绿色制造外文翻译

上传人:jin****ng 文档编号:197644246 上传时间:2023-04-05 格式:DOCX 页数:15 大小:23.39KB
收藏 版权申诉 举报 下载
绿色制造外文翻译_第1页
第1页 / 共15页
绿色制造外文翻译_第2页
第2页 / 共15页
绿色制造外文翻译_第3页
第3页 / 共15页
资源描述:

《绿色制造外文翻译》由会员分享,可在线阅读,更多相关《绿色制造外文翻译(15页珍藏版)》请在装配图网上搜索。

1、附录I1绿色制造绿色制造(改造) ,是一种现代制造业的战略 , 把所有的问题考虑制造的因 素,如环境的影响和资源消耗等, 其最终目标是降低和减少对环境的影响和资源 消耗的生命周期的产品, 其中包括设计,生产,包装,运输,使用和处置,而且, 它 将最佳的经济效益和社会性的企业。国内外专家普遍认为,绿色制造是一种体现 人类社会可持续发展战略 现代制造业,也有至关重要的作用,在制造业, 国家经 济和国防安全. 绿色制造工艺规划( gmpp )是其中的关键技术,改造, 处理废弃 物流向,在产品加工及其影响问题, 它一直高度重视的研究组织,各国 大学以及 政府部门. 基于研究现状 ,在我国境内和境外的绿

2、色生产与绿色制造工艺规划 , 策略及实现技术,绿色工艺规划将研究深入,而且 技术工艺单元规划及其评审会 并应用在设计制造过程中的发动机连杆加以研究。 有具体的研究内容: 1 . 基 于分析和结论的内涵与特征,绿色工艺规划, 最优的多目标决策模型成立. 决策 问题的绿色制造工艺规划可以分解成一系列的子模型和一个新的 绿色制造工艺 规划策略模式为基础,提出了。 2. 一份详尽的研究绿色制造过程单元规划已经 取得进展. 鉴于的选拔问题,如机床,流体与绿色制造工艺要素 客观套的规划问 题,提出了包括五个决策的客观因素 :时间( T ) , 质量( q )的成本(三) ,环境 影响(五) ,资源消耗(

3、r )和相应的多目标决策模型的建立。 3 . 在此基础上分 析的指标体系中的资源消耗和环境影响的绿色制造 过程,环境影响框架的绿色 制造工艺要素是提出 ,此外, 量化方法,即通过研究建立的详细名单表描述和评 价资源 消费与环境的影响,绿色制造过程。 4 . 基于模糊评价模型, 绿色制造 工艺方法发动机连杆进行了综合评价和优化的途径分析 一系列结构调整和优势 产业的发展前景,分析。 二. 研究切削机理,它是基本理论的高速加工( HSM 技 术), 关键是应用和发展高速加工技术。 表面质量的一个重要研究内容,切削机 理,是判断残余应力。 残余应力在加工层的影响,切削的工作性能和疲劳强度等 部分组成

4、. 同时,他们是主要的影响因素等缺陷,变形和开裂。 由于正确预测残 余应力,在加工过程中有很大的理论意义和实用价值。理论残余应力的加工层涉 及许多交叉学科,如机械制造,塑性力学, 有限元法等,鉴于问题的复杂性问题的 方法,包括实验, 理论建模和计算机模拟,提出了这个选题. 然后,开始与金属切 削原理, 深厚的理论研究和数值模拟残余应力 HSM 技术进行的, 和预测模型的 建立. 这是一个重要的基础学科,以推动高速切削技术的发展和应用, 其中有一 个很重要的理论意义和实际利用 HSM 技术势能。在这个文件中,首先生成机理的 残余应力,加工,分析 分析模型的形成机制加工层成立后, 和热力耦合方程为

5、第 三变形带构造 . 其次, 残余应力分布对加工层和影响加工参数和刀具几何形状 对残余应力 研究,并用有限元程序 . 第三, 实验高速铣床和残余应力测量技术 进行研究,以研究分配剩余 讲并核实供货有限模型. 在此基础上,关系的数学模 型,残余应力及影响因素的推动. 三. 切削温度在高速加工操作已被确认为主要 的影响因素,刀具寿命 加工表面完整性及其质量。 它一直是一个重要的研究项 目. 在该文件中,传热模型的切削温度场已经建成。 理论研究剪切机热源和刀- 屑摩擦界面热源进行的方法 热源。温度场的分布芯片和工件由于剪切平面热源, 是由这种方法. 温度场的分布芯片和工具 ,由于刀-屑摩擦界面热源也

6、是获得。 然后温度场分布的筹码和工具,由于双方合并消息的来源。本文旨在建立热粘模 型,并进行有限元模拟切削温度场的有限元软件。 温度场的分布表明,最高温度 集中在局部区域附近的百科在 刀具接口芯片。 从动态模拟裁剪, 该曲线的最高 温度变化与步骤表明,在早期剪 温度上升很快,其变化是缓慢切削过程中的期限, 直至达到稳定状态。 当到达稳态切割, 温度变化曲线的加工表面沿切削深度方 向显示的温度只有一薄层 工件上升,而当地的工件温度变化不大。 在稳态切削 过程中, 最高气温出现远离百科,而不是百科可从刀面温度 曲线工具接口芯片。 影响切削参数如切削速度,切削深度, 刀具前角对切削温度进行了研究。

7、计算结 果表明:好的协议与复习, 链入页面。 高速切削( HSM 技术)技术,以高切削速 度,高进给速度和完美的表面质量, 是一个最先进的技术发展迅速,在过去 20 年. HSM 技术是一个方向的先进制造技术, 是一个领域,已研究大多数是在科技和工 业领域。 切削力为基础来计算切削扭矩和功率, 因此有必要分析切削热和温度 的提升, 并研究加工精度和表面质量的产品。 随着计算机技术的飞速发展,数值 模拟方法已成为一个重要工具。由于问题复杂,在切削过程中,仅使用一种方法去 研究切削力是不够的。 因此,根据金属切削理论与弹塑性力学相结合, 有限元法 分析应力应变关系,在切削区, 并讨论了不同的切削参

8、数对切削力的。 首先,要 根据自身特点,切削,切削模型,并形成机制,禁伐区, 力量遭受芯片,摩擦特性刀 具/工件面积,并剪角分析。 建立有限元模型, 利用弹塑性力学讨论应力-应变状 态的弹性和塑性变形,在切削区。要注意工作的材料模型,网格划分,边界条件和 芯片分离的标准模式, 这可能会影响到计算精度和直接。 在模拟过程中,影响刀 具前角,切削速度,进给速度,切削厚度对切削力的影响。 最后,高速铣削试验。 单因子实验 ,以验证有限元模型和多因子正交实验来验证的影响 切削条件对切 削力. 吻合. 研究切削机理,它是基本理论的高速加工( HSM 技术) , 关键是应 用和发展高速加工技术。 表面质量

9、的一个重要研究内容,切削机理,是判断残余 应力。 残余应力在加工层的影响,切削的工作性能和疲劳强度等部分组成。 同 时,他们是主要的影响因素等缺陷,变形和开裂. 由于正确预测残余应力,在加工 过程中有很大的理论意义和实用价值 . 理论残余应力的加工层涉及许多交叉学 科,如机械制造,塑性力学, 有限元法等,鉴于问题的复杂性问题的方法 ,包括实 验, 理论建模和计算机模拟,提出了这个选题。 然后,开始与金属切削原理, 深 厚的理论研究和数值模拟残余应力 HSM 技术进行的, 和预测模型的建立. 这是 一个重要的基础学科,以推动高速切削技术的发展和应用, 其中有一个很重要的 理论意义和实际利用 HS

10、M 技术势能. 在这个文件中,首先生成机理的残余应力, 加工,分析 分析模型的形成机制加工层成立后 , 和热力耦合方程为第三变形带 构造。 其次, 残余应力分布对加工层和影响加工参数和刀具几何形状对残余应 力 研究,并用有限元程序. 第三, 实验高速铣床和残余应力测量技术进行研究 , 以研究分配剩余 讲并核实供货有限模型。 在此基础上,关系的数学模型,残余应 力及影响因素的推动。2机械加工表面质量机械零件的破坏,一般总是从表面层开始的。产品的性能,尤其是它的可靠 性和耐久性,在很大程度上取决于零件表面层的质量。研究机械加工表面质量的 目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规

11、律,以便运 用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。 机械零件的破坏,一般总是从表面层开始的。产品的性能,尤其是它的可靠性和 耐久性,在很大程度上取决于零件表面层的质量。研究机械加工表面质量的目的 就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规律,以便运用这 些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。一、机械加工表面质量对机器使用性能的影响。(一)表面质量对耐磨性的影响1.表面粗糙度对耐磨性的影响一个刚加 工好的摩擦副的两个接触表面之间,最初阶段只在表面粗糙的的峰部接触,实际 接触面积远小于理论接触面积,在相互接触的峰部有非常

12、大的单位应力,使实际 接触面积处产生塑性变形、弹性变形和峰部之间的剪切破坏,引起严重磨损。零 件磨损一般可分为三个阶段,初期磨损阶段、正常磨损阶段和剧烈磨损阶段。表 面粗糙度对零件表面磨损的影响很大。一般说表面粗糙度值愈小,其磨损性愈好。 但表面粗糙度值太小,润滑油不易储存,接触面之间容易发生分子粘接,磨损反 而增加。因此,接触面的粗糙度有一个最佳值,其值与零件的工作情况有关,工 作载荷加大时,初期磨损量增大,表面粗糙度最佳值也加大。2.表面冷作硬化 对耐磨性的影响加工表面的冷作硬化使摩擦副表面层金属的显微硬度提高,故 一般可使耐磨性提高。但也不是冷作硬化程度愈高,耐磨性就愈高,这是因为过 分

13、的冷作硬化将引起金属组织过度疏松,甚至出现裂纹和表层金属的剥落,使耐 磨性下降。(二)表面质量对疲劳强度的影响金属受交变载荷作用后产生的疲劳破坏 往往发生在零件表面和表面冷硬层下面,因此零件的表面质量对疲劳强度影响很 大。1.表面粗糙度对疲劳强度的影响在交变载荷作用下,表面粗糙度的凹谷 部位容易引起应力集中,产生疲劳裂纹。表面粗糙度值愈大,表面的纹痕愈深, 纹底半径愈小,抗疲劳破坏底能力就愈差。2.残余应力、冷作硬化对疲劳强度 的影响余应力对零件疲劳强度的影响很大。表面层残余拉应力将使疲劳裂纹扩 大,加速疲劳破坏;而表面层残余应力能够阻止疲劳裂纹的扩展,延缓疲劳破坏 的产生 表面冷硬一般伴有残

14、余应力的产生,可以防止裂纹产生并阻止已有裂纹 的扩展,对提咼疲劳强度有利。(三)表面质量对耐蚀性的影响零件的耐蚀性在很大程度上取决于表面粗 糙度。表面粗糙度值愈大,则凹谷中聚积腐蚀性物质就愈多。抗蚀性就愈差。表 面层的残余拉应力会产生应力腐蚀开裂,降低零件的耐磨性,而残余压应力则能 防止应力腐蚀开裂。(四)表面质量对配合质量的影响 表面粗糙度值的大小将影响配合表面的 配合质量。对于间隙配合,粗糙度值大会使磨损加大,间隙增大,破坏了要求的 配合性质。对于过盈配合,装配过程中一部分表面凸峰被挤平,实际过盈量减小, 降低了配合件间的连接强度。二、影响表面粗糙度的因素。(一)切削加工影响表面粗糙度的因

15、素1.刀具几何形状的复映刀具相对 于工件作进给运动时,在加工表面留下了切削层残留面积,其形状时刀具几何形 状的复映。减小进给量、主偏角、副偏角以及增大刀尖圆弧半径,均可减小残留 面积的高度。此外,适当增大刀具的前角以减小切削时的塑性变形程度,合理 选择润滑液和提高刀具刃磨质量以减小切削时的塑性变形和抑制刀瘤、鳞刺的生 成,也是减小表面粗糙度值的有效措施。2.工件材料的性质加工塑性材料时, 由刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用, 使表面粗糙度值加大。工件材料韧性愈好,金属的塑性变形愈大,加工表面就愈 粗糙。加工脆性材料时,其切屑呈碎粒状,由于切屑的崩碎而在加工表

16、面留下 许多麻点,使表面粗糙。3.切削用量。(二)磨削加工影响表面粗糙度的因素 正像切削加工时表面粗糙度的形成 过程一样,磨削加工表面粗糙度的形成也时由几何因素和表面金属的塑性变形来 决定的。影响磨削表面粗糙的主要因素有:砂轮的粒度砂轮的硬度砂轮的修 整磨削速度磨削径向进给量与光磨次数工件圆周进给速度与轴向进给量冷 却润滑液。三、影响加工表面层物理机械性能的因素在切削加工中,工件由于受到切 削力和切削热的作用,使表面层金属的物理机械性能产生变化,最主要的变化是 表面层金属显微硬度的变化、金相组织的变化和残余应力的产生。由于磨削加工 时所产生的塑性变形和切削热比刀刃切削时更严重,因而磨削加工后加

17、工表面层 上述三项物理机械性能的变化会很大。(一)表面层冷作硬化1.冷作硬化及其评定参数机械加工过程中因切削 力作用产生的塑性变形,使晶格扭曲、畸变,晶粒间产生剪切滑移,晶粒被拉长 和纤维化,甚至破碎,这些都会使表面层金属的硬度和强度提高,这种现象称为 冷作硬化(或称为强化)。表面层金属强化的结果,会增大金属变形的阻力,减小 金属的塑性,金属的物理性质也会发生变化。被冷作硬化的金属处于高能位的 不稳定状态,只有一有可能,金属的不稳定状态就要向比较稳定的状态转化,这 种现象称为弱化。弱化作用的大小取决于温度的高低、温度持续时间的长短和强 化程度的大小。由于金属在机械加工过程中同时受到力和热的作用

18、,因此,加工 后表层金属的最后性质取决于强化和弱化综合作用的结果。评定冷作硬化的指 标有三项,即表层金属的显微硬度HV、硬化层深度h和硬化程度N。2.影响冷 作硬化的主要因素 切削刃钝圆半径增大,对表层金属的挤压作用增强,塑性变 形加剧,导致冷硬增强。刀具后刀面磨损增大,后刀面与被加工表面的摩擦加剧, 塑性变形增大,导致冷硬增强。切削速度增大,刀具与工件的作用时间缩短, 使塑性变形扩展深度减小,冷硬层深度减小。切削速度增大后,切削热在工件表 面层上的作用时间也缩短乐,将使冷硬程度增加。进给量增大,切削力也增大, 表层金属的塑性变形加剧,冷硬作用加强。工件材料的塑性愈大,冷硬现象就 愈严重。(二

19、)表面层材料金相组织变化当切削热使被加工表面的温度超过相变温 度后,表层金属的金相组织将会发生变化。1.磨削烧伤当被磨工件表面层温 度达到相变温度以上时,表层金属发生金相组织的变化,使表层金属强度和硬度 降低,并伴有残余应力产生,甚至出现微观裂纹,这种现象称为磨削烧伤。在磨 削淬火钢时,可能产生以下三种烧伤:回火烧伤 如果磨削区的温度未超过淬火 钢的相变温度,但已超过马氏体的转变温度,工件表层金属的回火马氏体组织将 转变成硬度较低的回火组织(索氏体或托氏体),这种烧伤称为回火烧伤。淬火 烧伤如果磨削区温度超过了相变温度,再加上冷却液的急冷作用,表层金属发 生二次淬火,使表层金属出现二次淬火马氏

20、体组织,其硬度比原来的回火马氏体 的高,在它的下层,因冷却较慢,出现了硬度比原先的回火马氏体低的回火组织 (索氏体或托氏体),这种烧伤称为淬火烧伤。退火烧伤 如果磨削区温度超过了 相变温度,而磨削区域又无冷却液进入,表层金属将产生退火组织,表面硬度将 急剧下降,这种烧伤称为退火烧伤。2.改善磨削烧伤的途径磨削热是造成磨 削烧伤的根源,故改善磨削烧伤由两个途径:一是尽可能地减少磨削热地产生; 二是改善冷却条件,尽量使产生地热量少传入工件。正确选择砂轮合理选择切 削用量 改善冷却条件。(三)表面层残余应力1.产生残余应力的原因a.切削时在加工表面金 属层内有塑性变形发生,使表面金属的比容加大 由于

21、塑性变形只在表层金属中 产生,而表层金属的比容增大,体积膨胀,不可避免地要受到与它相连的里层金 属的阻止,因此就在表面金属层产生了残余应力,而在里层金属中产生残余拉应 力。b,切削加工中,切削区会有大量的切削热产生c.不同金相组织具有不同 的密度,亦具有不同的比容如果表面层金属产生了金相组织的变化,表层金属 比容的变化必然要受到与之相连的基体金属的阻碍,因而就有残余应力产生。2. 零件主要工作表面最终工序加工方法的选择零件主要工作表面最终工序加工方 法的选择至关重要,因为最终工序在该工作表面留下的残余应力将直接影响机器 零件的使用性能。选择零件主要工作表面最终工序加工方法,须考虑该零件主 要工

22、作表面的具体工作条件和可能的破坏形式。在交变载荷作用下,机器零件 表面上的局部微观裂纹,会因拉应力的作用使原生裂纹扩大,最后导致零件断裂。 从提咼零件抵抗疲劳破坏的角度考虑,该表面最终工序应选择能在该表面产生残 余压应力的加工方法。附录口1 Green ManufacturingGreen Manufacturing (GM) is a modern manufacturing strategy, integrating all the issues of manufacturing considering the factors such as environmental impact an

23、d resources consumption and so on, its ultimate goal is to reduce and minimize environmental impact and resources consumption during the life cycle of the product, which includes design, production, package, transportation, use and disposal, furthermore, it will optimize the economic benefits and so

24、cial ones of enterprises. The domestic and foreign experts generally believe that green manufacturing is an embodiment of human society sustainable developmental strategy in modern manufacturing industry, and it will have the vital role in the manufacturing industry, the national economy and the nat

25、ional defense safety. Green Manufacturing Process Planning (GMPP) is one of the key technologies of GM, which deals with waste flows in the product processing and its influence problem, it has been paid great attention to by the research organizations of various countries, the universities as well a

26、s the government departments. Based on the research actuality inside and outside our country of green manufacturing and green manufacturing process planning, the strategy and implementation technique of Green manufacturing process planning will be researched in depth, moreover, the technologies of p

27、rocess element planning and its assessment will be. And also its application on the design of manufacturing process of engine connecting rod will be researched. There are concrete research contents as followings: 1. Based on the analysis and conclusion of the connotation and characteristic of green

28、manufacturing process planning, the optimal multi-objective decision-making models are set up. The decision-making problem of green manufacturing process planning can be decomposed into a serial of sub models and a new green manufacturing process planning strategy based on the model set is put forwa

29、rd. 2. An exhaustive study on the green manufacturing process element planning has been made. In view of the selection problem such as machine, tool and fluid of Green manufacturing process element, the objective sets of the planning problem areput forward, which include five decision-making objecti

30、ve factors: Time (T), Quality (Q), Cost (C),environmental impact(E), resource consumption(R), and the corresponding multi-objective decision-making models are developed. 3. On the basis of the analysis of the indexes system of the resource consumption and environmental impact of Green manufacturing

31、process, the environmental impact framework of Green manufacturing process element is proposed, moreover, the quantization method of that is studied through establishing the detailed list table for the description and evaluation of resource consumption and environmental impact of Green manufacturing

32、 process. 4. Based on the fuzzy evaluation model, the green manufacturing process methods of engine connecting rod have been evaluated and optimized by means of the analysis of series structure and the superiority and industrialization foreground of that is analyzed.二. The research of HSM mechanism,

33、 which is the theoretical fundamental of high-speed Machining (HSM), is critical for application and development of HSM technology. Surface quality, an important research content of HSM mechanism, is judged by residual stresses. Residual stresses in machined layer for HSM impact the working performa

34、nce and fatigue strength of parts. Also, they are major affecting factors of defects such as deformation and crack. As a result, correct prediction of residual stresses in machining process has great theoretical significance and practical values. The theory of residual stresses in machined layer inv

35、olves many cross subjects , such as mechanical manufacture, elastic-plastic mechanics, finite element method and etc. In view of the complex nature of problem,a method including experiments, theoretical modeling and computer simulating is proposed in this dissertation. Then, beginning with the metal

36、 cutting principle, deep theoretical researches and numerical simulations of residual stresses in HSM are carried out, and a predicting model is established. This is an important fundamental subject to promoting HSM technology development and application, which has a very important theoretical and p

37、ractical significance to exploit HSM potential energy further. In this paper, firstly, the generation mechanism of residual stresses for machining is analyzed, the analytical model for the formation mechanisms of machined layer is established, and a thermo-mechanical coupling equation for the third

38、deformation zone is constructed. Secondly, the distribution of residual stresses on machined layer and effects of machining parameters and tool geometry on residual stresses are studied, by the use of FEM procedure. Thirdly, experiments of high speed milling and residual stresses measurement are car

39、ried out in order to study the distribution of residual stresses and to verify the availability of FEM models. At last, a mathematical model of relationship between residual stress and affecting factors is promoted.三 Cutting temperature during high speed machining operation has been recognized as a

40、major factor that influences the tool life, the machined surface integrity and its quality. It has been an important research project. In the paper, the heat transfer model of cutting temperature field has been built. Theoretic study about shear plane heat source and tool-chip interface friction hea

41、t source is carried out with the method of heat source. The temperature field distribution of chip and workpiece due to shear plane heat source is determined by this method. The temperature field distribution of chip and tool due to tool-chip interface friction heat source is also obtained. Then tem

42、perature field distribution of chip and tool due to combined both sources is derived. This paper builds thermo-viscoplastic model and carries out the finite element simulations of cutting temperature field by finite element software. The temperature field distribution indicates that the highest temp

43、erature focuses on the local region near to the tooltip at the tool-chip interface. From the dynamic cutting simulation, the curve of the highest temperature variation with step indicates that at the early stage of cutting, temperature increases very rapidly and its change is slower and slower durin

44、g cutting period until reaching steady state. When reaching steady state cutting, the temperature variation curve of machined surface along cutting depth direction indicates that the temperature only a thin layer of work piece rise while the local workpiece temperature doesnt change much. During ste

45、ady state cutting process the maximum temperature occurs away from the tooltip rather not the tooltip can be obtained from the rake face temperature curve of the tool-chip interface. The effect of the cutting parameters such as cutting velocity, the cutting depth, rake angle on the cutting temperatu

46、re has been studied. The computed conclusions show goodagreement with those of literatures.四. High-speed machining (HSM) technology, with high cutting velocity, high feed rate and perfect surface quality, is one of the most advanced technologies developed promptly in the last 20 years. HSM is the di

47、rection of advanced manufacturing technologies, and is one of the domains that have been studied most in the science and technology and industry fields. Cutting force is the basis to calculate cutting twist moment and power, and it is essential to analyze cutting heat and temperature hoist, and to s

48、tudy machining precision and surface quality of products. With the rapid development of computer technology, the numerical simulation method has become an important instrument. Because of the complexity in HSM process, using only one method to study cutting force is not enough. Accordingly, on the b

49、asis of metal cutting theory and elastic-plastic mechanics, FEM is used to analyze the stress-strain relation in cutting zone, and to discuss the influences of various cutting parameters on cutting force. At first, according to the characteristic of HSM, orthogonal cutting model is established, and

50、formation mechanism of cutting zone, forces that chip suffered, friction characteristic of cutter/workpiece area, and shear angle are analyzed. Establish finite element model, and use elastic- plastic mechanics to discuss stress-stain state of elastic and plastic deformation in cutting zone. Pay att

51、ention to the material model, meshing, boundary condition, and chip separation criterion of the model, which can affect calculation precision directly. In simulation, the influence of rake angle, cutting speed, feed rate, and cutting thickness on cutting force are discussed. At last, high speed mill

52、ing experiments are conducted. One-factor experiments are adopted to validate the finite element model and multi-factor orthogonal experiments are designed to validate the influence of cutting conditions on cutting force.五. The research of HSM mechanism, which is the theoretical fundamental of high-

53、speed Machining (HSM), is critical for application and development of HSM technology. Surface quality, an important research content of HSM mechanism, is judged by residual stresses. Residual stresses in machined layer for HSM impact the working performance and fatigue strength of parts. Also, they

54、are major affecting factors of defects such as deformation and crack. As a result, correct prediction of residual stresses in machining process has great theoretical significance and practical values. The theory of residual stresses in machined layer involves many cross subjects , such as mechanical

55、 manufacture, elastic-plastic mechanics, finite element method and etc. In view of the complex nature of problem,a method including experiments, theoretical modeling and computer simulating is proposed in this dissertation. Then, beginning with the metal cutting principle, deep theoretical researche

56、s and numerical simulations of residual stresses in HSM are carried out, and a predicting model is established. This is an important fundamental subject to promoting HSM technology development and application, which has a very important theoretical and practical significance to exploit HSM potential

57、 energy further. In this paper, firstly, the generation mechanism of residual stresses for machining is analyzed, the analytical model for the formation mechanisms of machined layer is established, and a thermo-mechanical coupling equation for the third deformation zone is constructed. Secondly, the

58、 distribution of residual stresses on machined layer and effects of machining parameters and tool geometry on residual stresses are studied, by the use of FEM procedure. Thirdly, experiments of high speed milling and residual stresses measurement are carried out in order to study the distribution of

59、 residual stresses and to verify the availability of FEM models. At last, a mathematical model of relationship between residual stress and affecting factors is promoted.2 Machining surface qualityMechanical Parts destruction, the general always start from the surface layer. Product performance, in p

60、articular its reliability and durability, to a large extent, depends on the surface layer of quality. Research machining surface quality objective is to master the mechanical processes of various technological factors on the surface quality of rules for the use of these laws to control the machining

61、 process, and ultimately improve the quality of the surface, improve product performance goals. Mechanical Parts destruction, the general always start from the surface layer. Product performance, in particular its reliability and durability, to a large extent, depends on the surface layer of quality

62、. Research machining surface quality objective is to master the mechanical processes of various technological factors on the surface quality of rules for the use of these laws to control the machining process, and ultimately improve the quality of the surface, improve product performance goals. 1. m

63、achining surface quality of the machine using the performance impact (1) the quality of the surface wear resistance of one. Surface roughness right wear resistance of a just processed two pairs of contact between the surface, In the initial stage, only the rough surface of the peak contact, the actu

64、al contact area is much smaller than theoretical contact area, mutual access to the peaks of a huge stress units, the actual contact area of plastic deformation occurs. Elastic deformation and peak between the Department of shear failure, causing serious wear. General wear components can be divided

65、into three stages, the initial wear stage, normal wear stage and dramatic stage wear. Surface roughness of the surface wear of parts of the significant influence. Generally speaking the smaller the value of surface roughness, wear better. However, the surface roughness was too small, not easily stor

66、ed lubricants, surface contact between the high molecular bonding, but increased wear. Therefore, the contact surface roughness is one of the best, the value of work and parts of the work load increase, Wear initial increase and the best surface roughness values have also increased. 2. Coldwork hardening of the surface wear resistance of the surface of the cold-hardened so that friction surface layer metal microhardness increase , it w

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!