数控机床可控直流电源设计

上传人:沈*** 文档编号:202695835 上传时间:2023-04-23 格式:DOC 页数:17 大小:1.30MB
收藏 版权申诉 举报 下载
数控机床可控直流电源设计_第1页
第1页 / 共17页
数控机床可控直流电源设计_第2页
第2页 / 共17页
数控机床可控直流电源设计_第3页
第3页 / 共17页
资源描述:

《数控机床可控直流电源设计》由会员分享,可在线阅读,更多相关《数控机床可控直流电源设计(17页珍藏版)》请在装配图网上搜索。

1、一. 数控车床可控直流电源设计 二. 设计的目的本课程设计的任务是培养学生综合运用电力电子学、模拟电子技术和电机学所学知识分析、解决工程或科研实际问题的能力。其目的是巩固学生所学知识的同时,提高学生的专业素质,这对于工科学生贯彻工程思想起到十分重要的作用。在规定时间内通过分析任务书、查阅收集资料,充分发挥主动性与创造性,在老师的指导下联系实际、掌握正确的方法,理清思路,独立完成课程设计,撰写设计说明书,其格式和字数应符合规定。根据要求设计出实际可行的电路,并计算电路中所用元器件的参数,确定其规格型号;课程设计说明书要求整洁、完备、内容正确、概念清楚、文字通畅,并绘制出相应的电路图,符合规范。三

2、. 设计的任务及要求数控车床可控直流电源设计A 原始数据:P=7.5kW,Ued=220V,Ied=41.3A,n=1000r/min,Ra=0.65,LM=7mH,=1.5。B 设计内容及要求:a) 设计整流电路主电路。b) 设计变压器参数:U1,I1,U2,I2。要求考虑最小控制角min、电网电压波动、晶闸管管压降和变压器漏抗等因素计算变压器二次相电压值,附主要计算步骤。c) 整流元件参数的计算及选择:依据参数计算,正确选择器件型号,并附主要参数。d) 触发电路设计及主要参数的计算,同步电压的选择。e) 设计保护电路:正确选择电压、过流保护电路,简要说明选择依据;计算保护元件参数并选择保护

3、元件型号。f) 电抗器的参数设计四.具体的计算和选择过程 一.主电路的选择根据实验要求的原始数据,直流电机的功率P=7.5kW10KW,根据下表,从变压器利用率、直流侧脉动情况、元件利用率、直流磁化、波形畸变及各整流电路应用场合分析,选择单相全控桥式整流电路作为本数控机床可控直流电源设计的主电路。二 .整流变压器的设计及计算相关参数见下表相关参数表变压器二次侧电压有效值的计算 在不考虑最小控制角,电网电压波动,晶闸管管压降和变压器漏感等因素的理想情况时,直流端输出电压为:所以然而,由于整流器负载回路的电感足够大,所以变压器内阻及晶闸管通态压降可忽略不计。在计算整流变压器的参数时,还应考虑以下因

4、素:最小触发延迟角。在直流输出电压保持恒定的装置中,应能自动调节补偿。一般可逆系统的取,不可逆系统取。电网电压波动。根据规定,电网电压允许波动范围-10%+5%,考虑在电网电压最低时,仍能保证最大整流输出电压的要求,通常电压波动系数b=0.91.05。漏抗产生的换相压降。晶闸管或整流二极管的正向导通压降。二次相电压除受上述因素影响外,对电枢电压反馈的调速系统的整流变压器及对转速反馈的调速系统的整流变压器有不同的计算公式,考虑到本设计要求及所给参数,对上述两种情况进行简便计算,即式中 -变压器二次相电压(V);-电动机的额定电压(V),近似为245;b-电网电压波动系数,一般取b=0.901.0

5、5;整流电压计算系数;综上可知,=272。整流变压器二次相电流的计算二次相电流的计算=141.3=41.3式中 -二次相电流计算系数;-整流器额定直流电流(A), 因串联有电感=41.3。 -电动机额定电流(A);-整流器额定直流电流(A)。一次相电流的计算=0.811 =41.3式中 -二次相电流计算系数; -变压器的电压比 -市网电压220(V)。考虑到变压器自身的励磁电流时,应乘以1.05左右的系数。=41.31.05=43.4。k220V272V43.4A41.3A1变压器容量的计算一次容量=9086二次容量=9086平均总容量=9086式中 -变压器一二次侧相数。 -一次相电流计算系

6、数; -整流器空载电压; -二次相电流计算系数; -整流电压计算系数。.晶闸管的选择额定电压的选择额定电压选择应考虑下列因素。分析电路运行时晶闸管可能承受的最大电压值。考虑到实际情况,系统应留有足够的裕量。通常可考虑23倍的安全裕量。可按下列值计算,即=962式中-晶闸管可能承受的电压最大值(V)。当整流器的输入电压和整流器的连接方式确定后,整流器的输入电压和晶闸管可能承受的最大电压有固定关系,常采用查计算系数表的方法来选择计算,即=962式中 -晶闸管的电压计算系数; -整流变压器二次相电压(V)。额定电流的选择晶闸管是一种过载能力较小的元件,选择额定电流时,应留有足够的裕量,通常考虑选择倍

7、的安全裕量。通用计算式,即 式中 -流过晶闸管的最大电流有效值(A)。实际计算中,常常是负载的平均电压已知,整流器连接方式已经确定,即流经晶闸管的最大电流有效值和负载平均电流有固定的关系。这样通过查对应系数可使计算过程简化。当整流电路电抗足够大且整流电流连续时,可用下述经验公式近似估算晶闸管额定通态平均电流。=20.45=37.2式中 -晶闸管电流计算系数; -整流器输出最大平均电流(A),因负载侧串联平波电抗器,电流近似恒定,故。故晶闸管选用KP系列的晶闸管,其主要参数为额定电流50A额定电压100-2400V触发电流150mA四.触发电路的设计.触发电路的选择:TCA785是德国西门子(S

8、iemens)公司于1988年前后开发的第三代晶闸管单片移相触发集成电路,它是取代TCA780及TCA780D的更新换代产品,其引脚排列与TCA780、TCA780D和国产的KJ785完全相同,因此可以互换。目前,它在国内变流行业中已广泛应用。与原有的KJ系列或KC系列晶闸管移相触发电路相比,它对零点的识别更加可靠,输出脉冲的齐整度更好,而移相范围更宽,且由于它输出脉冲的宽度可人为自由调节,所以适用范围较广。.触发电路芯片的介绍:TCA785是双列直插式16引脚大规模集成电路。它的引脚排列如图1所示。图1 TCA785的引脚排列各引脚的名称、功能及用法如下: 引脚16(VS):电源端。使用中直

9、接接用户为该集成电路工作提供的工作电源正端。 引脚1(OS):接地端。应用中与直流电源VS、同步电压VSYNC及移相控制信号V11的地端相连接。 引脚4(Q1)和2(Q2):输出脉冲1与2的非端。该两端可输出宽度变化的脉冲信号,其相位互差180,两路脉冲的宽度均受非脉冲宽度控制端引脚13(L)的控制。它们的高电平最高幅值为电源电压VS,允许最大负载电流为10mA。若该两端输出脉冲在系统中不用时,电路自身结构允许其开路。 引脚14(Q1)和15(Q2):输出脉冲1和2端。该两端也可输出宽度变化的脉冲,相位同样互差180,脉冲宽度受它们的脉宽控制端引脚12(C12)的控制。两路脉冲输出高电平的最高

10、幅值为5VS。 引脚13(L):非输出脉冲宽度控制端。该端允许施加电平的范围为-0.5V5VS,当该端接地时,Q1、Q2为最宽脉冲输出,而当该端接电源电压VS时,Q1、Q2为最窄脉冲输出。 引脚12(C12):输出Q1、Q2脉宽控制端。应用中,通过一电容接地,电容C12的电容量范围为1504700pF,当C12在1501000pF范围内变化时,Q1、Q2输出脉冲的宽度亦在变化,该两端输出窄脉冲的最窄宽度为100s,而输出宽脉冲的最宽宽度为2000s。 引脚11(V11):输出脉冲Q1、Q2或Q1、Q2移相控制直流电压输入端。应用中,通过输入电阻接用户控制电路输出,当TCA785工作于50Hz,

11、且自身工作电源电压Vs为15V时,则该电阻的典型值为15k,移相控制电压V11的有效范围为0.2V2V,当其在此范围内连续变化时,输出脉冲Q1、Q2及Q1,Q2的相位便在整个移相范围内变化,其触发脉冲出现的时刻为: 式中R9、C10、VREF分别为连接到TCA785引脚9的电阻、引脚10的电容及引脚8输出的基准电压;K常数。 为降低干扰,应用中引脚11通过0.1F的电容接地,通过2.2F的电容接正电源。 引脚10(C10):外接锯齿波电容连接端。C10的实用范围为500pF1F。该电容的最小充电电流为10A。最大充电电流为1mA,它的大小受连接于引脚9的电阻R9控制,C11两端锯齿波的最高峰值

12、为VS-2V,其典型后沿下降时间为80s。 引脚9(R9):锯齿波电阻连接端。该端的电阻R9决定着C10的充电电流,其充电电流可按下式计算:I10=VREFK/R9连接于引脚9的电阻亦决定了引脚10锯齿波电压幅度的高低,锯齿波幅值为: V10=VREFK/(R9C10),电阻R9的应用范围为3300。 引脚8(VREF):TCA785自身输出的高稳定基准电压端。负载能力为驱动10块CMOS集成电路,随着TCA785应用的工作电源电压VS及其输出脉冲频率的不同,VREF的变化范围为2.83.4V,当TCA785应用的工作电源电压为15V,输出脉冲频率为50Hz时,VREF的典型值为3.1V,如用

13、户电路中不需要应用VREF,则该端可以开路。 引脚7(QZ)和3(QV):TCA785输出的两个逻辑脉冲信号端。其高电平脉冲幅值最大为VS-2V,高电平最大负载能力为10mA。QZ为窄脉冲信号,它的频率为输出脉冲Q2与Q1或Q1与Q2的两倍,是Q1与Q2或Q1与Q2的或信号,QV为宽脉冲信号,它的宽度为移相控制角+180,它与Q1、Q2或Q1、Q2同步,频率与Q1、Q2或Q1、Q2相同,该两逻辑脉冲信号可用来提供给用户的控制电路作为同步信号或其它用途的信号,不用时可开路。 引脚6(I):脉冲信号禁止端。该端的作用是封锁Q1、Q2及Q1、Q2的输出脉冲,该端通常通过阻值10的电阻接地或接正电源,

14、允许施加的电压范围为-0.5VVS,当该端通过电阻接地,且该端电压低于2.5V时,则封锁功能起作用,输出脉冲被封锁。而该端通过电阻接正电源,且该端电压高于4V时,则封锁功能不起作用。该端允许低电平最大灌电流为0.2mA,高电平最大拉电流为0.8mA。 引脚5(VSYNC):同步电压输入端。应用中需对地端接两个正反向并联的限幅二极管,该端吸取的电流为20200A,随着该端与同步电源之间所接的电阻阻值的不同,同步电压可以取不同的值,当所接电阻为200k时,同步电压可直接取AC220V。(2)基本设计特点 TCA785的基本设计特点有:能可靠地对同步交流电源的过零点进行识别,因而可方便地用作过零触发

15、而构成零点开关;它具有宽的应用范围,可用来触发普通晶闸管、快速晶闸管、双向晶闸管及作为功率晶体管的控制脉冲,故可用于由这些电力电子器件组成的单管斩波、单相半波、半控桥、全控桥或三相半控、全控整流电路及单相或三相逆变系统或其它拓扑结构电路的变流系统;它的输入、输出与CMOS及TTL电平兼容,具有较宽的应用电压范围和较大的负载驱动能力,每路可直接输出250mA的驱动电流;其电路结构决定了自身锯齿波电压的范围较宽,对环境温度的适应性较强,可应用于较宽的环境温度范围(-25+85C)和工作电源电压范围(-0.5+18V)。 (3)极限参数 电源电压:+818V或49V; 移相电压范围:0.2VVS-2

16、V; 输出脉冲最大宽度:180; 最高工作频率:10500Hz;高电平脉冲负载电流:400mA;低电平允许最大灌电流:250mA; 输出脉冲高、低电平幅值分别为VS和0.3V; 同步电压随限流电阻不同可为任意值; 最高工作频率:10500Hz; 工作温度范围:军品 -55+125,工业品 -25+85,民品 0+70。(4) TCA785锯齿波移相触发电路由于TCA785自身的优良性能,决定了它可以方便地用于主电路为单个晶闸管或晶体管,单相半控桥、全控桥和三相半控桥、全控桥及其它主电路形式的电力电子设备中触发晶闸管或晶体管,进而实现用户需要的整流、调压、交直流调速、及直流输电等目的。西门子TC

17、A785触发电路,它对零点的识别可靠,输出脉冲的齐整度好,移相范围宽;同时它输出脉冲的宽度可人为自由调节。西门子TCA785外围电路如图2 所示。图2 TCA785锯齿波移相触发电路原理图(5) 同步电压的选择锯齿波斜率由电位器RP1 调节,RP2 电位器调节晶闸管的触发角。交流电源采用同步变压器提供,同步变压器与整流变压器为同一输入,根据TCA785能可靠地对同步交流电源的过零点进行识别,从而可保证触发脉冲与晶闸管的阳极电压保持同步。同步变压器的变比选为K=220/15=44/314。五. 保护电路的设计及计算电力电子器件以及主电路的保护大致分为两种:过流保护和过压保护。过流保护过流保护电路

18、的选择电力电子电路运行不正常或发生故障时,可能发生过电流,其中采用快速熔断器是一种是一种常用的措施,其快速性与有效性都可以满足对电子线路保护的要求。快速熔断器的保护方式可以分为全保护和短路保护。全保护是指不论过载还是短路均由快熔进行保护。此方式只适用于小功率装置或器件裕量较大的场合。短路保护方式是指只在短路电流较大的区域起保护的作用。为了安全可靠的保护电子线路,故此过流保护电路选择全保护方式。其电路图如下:快熔式保护过流电路过流保护电流参数的计算 快速熔断器的额定电压应大于线路正常工作电压的有效值,即=272快速熔断器熔体的额定电流(有效值)应大于等于被保护晶闸管额定电流。若熔断器与桥臂晶闸管

19、串连时,熔体的额定电流可按下式计算,即式中 -被保护晶闸管额定电流(A); -快速熔断器熔体的额定电流(A); -实际流过晶闸管的最大电流有效值(A)。由于晶闸管额定电流在选择时已经考虑了安全裕量为,因此通常按下式选择,即=41.3。根据以上参数,可选熔断体的型号为:额定电压额定电流5002-63过压保护压保护电路的选择阻容吸收保护。阻容吸收保护电路通常采用电阻R和电容C的串联支路,并联在变压器二次侧进行保护,常见接法见下图所示。交流侧的阻容吸收保护压保护电路的参数计算对于单相回路电容C的估算式0.02F电容的耐压值大于或等于,为电压峰值。电阻R的估算式=18728式中 -变压器的容量(kVA

20、); -变压器二次相电压有效值(V); -变压器励磁电流的百分比,取0.03。 -变压器的短路比,取0.03。所以选择电容、电阻为:0.02、19 六.电抗器的选择为了克服整流器输出的电流断续以及减少电流的脉动和延长晶闸管的导通时间,电路中串入了一个平波电抗器L。为保证电流的连续,电感必须要足够的大。为保证电流连续所需的电感量L可由下式求出:=0.02五.总结不得不说,这次电力电子的课程设计使我受益匪浅。通过平常在课堂上的学习,我们对这个电路在理论上已经有了非常充分的了解,课题看起来貌似也不难。但通过这几天的设计,我深深的感悟到理论与实际相结合的重要性,光具有理论知识是远远不够的,只要在亲自动

21、手操作的过程中,在不断发现问题再改正问题的过程中,我们才能收获知识,得到进步。 此次的设计过程中,我更进一步地熟悉了单相桥式整流电路的原理以及触发电路的设计。当然,在这个过程中我也遇到了困难,通过查阅资料,相互讨论,我准确地找出错误所在并及时纠正了,这也是我最大的收获,使自己的实践能力有了进一步的提高。另外,通过这次课程设计使我懂得了只有理论知识是远远不够的,还必须把所学的理论知识与实践相结合起来,从理论中得出结论,从而提高自己的实际动手能力和独立思考的能力六参考文献1 王兆安,刘进军主编. 电力电子技术(第5版).北京:机械工业出版社,20092 殷刚,王涌泉主编. 电力电子技术 北京理工大学出版社,2012.123 刘志刚 叶斌 梁晖 电力电子学 清华大学出版社 北京交通大学出版社 20044 赵光林 常用电子元器件 识别/检测/选用一读通 电子工业出版社 20075 张宪 王春娴 电子元器件的选用与检测问答 化学工学出版社 2006

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!