新型多路数控增益放大器

上传人:gao****ang 文档编号:201706366 上传时间:2023-04-20 格式:DOCX 页数:10 大小:294.50KB
收藏 版权申诉 举报 下载
新型多路数控增益放大器_第1页
第1页 / 共10页
新型多路数控增益放大器_第2页
第2页 / 共10页
新型多路数控增益放大器_第3页
第3页 / 共10页
资源描述:

《新型多路数控增益放大器》由会员分享,可在线阅读,更多相关《新型多路数控增益放大器(10页珍藏版)》请在装配图网上搜索。

1、新型多路数控增益放大器信息来源: 维库开发网 发布时间:2009 年12月 30日在数字与模拟接口电路中,通常采用放大器和多路开关来完成信号的放大与通道 的选择,常用芯片有LF147、CA3140等,多诵道选择开关有AD7501等。目前尚没有具 有多路放大的专用模拟接口芯片。采用传统的技术方案用做A/D转换器前端接口电路,需 要对放大器电路讲行增益调节,改变增益控制电阻的阻值达到放大量的变化,当遇到具有+ /-极性的输入信号时,处理起来更加繁锁。另外,在小信号的状态下,如采用常用的8位 A / D转换器,一个5 V(满量程)的输入信号的分辨率为1 / 256, 个2.5 V输入信号通过 放大至

2、满量程后,它的分辨率将提高1倍,一个小于1 / 256信号如直接采用A / D转换器, 该信号则已无分辨率可言。这样必需通过放大器进行预放大。开发研制的基于微组装工艺的集成化高精度多路数控增益放大器(型号为 DG8256),是用MCM(多芯片组装)技术实现的。在极性处理方面采用绝对值电路使得输出 信号为正值,采用8位A/D转换器时,对小信号均可通过数字控制的方法进行256级增 益控制,从而实现了高精度的连续放大。低频高精度A/D转换器的理想前级,放大器具有 8个通道的信号输入。基于MCM技术的多路数控增益放大器体积小、重量轻,适用于小型 微机处理系统中模拟接口电路,而且放大器具有良好的温度特性

3、,适用于军事、商业、工业、 民用领域。1 主要技术参数开发该接口模块源于某雷达发射设备的控制与保护电路的研制。电路需要模拟接 口电路,与以往的雷达发射机控制与保护电路不同的是对体积要求更高,要求在很小的体积 下完成复杂的信号采样与控制。这就启发了我们开发研制该模块。模块具备8个通道信号 输入,每个通道的信号具有正负信号输入能力,模块末级输出为正值输出,通道选择采用 TTL信号控制,信号具有增益可控的能力,增益控制采用TTL电平控制。模块的主要技术 参数如下:a)供电电源:12 V;b)输入信号幅度:-5 V+5 V;c)输入通道数:3位数控(S0S2),8通道信号输入(Vin0Vin7);d)

4、输出信号幅度:0+5 V;e)输入信号频率:25 kHz;f)放大可控增益:-16 dB+16 dB;g)放大器线性度:2%;h)增益调节:8位数控(G0G7),256级线性;i)输入阻抗:510 kQ;j)输出电流:2 mA;k)工作温度:-55C+85 C;l)封装:DIP(双列直插式封装)24脚;m)外型尺寸:长X宽X高为33 mmx21 mmx6.0 mm:n)镀金引脚:引脚长5 mm。2 功能特性与电路原理2.1 功能特性多路数控增益放大器是对-5 V+5 V的模拟信号进行可控放大,取绝对值输出的模拟接口模块。模块有8 个输入通道,通过数字量控制,可任选其中一路进行输入。有8 位增益

5、控制端子,对输入的信号按照要求进行放大,模块设计的绝对值处理电路将输入信号 进行绝对值处理,具有绝对值极性判别输出端子。模块的主要功能特性如下:a)输人多通道选择功能:8通道选择输入,其中一路作为有效输入信号,采用TTL 电平数控。b)绝对值输出功能:对输入信号,模块将其转换为绝对值输出,提供极性TTL电 平极性判别输出(+-)端子(“1”为正模拟量, “0”为负模拟量)。c)线性放大功能:模块对输入信号进行线性放大,增益范围为-16 dB+16 dB。d)增益数控功能:增益选择通过TTL电平数控选择,选择增益步进为(32/ 2560.125)dB。e)高输入阻抗:输入阻抗510 kQ。f)大

6、输出电流:输出电流12 mA。2.2 电路原理 多路数控增益放大器原理是基于多芯片的电路原理设计,功能电路分为多路选择 电路、中间级射随器电路、绝对值电路、增益控制电路、电源电路、末级射随器电路。其原 理框图如图1所示。多路模拟开关采用CD4051芯片,有8路模拟量输入信号,芯片供电为+/-5 V 电源供电, 3路数字量控制信号进行通道选择, CD4051 为高速的模拟多路开关芯片,可以 满足高速条件下的数据切换。在选择信号入口接有3只5.1 kQ的下拉电阻。通道选择真值 表如表 1 所示。1通道选择JK值贏序号通逋S251SOIVinQ0002Vini003Vin2010AVin30115V

7、in41006Vin51017Virv61I08Vin7J1中间级射随器电路使电路输出阻抗合理匹配,提高了电路电源输出的能力,并提 高了模块的抗干扰能力。绝对值电路为有极性的输入信号时,通过运放电路进行转换使其按 1:1 输出,但输出信号均为正值,同时,输出极性判别信号,当输入信号为负值时,极性 判别信号为“0”,当输入信号为正值时,极性判别信号为“1”。增益控制采用了一级运算放大器加上加权的反馈放大电阻构成,放大系数由加权 电阻的阻值决定,加权电阻的阻值大小取决于选通的单个开关,一个开关的选择决定了整个 加权电阻的阻值。电阻采用精密电阻,电阻精度小于0.1%。8个电阻通过开关形成加权值, 这

8、 8 个电阻的阻值分别为 240Q、480Q、960Q、1.92 kQ、3.84 kQ、7.68 kQ、15.36 kQ、 30.72 kQ,最大加权值为60.2kQ,开关的关断内阻加权值为186kQ,实际加权电阻(定义标 识符为R2)的值为45.5 kQ,运算放大器部分采用负反馈,输入端电阻(定义标识符为R1) 的值为9.56 kQ,可得最大放大倍数近似为:当开关导通时,导通加权电阻34 Q,最小放大倍数为:= 0036电源电路采用MC7906和MC7806两只稳压管,分别形成+6 V和-6 V的电源, 供内部开关和运算放大器使用。末级射随器电路可提高信号输出能力,也能更好地实现阻抗 匹配,

9、同时提高模块的抗干扰能力。2.3输人、输出接口模块采用 DIP 24脚金属外壳封装型式,其引脚分布如图2所示。a)模拟量输入接口: VinOVin7为8路模拟量输入。b)选择控制接口: SOS2为选择控制接口输入,其电气接口特性为TTL电平。c)增益控制接口: GOG7为8路增益控制接口输入,其电气接口特性为TTL电 平;其结构布置图见图2。d)电源接口: VDD为+12 V电源输入,VSS为-12 V电源输入,GND为供电电源 与输出信号接口信号地。e)输出接口: Vout为模拟量输出接口,其输出范围为0+5 V; +/-为极性指示 输出接口,高电平(即“1”)表征输入信号为正模拟量,低电平

10、(即“0”)表征输入信号为负模拟量3 结构与工艺放大器采用小型金属壳体封装,结构小。放大器的结构外形如图3 所示,具体尺寸如表 2 所示。H尺寸轄号数值/中仞扯小 公称 SS控增益放大器外恶尺寸15.242用-3(NN放大器采用先进的MCM技术,即将多个IC芯片与多个高精度电阻组装在 LTCC(低温共烧陶瓷)多层互联基板上,然后封装在同一金属外壳中。所以放大器是多层布 线基板技术、多层布线互联技术、表面安装技术、微型元器件及裸芯片贴装技术的综合。LTCC的生瓷带下料可用热刀或激光,下料后的生瓷带必须尽快使用;生瓷带打 孔主要有钻孔、冲孔和邀光扛孔等3种方法,通孑L直径应小于1.0 mm而大于0

11、.5 mm, 并且通孔距基板边缘的距离应大于0.635 mm。通孔填充是制造LTCC基板的关键工艺之一, 其质量的好坏直接决定了 LTCC基板的性能,而且烧结后通孔部分下陷,会影响后道工序 中外贴元器件的组装及组件封装,所以一定要保证通孔填充饱满。印刷完后,应用显微镜检 查通孔质量,对没有填充好的通孔进行修补。生胚片之间的精确对位对于保证LTCC多层 基板的电气性能是非常重要的,包括印刷时丝网与生瓷带之间的对位和叠层时生瓷带同生瓷 带间的对位。影响对位精度的主要因素有打孔精度误差、照相制版精度误差、印刷机手动调节对位视觉误差,其中最关键的是印刷定位精度。目前布线密度达到线宽0.20 mm、线间

12、 距0.20 mm、孔径卩0.30 mm、孔中心距0.60 mm,共8层导体。芯片采用环氧胶粘接的 方法固定在 LTCC 多层基板上,键合方式主要采用热压焊工艺。4 性能测试4.1 电特性 多路数控增益放大器的电特性如表3 所示。*3装踣败控瑞益池氏器电特性符号数据最小値嚴大值电MVDD+ 17412.3117VSS12.3DD亠50电 ift/mAISS-50GND-输人模拟VitiD-麹率DC Y kflz-5.0+ 5.0信号八Virt7通磴选择 控制SO-52TTL电平增益选择GO*G7TIL电平模拟辅出 信号八Vmu親率DCY kHz05.5板性判别 倍号+/ -高低堪平4.2测试框

13、图多路数控增益放大器测试框图如图4 所示。放大器由外部电源供电,供电电源参 照电特性提供12 V/ 50 mA的供电,由信号发生器提供放大器的输入信号电压以及测试所 需要的输入波形。输出信号由示波器进行波形测试,通过万用表测试输出电压值,选通开关和增益控制开关进行通道选择与增益控制。国4窖路数控增益放丸器壽试榕图图参踣數控增益族大器测试波形4.3 测试结果按照图4连接好多路数控增益放大器。信号发生器输入波形为正弦波时,图5(a) 测出了输出端的信号波形,该波形为频率加位的半正弦波;图5(b)测出了极性判别输出端的 信号波形,该波形为矩形波。采用万用表测试输出端电压,在不同输入电压下得出一系列输

14、出值,根据输入、 输出测量值,得出了输出在不同输入电压下的增益控制关系,见图6图9。“ SO IW ISO 200 IM 3WBE?输出網度与増益控制关M( +0.5 VW IDO IW 3W 33G Job 睛搭控第住图右 输出幡度与增益控制关-0.5 V)为了节省篇幅,仅给出0.5 V和5 V输入电压下的测试数据加以说明。由图6、图7 可以看出:输出电压与控制位是线性的;放大器具有良好的绝对值特性;可控最大放大倍数 约为16 dB(0xFF时)。由图&图9可以看出:输出电压最大值控制在5 V以内;放大器具 有良好的绝对值特性;输出电压最小缩小系数为小于-16 dB(0X00时)。j IU

15、20 5UW 60 血懵益竝解位图?輸出幅厦与増益控制+F V)0 W 20 5Ti 405060堆栽控制位图8输出幅度与増益控-5 V)5 放大器应用5.1 控制与保护系统硬件配置中的应用 该模块在小型控制设备中可以发挥极重要作用,本文以某机载雷达发射机控制与 保护系统为例介绍该模块的应用。雷达发射机的控制与保护需要对多项模拟参数进行数据采 集,如发射机行波管阴极高压、收集极电压、阳极电压、管体电流等参数。在CPU中进行 处理后,判断发射机工作是否正常。图10 给出发射机的控制保护原理图。ffiW控制与保护杀统潦理AD楓i開聲电味 牧篇餐吧一出r啟样 一供|日电出-一扎电用取祥CTLD在该电

16、路中,系统除了多路数控增益放大器外,还配置了 CPLD(可编程逻辑控制 器)、AD7820、通信接口以及复位电路。MD87C51是该电路控制CPU,通过放大器采集 来的数据由CPU加以处理判断,CPU通过CPLD控制放大器通道选择与增益。5.2控制与保护系统软件设计中的应用放大器应用于控制与保护系统中的软件设计的关键是设计好放大器的通道选择与 增益控制。在下面的软件程序中,仅列举了与放大器相关的部分,在主程序中仅调用了 AD 取样子程序。程序分为多个子程序进行设计,本文中列举了与多路数控增益放大相关的AD 采样子程序。Sinclude FFF 峯路选择地址voad main()| vhO)|

17、A07&20(); |Md AD782O()unsigned char SAMNUM - 0;ujiained char NUMBER 匸 0;unsigned char VALUES =0;unsigned char SAMVAL5;FLCON= - D ALT A SAMPNO ; AM A DD = S A M EO ;5AMVAL0 s AL!ADD;SAMVALI = AD ADD;5AMVAL2 = ADADD;5AMVAL3 =ADADD;5AMVALf4 = ADADDi/ *连续读5次出校观中値* /NUMBER =O;SAMIVIJM = t;/* 逐项比较 * /Aqdo

18、 I if (SAM V AL NUMBER = SAMVALSAMNUM)J VALUES - SAMVAL NUMBER;SAMVALML MBER - SAM VAL SAMNllM; SAMVALSAMNUM - VALUES; j| whik( SAM MJ M + + -3);5AMNUM = NUMBER + I ;| whilef NUMBER + + =8)SAMP(J6 结束语 该模块已在多部雷达发射机上使用,性能良好。模块已经过高低温贮存、高低温 工作、振动和冲击等环境试验的考验,并已通过DPA(破坏性物理分析)检测。多路数控增益 放大器模块可应用于军用和民用模拟、数字接口电路,其特点是体积小、可靠性高、多路实 时在线选择、通道增益实时在线数字控制,尤其适用于航空设备控制领域,该模块在机载电 子装备中具有广泛的应用前景。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!