostoma nasus and endangered endemic Parachondrostoma toxostoma (Cyprinidae): the evo

24、lution of MHC IIB genes J. PLOS ONE,2013, 8(6): e65883.15 Bollmer J L, Hull J M, Ernest H B, et al. Reduced MHC and neutral variation in the Galapagos hawk, an island endemic J. BMC Evolutionary Biology, 2011, 11(1): 143.16 Kaufman J, Jacob J, Shaw J, et al. Gene organisation determines evolution of

25、 function in the chicken MHC J. Immunological Reviews, 1999, 167(1):101-117.17 Kaufman J, Milne S, Gbel T W, et al. The chicken B locus is a minimal essential major histocompatibility complex J. Nature, 1999, 401(6756):923-925.18 Chen L, Lan H, Sun L, et al. Genomic organization of the crested ibis

26、MHC provides new insight into ancestral avian MHC structure J. Scientific Reports, 2015. 5.19 Dearborn D C, Gager A B, Gilmour M E, et al. Non-neutral evolution and reciprocal monophyly of two expressed Mhc class II B genes in Leachs storm-petrel J. Immunogenetics, 2015, 67(2):111-123.20 Suzuki S, H

27、osomichi K, Yokoyama K, et al. Primary analysis of DNA polymorphisms in the TRIM region (MHC subregion) of the Japanese quail, Coturnix japonica J. Animal Science Journal, 2013, 84(1):90-96.21 Wutzler R., Foerster K, Kempenaers B. MHC class I variation in a natural blue tit population (Cyanistes cae

28、ruleus) J. Genetica, 2012. 140(7-9):349-364.22 Wang B., Ekblom R, Strand T M, et al. Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC J. BMC Genomics, 2012, 13: 553.23 Aguilar A, Edwards S V, Smith T B, et al. Patterns of variation in MH

29、C class II beta loci of the little greenbul (Andropadus virens) with comments on MHC evolution in birds J. Journal of Heredity, 2006,. 97(2):133-142.24 Hafner H, Dugan P J, Boy V. Use of Artificial and Natural Wetlands as Feeding Sites by Little Egrets (Egretta garzetta L.) in the Camarge Southern F

30、rance J. Colonial Waterbirds, 1986, 9: 149-154.25 Hashmi M Z, Malik R N, Shahbaz M. Heavy metals in eggshells of cattle egret (Bubulcus ibis) and little egret (Egretta garzetta) from the Punjab province, Pakistan J. Ecotoxicology and Environmental Safety, 2013, 89:158-165.26 常青, 张保卫, 金宏,等. 从 12S rRN

31、A 基因序列推想鹭科 13 种鸟类的系统发生关系 J. 动物学报, 2003, 49(2):205-210.27 林清贤, 周晓平, 方文珍, 陈小麟. 中国6 种白色羽鹭科鸟类的系统归属探讨 J. 厦门高校学报: 自然科学版, 2010, 49 (1):83-86.28 Li L, Zhou X, Chen X. Characterization and Evolution of MHC Class II B Genes in Ardeid Birds J. Journal of Molecular Evolution, 2011, 72(5-6):474-483.29 Binz T, Re

32、usch T, Wedekind C, et al. SSCP analysis of Mhc class II B genes in the three spine stickleback J. Journal of Fish Biology, 2001, 58(3):887-890.30 Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 J. Molecular Biology and Evolution, 2013, 30(12):2725

33、-2729.31 Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models J. Bioinformatics, 2003, 19(12):1572-1574.32 Excoffier L, Lischer H E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows J. Molecular Eco

34、logy Resources, 2010, 10(3):564-567.33 Yang Z. PAML 4: phylogenetic analysis by maximum likelihood J. Molecular Biology and Evolution, 2007, 24(8):1586-1591.34 Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene J. Genet

35、ics, 1998, 148(3):929-936.35 Wong W, Yang Z, Goldman N, et al. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites J. Genetics, 2004, 168(2):1041-1051.36 Cutrera A P, Lacey E A. Major histocompatibility

36、complex variation in Talas tucotucos: The influence of demography on selection J. Journal of Mammalogy, 2006, 87(4):706-716.37 Zhou H, Li S, Liu X, et al. Haplotyping using a combination of polymerase chain reactionsingle-strand conformational polymorphism analysis and haplotype-specific PCR amplifi

37、cation J. Analytical Biochemistry, 2014, 466:59-64.38 Hayashi K, Yandell D W. How sensitive is PCRSSCP? J. Human Mutation, 1993, 2(5):338-346.39 Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA J. Genome Research, 1991, 1(1):34-38.40 Alcaide M, Edwards

38、 S V, Negro J J. Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey J. Journal of Molecular Evolution, 2007, 65(5):541-554.41 Bollmer J L, Hull J M, Ernest H B, et al. Reduced MHC and neutral variation in the Galpagos hawk, an island endemic J. BMC Evolutionary Bi

39、ology, 2011,11(1):143.42 Eizaguirre C, Lenz T L, Kalbe M, et al. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field J. Ecology Letters, 2012, 15(7):723-731.43 Hughes A L, Yeager M. Natural selection at major histocompatibility comp

40、lex loci of vertebrates J. Annual Review of Genetics, 1998, 32(1):415-435.44 Borg A A, Pedersen S A, Jensen H, et al. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories J. Ecology and Evolution, 2011, 1(2):145-159.45 Davison F, Kasp

41、ers B, Schat K A, et al. Avian Immunology M. Academic Press, 2011.Polymorphism and Evolution of MHC II DAB I exon2 Gene in Little Egret (Egretta garzetta)LI Li1, LUO Si-te1,LIN Qing-xian1,2*, CHEN Xiao-lin1,2*(1. School of Life Sciences, Xiamen University, 2. KeyLaboratoryof Ministry of Education fo

42、r Coast and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China)Abstract: The DNA fragments of major histocompatibility complex (MHC) class II DAB I exon2 genes from 138 individual samples in 5 populations of little egret (Egretta garzetta) were cloned a

43、nd sequenced to investigate their polymorphism, evolution selection, phylogenetic and population genetic structures. The main results were as follows. Sequence of MHC II DAB I exon2 genes of little egret was 270 bp in length, and a total of 139 alleles were defined in the exon 2. Sequence analyses i

44、ndicated that exon2 genes had 101 nucleotide acid variation sites (37%) and 31 amino acid variation sites (34.4%). The Bayesian phylogenetic tree showed there were 5 distinct lineages with high bootstrap values in the exon 2. When the proportion of synonymous substitution rate (dS) to non-synonymous

45、 substitution rate (dN) was calculated for peptide binding residues (PBR) or non-peptide binding residues (Non-PBR) of DAB I exon2, the dN/dS in PBR was 1.99 (p0.05), whereas the ratio in non-PBR was lower than 1, implying that positive selection was acting on the MHC II DAB I exon2 genes in the lit

46、tle egret. Analyses of molecular variance (AMOVA) based on allele distribution frequencies in different populations showed that Fst value was 0.19411(p0.0001), suggesting that there were significant population structure differentiation of MHC II DAB I exon2 genes in little egret.Key words: Egretta garzetta; major histocompatibility complex (MHC); genetic variation; evolution; phylogenetic; population structure13

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!