数字三极管行业概况

上传人:陈****2 文档编号:198904890 上传时间:2023-04-10 格式:DOCX 页数:20 大小:28.98KB
收藏 版权申诉 举报 下载
数字三极管行业概况_第1页
第1页 / 共20页
数字三极管行业概况_第2页
第2页 / 共20页
数字三极管行业概况_第3页
第3页 / 共20页
资源描述:

《数字三极管行业概况》由会员分享,可在线阅读,更多相关《数字三极管行业概况(20页珍藏版)》请在装配图网上搜索。

1、数字三极管行业概况一、 数字三极管行业概况与普通三极管相比,数字三极管是将三极管和一个或两个偏置电阻R1和R2集成在同一款芯片上,类同于小规模集成电路。数字三极管的R1电阻主要用来稳定三极管的工作状态,R2电阻主要用来吸收降低输入端的漏电流和噪声,电阻R1和R2有不同的阻值搭配,形成了丰富的产品组合。数字三极管以中小功率为主,当前市场上主流数字三极管产品的最大输出电流为500mA。数字三极管技术发展的趋势是芯片尺寸向小型化方向发展,产品的输出电流不断增大,电阻要求更加精准,同时增加R1和R2的电阻组合,以满足客户使用时不同输入电压和电流的要求。数字三极管使用方便,同时可以节省外围使用电路的空间

2、,在手机等对内部空间要求比较严格的电子产品中应用广泛。手机等移动终端对空间要求较高,为了节省空间,在电路设计时将更多选择将电阻集成在三极管内部,因此,随着手机等移动终端的发展,数字三极管的市场需求将越来越大。据公开资料显示,2019年全球包括三极管、MOSFET和IGBT在内整个晶体管市场规模约为13827亿美元,2020年则为14788亿美元,同比增长695%。从竞争格局看,数字三极管国内市场参与者主要包括燕东微、日本Phenitec、杭州友旺电子等,市场格局相对固定。二、 半导体行业光刻胶:半导体工艺核心材料,道阻且长光刻胶是光刻工艺最重要的耗材。光刻胶是一种通过特定光源照射下发生局部溶解

3、度变化的光敏材料,主要作用于光刻环节,承担着将掩模上的图案转化到晶圆的重要功能。进行光刻时,硅片上的金属层涂抹光刻胶,掩膜上印有预先设计好的电路图案,光线透过掩膜照射光刻胶。如果曝光在紫外线下的光刻胶变为溶剂,清除后留下掩膜上的图案,此为正性胶,反之为负性胶。光刻胶可以根据曝光光源波长、显示效果和化学结构三种方式进行分类。根据曝光波长的不同,目前市场上应用较多的光刻胶可分为g线、i线、KrF、ArF和EUV5种类型。光刻胶波长越短,加工分辨率越高,不同的集成电路工艺在光刻中对应使用不同波长的光源。随着芯片制程的不断进步,每一代新的光刻工艺都需要新一代的光刻胶技术与之相匹配。g/i线光刻胶诞生于

4、20世纪80年代,当时主流制程工艺在08-12m,适用于波长436nm的光刻光源。到了90年代,制程进步到035-05m,对应波长更短的365nm光源。当制程发展到035m以下时,g/i线光刻胶已经无法制程工艺的需求,于是出现了适用于248纳米波长光源的KrF光刻胶,和193纳米波长光源的ArF光刻胶,两者均是深紫外光刻胶。EUV(极紫外光)是目前最先进的光刻胶技术,适用波长为135nm的紫外光,可用于10nm以下的先进制程,目前仅有ASML集团掌握EUV光刻胶所对应的光刻机技术。根据显示效果的不同,光刻胶可分为正性和负性。如果光刻胶是正性的,在特定光线照射下光刻胶会发生反应并变成溶剂,曝光部

5、分的光刻胶可以被清除。如果为负性光刻胶,曝光的光刻胶反应不再是溶剂,未曝光的光刻胶被清除。光分解型光刻胶采用含有重氮醌类化合物材料作为感光剂,光线照射后发生光分解反应,由油性变为水性溶剂,可制造正性光刻胶。光交联型光刻胶采用聚乙烯醇月桂酸酯作为光敏材料,光线照射后形成一种网状结构的不溶物,可起到抗蚀作用,适用于制成负性光刻胶。化学放大型光刻胶使用光致酸剂作为光引发剂,光线照射后,曝光区域的光致酸剂会产生一种酸,并在后热烘培工序期间作为催化剂移除树脂的保护基团,使树脂变得可溶。化学放大光刻胶对深紫外光源具有良好的光敏性,具有高对比度、分辨率等优点。半导体光刻胶市场增速稳定。伴随芯片制程工艺的升级

6、,光刻胶市场需求量也随之增加。根据TECHECT数据,2021年全球光刻胶市场规模约为19亿美元,同比增长11%,预计2022年将达到2134亿美元,同比增长1232%。具体来看,在7nm制程的EUV技术成熟之前,ArFi光刻胶仍是市场主流,占比高达368%,KrF和g/i光刻胶分别占比为358%和147%。三、 半导体硅片要求高,多重因素构筑行业壁垒半导体硅片壁垒较高,主要体现在技术、资金、人才、客户认证等方面。1)技术壁垒:半导体硅片行业是一个技术高度密集型行业,主要体现在:硅片尺寸越大,拉单晶难度越高,对温度控制和旋转速度要求越高;减少半导体硅片晶体缺陷、表面颗粒和杂质;提高半导体硅片表

7、面平整度、应力和机械强度等方面。2)资金壁垒:半导体硅片行业是一个资金密集型行业,要形成规模化、商业化生产,所需投资规模巨大,如一台关键设备价值达数千万元。3)人才壁垒:半导体硅片的研发和生产过程较为复杂,涉及固体物理、量子力学、热力学、化学等多学科领域交叉。4)认证壁垒:鉴于半导体芯片的高精密性和高技术性,芯片生产企业对应半导体硅片的质量要求极高,因此对于半导体硅片供应商的选择相当谨慎,并设有严格的认证标准和程序。前五大制造商格局稳定,外资垄断现象持续。据SEMI数据,2020年全球前五大硅片制造商分别为日本信越化学、环球晶圆、德国世创、SUMCO和韩国SKSiltron,共占据866%的市

8、场份额。国内市场在大尺寸硅片上对外资企业依然具有依赖性,主要进口地区为日本、中国台湾和韩国。国产厂商加大研发投入,加速实现。由于硅片供应紧缺,海外大厂会优先保障海外晶圆厂硅片供给,给国内硅片厂带来了加速替代的机遇。国内供应商产品技术水平快速提升,国内晶圆厂对国产半导体材料的验证及导入正在加快,如沪硅产业、立昂微、中环股份等企业已顺利通过验证。中国大陆硅片整体产能加大投入,加速追赶国际龙头厂商。四、 半导体材料为芯片之基,覆盖工艺全流程半导体材料包括晶圆制造材料和封装材料。其中晶圆制造材料包括硅片、掩模版、电子气体、光刻胶、CMP抛光材料、湿电子化学品、靶材等,封装材料包括封装基板、引线框架、键

9、合丝、包封材料、陶瓷基板、芯片粘结材料和其他封装材料。具体来说,在芯片制造过程中,硅晶圆环节会用到硅片;清洗环节会用到高纯特气和高纯试剂;沉积环节会用到靶材;涂胶环节会用到光刻胶;曝光环节会用到掩模板;显影、刻蚀、去胶环节均会用到高纯试剂,刻蚀环节还会用到高纯特气;薄膜生长环节会用到前驱体和靶材;研磨抛光环节会用到抛光液和抛光垫。在芯片封装过程中,贴片环节会用到封装基板和引线框架;引线键合环节会用到键合丝;模塑环节会用到硅微粉和塑封料;电镀环节会用到锡球。五、 半导体行业全球市场空间超50亿美元,国内增速更快受益于三大下游市场扩容,湿电子化学品需求量有望实现稳定增速。近年来,半导体、显示面板、

10、光伏三大板块下游市场规模不断扩大,产业迎来高速发展,带动湿电子化学品市场规模平稳增长。据智研咨询数据,2020年全球湿电子化学品市场规模为5084亿美元,受疫情影响略有下滑。国内湿电子化学品市场规模于2020年达到1006亿元,同比增长92%。中低端领域国产转化率较高,产业升级主要面向G4-G5级产品。国际半导体设备和材料组织(SEMI)于1975年制定了国际统一的湿电子化学品杂质含量标准。该标准下,产品级别越高,所对应的集成电路加工工艺精细度程度越高,制程越先进。半导体领域对湿电子化学品的纯度要求较高,集中在G3、G4级水平,且晶圆尺寸越大对纯度的要求越高,12英寸晶圆制造一般要求G4级以上

11、水平。目前国外主流湿电子化学品企业已实现G5级标准化产品的量产。国内市场半导体领域的湿电子化学品,G2、G3级中低端产品进口转化率高,因为此技术范围内国产产品本土化生产、性价比高、供应稳定等优势较为突出。G4、G5级高端产品仍有较大进口替代空间,为未来主要升级方向。集成电路对超净高纯试剂纯度的要求非常高。按照SEMI等级的分类,G1级属于低档产品,G2级属于中低档产品,G3级属于中高档产品,G4和G5级则属于高档产品。集成电路用超高纯试剂的纯度要求基本集中在G3、G4级水平,中国的研发水平与国际仍存在较大差距。湿电子化学品技术制造复杂,且品类众多,每种产品的制备要求各不相同,无法设计加工通用设

12、备。企业必须根据不同品种的特性来确定适合的工艺路径,设计加工所需的设备,因此显著提升了制造成本和供应难度。研发能力及技术积累。湿电子化学品的生产技术包括混配技术、分离技术、纯化技术以及与其生产相配套的分析检验技术、环境处理与监测技术等。以上技术都需要企业具备研发能力和一定的技术积累。同时,下游产品的生产工艺和专用性需求不尽相同,这需要企业有较强的配套能力和一定的时间去掌握核心的配方工艺以满足不同产品的需求。国内湿电子化学品市场百舸争流。由于进入壁垒相对较低,我国湿电子化学品制造企业众多,约有40余家。其中,以江化微和格林达为首的湿电子化学品专业制造商,主要产品集中在湿电子化学品,产品种类丰富且

13、毛利率高;以晶瑞电材和飞凯材料为代表的综合型微电子材料制造商,涉及领域更广,客户体量相对较大。此外还有例如巨化股份等大型化工企业,湿电子化学品类产品营收占比较少,具有原材料方面的优势。目前国内制造商产能主要集中在G3、G4级领域,多数已开始布局G5级产品产线,预计在2022年实现逐步放量。但目前相较于国际主流公司,国内企业产量较小。电子特种气体又称电子特气,是电子气体的一个分支,相较于传统工业气体,纯度更高,其中一些具有特殊用途。电子特气下游应用广泛,是集成电路、显示面板、太阳能电池等行业不可或缺的支撑性材料。在半导体领域,电子特气的纯度直接影响IC芯片的集成度、性能和良品率,在清洗、气相沉积

14、成膜(CVD)、光刻、刻蚀、离子注入等半导体工艺环节中都扮演着重要的角色。电子特气可以根据其化学成分本身和用途的不同进行分类。根据化学成分的不同,电子特气可分为氟系、硅系、硼系、锗系氧化物和氢化物等几大类别。半导体市场发展迅速,为上游电子特气市场打开成长空间。根据SEMI数据,在晶圆材料328亿美元的市场份额中,电子特气占比达13%,43亿美元,是仅次于硅片的第二大材料领域。近年来,伴随下游晶圆厂的加速扩张,特气市场景气度向好,需求量有望持续扩容。根据SEMI数据,2020年全球晶圆制造电子气体市场规模为437亿美元。在全球产业链向国内转移的趋势下,中国电子特气市场规模在过去十年快速增长,20

15、20年达到了1736亿元。特气市场毛利率高、盈利能力强。在各半导体材料领域中,电子特气公司的平均毛利率处于较高水平。对比半导体产业链来看,晶圆厂的盈利能力最强,例如世界最大晶圆代工厂台积电的毛利率为516%,国内晶圆厂龙头中芯国际的毛利率约为30%。而对于特种气体公司来说,电子特气平均毛利率能达到近50%。世界第二的法国液化空气集团,2010年-2019年的毛利率稳定在60%-65%,而一般化工气体或大宗气体的毛利率仅在20-30%水平。国内企业电子特气毛利率相对较低,约为30%-40%,相较国际巨头有一定差距,未来成长空间广阔。伴随技术研发的进步和需求量的增长,电子特气厂商盈利能力有望持续升

16、级。特种气体纯度提升为核心技术瓶颈。集成电路对电子特气的纯度有着苛刻的要求,因为在芯片加工过程中,极微量的杂质也可能导致产品重大缺陷,特种气体纯度越高,产品的良率越高、性能越优。伴随IC芯片制程技术的不断发展,产品的生产精度越来越高,用于集成电路制造的电子特气亦提出了更高的纯度要求。电子特气的纯度主要受三个因素影响:一是提纯技术。电子特气的分离和提纯原理上可分为精馏分离、分子筛吸附分离以及膜分离三大类。在实际提纯分离过程中,为提升效率和良品率,会利用多种方法进行组合,配置工艺更为复杂,还需保证产品配比精度,因此抬高了研发壁垒。二是气体检测技术。随着电子特气的纯度越来越高,对分析检测方法和仪器提

17、出了更高的要求。目前国外电子气体的分析己经经历了离线分析、在线分析、原位分析等几个阶段,对于高纯度电子特气的分析已开发出完整的测试体系。而由于我国电子特气行业重生产而轻检测,因此分析方法和仪器同国外厂商都有一定差距。三是气体的储存和运输。高纯电子特气运输为一大难关,在储存和运输过程中要求使用高质量的气体包装储运容器、以及相应的气体输送管线、阀门和接口,以防止气体二次污染。我国加工工艺整体落后以及不符合国际规范,大部分市场被国外公司占据。专业人才缺乏,技术人员培养目前面临较大困局。电子气体生产环节较多、操作复杂,因此企业除了研发人才,还需要大量掌握生产技术、具有实际操作经验的技术人员。据统计,培

18、养一名合格的生产技术工人至少需要2年时间,但目前国内各大院校基本未设立工业气体学科,因此企业需要花费大量时间和资金成本对新进人员进行深度培养,制约了我国企业技术创新水平的提升速度。电子特气市场正处于稳定增长阶段,从地理位置上看,亚太地区是电子特气的最大消费市场。国内电子特气相关需求一直依赖进口,主要市场由空气化工、德国林德集团、液化空气和太阳日酸等国外厂商占据,CR4约88%,形成寡头垄断的局面。国际局势叠加国内新兴产业迅速发展,本土化优势显著。新兴终端市场加速成长,国内企业经过多年技术积累有望迎来国产化全面开花。伴随俄乌战争、经济制裁等事件的频繁发生,国际局势变得更加复杂动荡。在此背景下,进

19、口产品价格昂贵、运输不便,本土化产品供应稳定、性价比高等特点更为显著,国内下游企业逐步转向国产供应。电子特气国产化是必然趋势,将在市场化因素主导下全面加速。截至2022年Q1,我国拥有众多生产工业气体的企业,其中约一半位于华东地区。由于行业技术壁垒高且客户粘性大,短期内行业的马太效应将继续延续,但近些年国家推出的相关支持政策及法律法规有望在往来助力相关细分行业的内资企业大力发展。靶材又称为溅射靶材,是制作薄膜的主要材料。在溅射镀膜工艺中,靶材是在高速荷能粒子轰击的目标材料,可通过不同的离子光束和靶材相互作用得到不同的膜系(如超硬、耐磨、防腐的合金膜等),以实现导电和阻挡的功能。靶材主要是由靶坯

20、、背板等部分组成,工作原理是利用离子源产生的离子,在真空中聚集并提速,用形成的高速离子束流来轰击靶材表面,发生动能交换,让靶材表面的原子沉积在基底。六、 半导体材料景气持续,市场空间广阔半导体是指常温下导电性能介于导体与绝缘体之间的材料。无论从科技或经济发展的角度来看,半导体都至关重要。2010年以来,全球半导体行业从PC时代进入智能手机时代,成为全球创新最为活跃的领域,广泛应用于计算机、消费类电子、网络通信和汽车电子等核心领域。半导体产业主要由集成电路、光电子、分立器件和传感器组成,据WSTS世界半导体贸易统计组织预测,到2022年全球集成电路占比8422%,光电子器件、分立器件、传感器占比

21、分别为741%、510%和326%。半导体工艺复杂,技术壁垒极高。芯片生产大体可分为硅片制造、芯片制造和封装测试三个流程。其中硅片制造包括提纯、拉单晶、磨外圆、切片、倒角、磨削、CMP、外延生长等工艺,芯片制造包括清洗、沉积、氧化、光刻、刻蚀、掺杂、CMP、金属化等工艺,封装测试包括减薄、切割、贴片、引线键合、模塑、电镀、切筋成型、终测等工艺。整体而言,硅片制造和芯片制造两个环节技术壁垒极高。硅提纯:目前多晶硅厂商多采用三氯氢硅改良西门子法进行多晶硅生产。具体工艺是将氯化氢和工业硅粉在沸腾炉内合成三氯氢硅,通过精馏进一步提纯高纯三氯氢硅,后在1100左右用高纯氢还原高纯三氯氢硅,生成多晶硅沉积

22、在硅芯上,进而得到电子级多晶硅。拉单晶:目前8寸和12寸硅片大多通过直拉法制备,部分6寸和8寸硅片则通过区熔法制得。直拉法是将高纯多晶硅放入石英坩埚内,通过外围的石墨加热器加热至1400,随后坩埚带着多晶硅融化物旋转,将一颗籽晶浸入其中后,由控制棒带着籽晶作反方向旋转,同时慢慢地、垂直地由硅融化物中向上拉出,并在拉出后和冷却后生长成了与籽晶内部晶格方向相同的单晶硅棒。区熔法利用高频线圈在多晶硅棒靠近籽晶一端形成熔化区,移动硅棒或线圈使熔化区超晶体生长方向不断移动,向下拉出得到单晶硅棒。切片:单晶硅棒研磨成相同直径,然后根据客户要求的电阻率,多采用线切割将晶棒切成约1mm厚的晶圆薄片。倒角:用具

23、备特定形状的砂轮磨去硅片边缘锋利的崩边、棱角和裂缝等,可防止晶圆边缘碎裂,增加外延层和光刻胶层在晶圆边缘的平坦度。磨削:在研磨机上用磨料将切片抛光到所需的厚度,同时提高表面平整度。其目的在于去除切片工序中硅片表面因切割产生的机械应力损伤层和各种金属离子等杂质污染。清洗:为了解决硅片表面的沾污问题,实现工艺洁净表面,多采用强氧化剂、强酸和去离子水进行清洗。薄膜沉积:即通过晶核形成、聚集成束、形成连续的膜沉积在硅片沉底上。薄膜沉积按照原理可分为物理工艺(PVD)和化学工艺(CVD)。集成电路制造中使用最广泛的PVD技术是溅射镀膜,其基本原理是在反应腔高真空度背景下带正电的氩离子在电场作用下,轰击到

24、靶材的表面,撞击出靶材的原子或分子,沉积在硅片表面。化学气相沉积技术主要是利用含有薄膜元素的一种或几种气相化合物或单质、在衬底表面上进行化学反应生成薄膜。氧化:清洁完成后将晶圆置于800-1200的高温环境下,通过氧气或蒸气在晶圆表面形成二氧化硅层,以保护晶圆不受化学杂质影响、避免漏电流进入电路、预防离子植入过程中的扩散以及防止晶圆在刻蚀时滑落。光刻:光刻技术用于电路图形生成和复制,是半导体制造最为关键的技术,耗时占IC制造50%,成本占IC制造1/3。其主要流程包括清洗、涂胶、前烘、对准、曝光、后烘、显影、刻蚀、光刻胶剥离等,在光刻过程中,需在硅片上涂一层光刻胶,经紫外线曝光后,光刻胶发生变

25、化,显影后被曝光的光刻胶可以被去除,电路图形由掩模版转移到光刻胶上,在经过刻蚀后电路图形即由掩模版转移到硅片上。刻蚀:是半导体制造工艺中的关键步骤,对于器件的电学性能十分重要。利用化学或物理方法有选择地从硅片表面去除不需要的材料,目标是在涂胶的硅片上正确地复制掩模版图形。按照刻蚀工艺划分,刻蚀主要分为干法刻蚀和湿法刻蚀,目前干法刻蚀在半导体刻蚀中占比约90%,而干法刻蚀又可分为化学去除、物理去除及化学物理混合去除三种方式,性能各有优劣。掺杂:在半导体晶圆制造中,由于纯净硅的导电性能很差,需要加入少量杂质使其结构和电导率发生变化,从而变成一种有用的半导体,即为掺杂。目前可通过高温热扩散法和离子注

26、入法进行掺杂,其中离子注入法具备精确控制能量和剂量、掺杂均匀性好、纯度高、低温掺杂等优点,目前已成为025微米特征尺寸以下和大直径硅片制造的标准工艺。CMP:是集成电路制造过程中实现晶圆表面平坦化的关键工艺,其主要工作原理是在一定压力及抛光液的存在下,被抛光的晶圆对抛光垫做相对运动,借助纳米磨料的机械研磨作用与各类化学试剂的化学作用之间的高度有机结合,使被抛光的晶圆表面达到高度平坦化、低表面粗糙度和低缺陷的要求。金属化:在制备好的元器件表面沉积金属薄膜,并进行微细加工,利用光刻和刻蚀工艺刻出金属互连线,然后把硅片上的各个元器件连接起来形成一个完整的电路系统,并提供与外电路连接点的工艺过程。七、

27、 半导体行业市场规模快速增长,本土厂商进展顺利进入21世纪以来,5G、人工智能、自动驾驶等新应用的兴起,对芯片性能提出了更高的要求,同时也推动了半导体制造工艺和新材料不断创新,国内外晶圆厂加紧对于半导体新制程的研发,台积电已于2020年开启了5nm工艺的量产,并于2021年年底实现3nm制程的试产,预计2022年开启量产。此外台积电表示已于2021年攻克2nm制程的技术节点的工艺技术难题,并预计于2023年开始风险试产,2024年逐步实现量产。随着芯片工艺升级,晶圆厂商对半导体材料要求越来越高。目前部分终端需求仍然强劲,晶圆代工厂产能利用率维持历史高位,预计全年来看结构性缺货状态依旧严峻。据S

28、EMI于2022年3月23日发布的最新一季全球晶圆厂预测报告,全球用于前道设施的晶圆厂设备支出预计将同比增长18%,并在2022年达到1070亿美元的历史新高。由于半导体材料与下游晶圆厂具有伴生性特点,本土材料厂商将直接受益于中国大陆晶圆制造产能的大幅扩张。成熟制程供需持续紧张,国内晶圆厂扩产规模维持高位。受益于成熟制程旺盛需求及大陆地区稳定的供应链,大陆晶圆厂快速扩产。根据SEMI报告,2022年全球有75个正在进行的晶圆厂建设项目,计划在2023年建设62个。2022年有28个新的量产晶圆厂开始建设,其中包括23个12英寸晶圆厂和5个8英寸及以下晶圆厂。分区域来看,中国晶圆产能增速全球最快

29、,预计22年8寸及以下晶圆产能增加9%,12寸晶圆产能增加17%。随着下游电子设备硅含量增长,半导体需求快速增长。在半导体工艺升级+积极扩产催化下,半导体材料市场快速增长。据SEMI报告数据,2021年全球半导体材料市场收入达到643亿美元,超过了此前2020年555亿美元的市场规模最高点,同比增长159%。晶圆制造材料和封装材料收入总额分别为404亿美元和239亿美元,同比增长155%和165%。此外,受益于产业链转移趋势,2021年国内半导体材料销售额高达1193亿美元,同比增长22%,增速远高于其他国家和地区。半导体材料种类繁多,包括硅片、电子特气、掩模版、光刻胶、湿电子化学品、抛光液、

30、抛光垫、靶材等。据SEMI数据显示,硅片为半导体材料领域规模最大的品类之一,市场份额占比达329%,排名第一,其次为气体,占比约141%,光掩模排名第三,占比为126%。此外,抛光液和抛光垫、光刻胶配套试剂、光刻胶、湿化学品、溅射靶材的占比分别为72%、69%、61%、4%和3%。八、 半导体行业竞争格局高度集中,国内厂商加速追赶CMP抛光液市场,美国Carbot是国际龙头,安集科技为国内龙头。目前全球抛光液市场主要由美日厂商垄断,美国Cabot、美国Versum、日本日立、日本Fujimi和美国陶氏杜邦五家美日厂商占据全球抛光液近八成的市场份额,安集科技仅占约3%。国内市场中,美国Cabot

31、占约64%,安集科技市占率为22%。安集科技为国产CMP抛光液龙头,国内市场占有率超两成。公司2015-2016年先后承担两个02专项项目,专注于持续优化14nm技术节点以上产品的稳定性,测试优化14nm及以下产品的技术节点,开发用于128层以上3DD和19/17nm以下技术节点DRAM用铜及铜阻挡层抛光液。目前公司CMP抛光液13-14nm技术节点上实现规模化量产,下游客户包括中芯国际、长江存储、台积电、华虹半导体等主流晶圆厂商。全球抛光垫市场一家独大,稳步前进。当前全球抛光垫市场主要由美国的陶氏杜邦垄断,市占率高达79%,其他公司如美国Cabot、日本Fujimi、日本Hitachi等市占

32、率在5%以内。内资企业中,鼎龙股份、江丰电子和万华化学具备相应的生产力。其中,鼎龙股份为国内抛光垫龙头企业,生产的抛光垫意在对标美国陶氏杜邦集团。随着国内晶圆厂扩张,需求提升,为确保供应链的稳定,内资企业迎来发展潮。湿电子化学品贯穿整个芯片制造流程,是重要的晶圆制造材料。湿电子化学品又称工艺化学品,是指主体成分纯度大于9999%,杂质离子和微粒数符合严格标准的化学试剂。在IC芯片制造中,湿电子化学品常用于清洗、光刻和蚀刻等工艺,可有效清除晶圆表面残留污染物、减少金属杂质含量,为下游产品质量提供保障。在半导体制造工艺中主要用于集成电路前端的晶圆制造及后端的封装测试,用量较少,但产品纯度要求高、价

33、值量大。根据应用领域的不同,湿电子化学品可分为通用化学品和功能性化学品。其中通用化学品指主体成分纯度大于9999%、杂质离子含量低于PPM级和尘埃颗粒粒径在05m以下的单一高纯试剂。功能湿电子化学品指可通过复配满足制造中特殊工艺需求、达到某些特定功能的配方类和复配类液体化学品。其中通用化学品广泛应用于IC芯片、液晶显示面板和LED制造领域,包括氢氟酸、硫酸、磷酸、盐酸、硝酸、乙酸等。功能性湿电子以光刻胶配套试剂为代表,包括显影液、漂洗液、剥离液等。九、 中国为全球最大半导体市场,国产化提升大势所趋复盘半导体行业发展历史,共经历三次转移。第一次转移:1973年爆发石油危机,欧美经济停滞,日本趁机

34、大力发展半导体行业,实施超大规模集成电路计划。1986年,日本半导体产品已经超越美国,成为全球第一大半导体生产大国;第二次转移:20世纪90年度,日本经济泡沫破灭,韩国通过技术引进实现DRAM量产。与此同时,半导体厂商从IDM模式向设计+制造+封装模式转变,催生代工厂商大量兴起,以台积电为首的中国台湾厂商抓住了半导体行业垂直分工转型机遇;第三次转移:2010年后,伴随国内手机厂商崛起、贸易摩擦背景下国家将集成电路的发展上升至国家战略,半导体产业链逐渐向国内转移。中国为全球最大半导体市场,占比约1/3。随着中国经济的快速发展,在手机、PC、可穿戴设备等消费电子,以及新能源、物联网、大数据等新兴领

35、域的快速推动下,中国半导体市场快速增长。据WSTS数据显示,2021年全球半导体销售达到5559亿美元,而中国仍然为全球最大的半导体市场,2021年销售额为1925亿美元,占比346%。国产化率极低,提升自主能力日益紧迫。近年来,随着产业分工更加精细化,半导体产业以市场为导向的发展态势愈发明显。从生产环节来看,制造基地逐步靠近需求市场,以减少运输成本;从产品研发来看,厂商可以及时响应用户需求,加快技术研发和产品迭代。我国作为全球最大的半导体消费市场,半导体封测经过多年发展在国际市场已经具备较强市场竞争力,而在集成电路设计和制造环节与全球领先厂商仍有较大差距,特别是半导体设备和材料。SIA数据显示,2020年国内厂商在封测、设计、晶圆制造、材料、设备的全球市占率分别为38%、16%、16%、13%、2%,半导体材料与设备的重要性日益凸显。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!