MEMS行业产品尺寸微型化发展趋势

上传人:泓域m****机构 文档编号:193636501 上传时间:2023-03-11 格式:DOCX 页数:14 大小:26.13KB
收藏 版权申诉 举报 下载
MEMS行业产品尺寸微型化发展趋势_第1页
第1页 / 共14页
MEMS行业产品尺寸微型化发展趋势_第2页
第2页 / 共14页
MEMS行业产品尺寸微型化发展趋势_第3页
第3页 / 共14页
资源描述:

《MEMS行业产品尺寸微型化发展趋势》由会员分享,可在线阅读,更多相关《MEMS行业产品尺寸微型化发展趋势(14页珍藏版)》请在装配图网上搜索。

1、MEMS行业产品尺寸微型化发展趋势一、 MEMS行业产品尺寸微型化发展趋势基于MEMS传感器下游的电子消费行业对器件尺寸小型化、低功耗化的需求,MEMS传感器生产厂商利用系统封装等技术将IC芯片和被动元器件进行整合,进一步缩小了传感器芯片的尺寸。与此同时,在单片晶圆上所能产出的芯片数量也随芯片尺寸的减小而增多,MEMS传感器芯片的成本也能够得到有效降低。然而,MEMS制造工艺也并非一味追求更小的尺寸与更高的集成度,而是更加注重材料的结构机械特性、材质化学特性以及刻蚀深度、精度、应力控制等每一步工艺的准确实现。通过革新技术,在保障产品高性能的同时缩小产品尺寸和降低功耗是MEMS传感器行业的重要发

2、展方向。二、 半导体景气度超预期,晶圆厂商积极扩产目前部分终端需求仍然强劲,晶圆代工厂产能利用率维持历史高位,预计全年来看结构性缺货状态依旧严峻。据SEMI于2022年3月23日发布的最新一季全球晶圆厂预测报告,全球用于前道设施的晶圆厂设备支出预计将同比增长18%,并在2022年达到1070亿美元的历史新高。由于半导体材料与下游晶圆厂具有伴生性特点,本土材料厂商将直接受益于中国大陆晶圆制造产能的大幅扩张。成熟制程供需持续紧张,国内晶圆厂扩产规模维持高位。受益于成熟制程旺盛需求及大陆地区稳定的供应链,大陆晶圆厂快速扩产。根据SEMI报告,2022年全球有75个正在进行的晶圆厂建设项目,计划在20

3、23年建设62个。2022年有28个新的量产晶圆厂开始建设,其中包括23个12英寸晶圆厂和5个8英寸及以下晶圆厂。分区域来看,中国晶圆产能增速全球最快,预计22年8寸及以下晶圆产能增加9%,12寸晶圆产能增加17%。三、 半导体材料市场较为分散,硅片为单一最大品类半导体材料种类繁多,包括硅片、电子特气、掩模版、光刻胶、湿电子化学品、抛光液、抛光垫、靶材等。据SEMI数据显示,硅片为半导体材料领域规模最大的品类之一,市场份额占比达329%,排名第一,其次为气体,占比约141%,光掩模排名第三,占比为126%。此外,抛光液和抛光垫、光刻胶配套试剂、光刻胶、湿化学品、溅射靶材的占比分别为72%、69

4、%、61%、4%和3%。四、 硅片:供需持续紧张,加速硅片是半导体上游产业链中最重要的基底材料之一。硅片是以高纯结晶硅为材料所制成的圆片,一般可作为集成电路和半导体器件的载体。与其他材料相比,结晶硅的分子结构较为稳定,导电性极低。此外,硅大量存在于沙子、岩石、矿物中,更容易获取。因此,硅具有稳定性高、易获取、产量大等特点,广泛应用于IC和光伏领域。(一)半导体硅片纯度极高,大尺寸为大势所趋硅片可以根据晶胞排列是否有序、尺寸、加工工序和掺杂程度的不同等方式进行分类。根据晶胞排列方式的不同,硅片可分为单晶硅和多晶硅。硅片是硅单质材料的片状结构,有单晶和多晶之分。单晶是具有固定晶向的结晶体材料,一般

5、用作集成电路的衬底材料和制作太阳能电池片。多晶是没有固定晶向的晶体材料,一般用于光伏发电,或者用于拉制单晶硅的原材料。单晶硅用作半导体材料有极高的纯度要求,IC级别的纯度要求达9N以上(999999999%),区熔单晶硅片纯度要求在11N(99999999999%)以上。根据尺寸大小的不同,硅片可分为50mm(2英寸)、75mm(3英寸)、100mm(4英寸)、150mm(6英寸)、200mm(8英寸)及300mm(12英寸)。英寸为硅片的直径,目前8英寸和12英寸硅片为市场最主流的产品。8英寸硅片主要应用在90nm-025m制程中,多用于传感、安防领域和电动汽车的功率器件、模拟IC、指纹识别

6、和显示驱动等。12英寸硅片主要应用在90nm以下的制程中,主要用于逻辑芯片、储存器和自动驾驶领域。大尺寸为硅片主流趋势。硅片越大,单个产出的芯片数量越多,制造成本越低,因此硅片厂商不断向大尺寸硅片进发。1980年4英寸占主流,1990年发展为6英寸,2000年开始8英寸被广泛应用。根据SEMI数据,2008年以前,全球大尺寸硅片以8英寸为主,2008年后,12英寸硅片市场份额逐步提升,赶超8英寸硅片。2020年,12英寸硅片市场份额已提升至681%,为目前半导体硅片市场最主流的产品。后续18英寸硅片将成为市场下一阶段的目标,但设备研发难度大,生产成本较高,且下游需求量不足,18英寸硅片尚未成熟

7、。根据加工工序的不同,硅片可分为抛光片、外延片、SOI硅片等高端硅片。其中抛光片应用范围最为广泛,是抛光环节的终产物。抛光片是从单晶硅柱上直接切出厚度约1mm的原硅片,切出后对其进行抛光镜面加工,去除部分损伤层后得到的表面光洁平整的硅片。抛光片可单独使用于电动汽车功率器件和储存芯片中,也可用作其他硅片的衬底,成为其他硅片加工的基础。外延片是一种将抛光片在外延炉中加热后,通过气相沉淀的方式使其表面外延生长符合特定要求的多晶硅的硅片。该技术可有效减少硅片中的单晶缺陷,使硅片具有更低的缺陷密度和氧含量,从而提升终端产品的可靠性,常用于制造CMOS芯片。根据掺杂程度的不同,半导体硅片可分为轻掺和重掺。

8、重掺硅片的元素掺杂浓度高,电阻率低,一般应用于功率器件。轻掺硅片掺杂浓度低,技术难度和产品质量要求更高,一般用于集成电路领域。由于集成电路在全球半导体市场中占比超过80%,目前全球对轻掺硅片需求更大。(二)受益晶圆厂积极扩产,硅片市场快速增长含硅量提升驱动行业快速增长。伴随5G、物联网、新能源汽车、人工智能等新兴领域的高速成长,汽车电子行业成为半导体硅片领域新的需求增长点。据ICInsights数据,2021年全球汽车行业的芯片出货量同比增长了30%,达524亿颗。但全球汽车缺芯情况在2020年短暂缓解后,于2022年再度加剧,带动下游硅片市场需求量上升。据SEMI数据显示,2021年全球半导

9、体硅片市场规模为126亿美元,同比增长125%。五、 光刻胶:半导体工艺核心材料,道阻且长光刻胶是光刻工艺最重要的耗材。光刻胶是一种通过特定光源照射下发生局部溶解度变化的光敏材料,主要作用于光刻环节,承担着将掩模上的图案转化到晶圆的重要功能。进行光刻时,硅片上的金属层涂抹光刻胶,掩膜上印有预先设计好的电路图案,光线透过掩膜照射光刻胶。如果曝光在紫外线下的光刻胶变为溶剂,清除后留下掩膜上的图案,此为正性胶,反之为负性胶。(一)先进制程推动产品迭代,半导体光刻胶壁垒最高光刻胶可以根据曝光光源波长、显示效果和化学结构三种方式进行分类。根据曝光波长的不同,目前市场上应用较多的光刻胶可分为g线、i线、K

10、rF、ArF和EUV5种类型。光刻胶波长越短,加工分辨率越高,不同的集成电路工艺在光刻中对应使用不同波长的光源。随着芯片制程的不断进步,每一代新的光刻工艺都需要新一代的光刻胶技术与之相匹配。g/i线光刻胶诞生于20世纪80年代,当时主流制程工艺在08-12m,适用于波长436nm的光刻光源。到了90年代,制程进步到035-05m,对应波长更短的365nm光源。当制程发展到035m以下时,g/i线光刻胶已经无法制程工艺的需求,于是出现了适用于248纳米波长光源的KrF光刻胶,和193纳米波长光源的ArF光刻胶,两者均是深紫外光刻胶。EUV(极紫外光)是目前最先进的光刻胶技术,适用波长为135nm

11、的紫外光,可用于10nm以下的先进制程,目前仅有ASML集团掌握EUV光刻胶所对应的光刻机技术。根据显示效果的不同,光刻胶可分为正性和负性。如果光刻胶是正性的,在特定光线照射下光刻胶会发生反应并变成溶剂,曝光部分的光刻胶可以被清除。如果为负性光刻胶,曝光的光刻胶反应不再是溶剂,未曝光的光刻胶被清除。光分解型光刻胶采用含有重氮醌类化合物材料作为感光剂,光线照射后发生光分解反应,由油性变为水性溶剂,可制造正性光刻胶。光交联型光刻胶采用聚乙烯醇月桂酸酯作为光敏材料,光线照射后形成一种网状结构的不溶物,可起到抗蚀作用,适用于制成负性光刻胶。化学放大型光刻胶使用光致酸剂作为光引发剂,光线照射后,曝光区域

12、的光致酸剂会产生一种酸,并在后热烘培工序期间作为催化剂移除树脂的保护基团,使树脂变得可溶。化学放大光刻胶对深紫外光源具有良好的光敏性,具有高对比度、分辨率等优点。(二)光刻胶市场稳定增长,ArFi占比最高半导体光刻胶市场增速稳定。伴随芯片制程工艺的升级,光刻胶市场需求量也随之增加。根据TECHECT数据,2021年全球光刻胶市场规模约为19亿美元,同比增长11%,预计2022年将达到2134亿美元,同比增长1232%。具体来看,在7nm制程的EUV技术成熟之前,ArFi光刻胶仍是市场主流,占比高达368%,KrF和g/i光刻胶分别占比为358%和147%。目前国内从事半导体光刻胶研发和生产的企

13、业包括晶瑞股份、南大光电、上海新阳、北京科华等。主要以i/g线光刻胶生产为主,应用集成电路制程350nm以上。KrF光刻胶方面,北京科华、徐州博康已实现量产。南大光电ArF光刻胶产业化进程相对较快,公司先后承担国家02专项高分辨率光刻胶与先进封装光刻胶产品关键技术研发项目和ArF光刻胶产品的开发和产业化项目,也是第一家ArF光刻胶通过国内客户产品验证的公司,其他国内企业尚处于研发和验证阶段。六、 半导体材料为芯片之基,覆盖工艺全流程半导体材料包括晶圆制造材料和封装材料。其中晶圆制造材料包括硅片、掩模版、电子气体、光刻胶、CMP抛光材料、湿电子化学品、靶材等,封装材料包括封装基板、引线框架、键合

14、丝、包封材料、陶瓷基板、芯片粘结材料和其他封装材料。具体来说,在芯片制造过程中,硅晶圆环节会用到硅片;清洗环节会用到高纯特气和高纯试剂;沉积环节会用到靶材;涂胶环节会用到光刻胶;曝光环节会用到掩模板;显影、刻蚀、去胶环节均会用到高纯试剂,刻蚀环节还会用到高纯特气;薄膜生长环节会用到前驱体和靶材;研磨抛光环节会用到抛光液和抛光垫。在芯片封装过程中,贴片环节会用到封装基板和引线框架;引线键合环节会用到键合丝;模塑环节会用到硅微粉和塑封料;电镀环节会用到锡球。七、 半导体材料市场规模快速增长随着下游电子设备硅含量增长,半导体需求快速增长。在半导体工艺升级+积极扩产催化下,半导体材料市场快速增长。据S

15、EMI报告数据,2021年全球半导体材料市场收入达到643亿美元,超过了此前2020年555亿美元的市场规模最高点,同比增长159%。晶圆制造材料和封装材料收入总额分别为404亿美元和239亿美元,同比增长155%和165%。此外,受益于产业链转移趋势,2021年国内半导体材料销售额高达1193亿美元,同比增长22%,增速远高于其他国家和地区。八、 先进制程持续升级,半导体材料同步提升进入21世纪以来,5G、人工智能、自动驾驶等新应用的兴起,对芯片性能提出了更高的要求,同时也推动了半导体制造工艺和新材料不断创新,国内外晶圆厂加紧对于半导体新制程的研发,台积电已于2020年开启了5nm工艺的量产

16、,并于2021年年底实现3nm制程的试产,预计2022年开启量产。此外台积电表示已于2021年攻克2nm制程的技术节点的工艺技术难题,并预计于2023年开始风险试产,2024年逐步实现量产。随着芯片工艺升级,晶圆厂商对半导体材料要求越来越高。九、 半导体材料景气持续,市场空间广阔半导体是指常温下导电性能介于导体与绝缘体之间的材料。无论从科技或经济发展的角度来看,半导体都至关重要。2010年以来,全球半导体行业从PC时代进入智能手机时代,成为全球创新最为活跃的领域,广泛应用于计算机、消费类电子、网络通信和汽车电子等核心领域。半导体产业主要由集成电路、光电子、分立器件和传感器组成,据WSTS世界半

17、导体贸易统计组织预测,到2022年全球集成电路占比8422%,光电子器件、分立器件、传感器占比分别为741%、510%和326%。半导体工艺复杂,技术壁垒极高。芯片生产大体可分为硅片制造、芯片制造和封装测试三个流程。其中硅片制造包括提纯、拉单晶、磨外圆、切片、倒角、磨削、CMP、外延生长等工艺,芯片制造包括清洗、沉积、氧化、光刻、刻蚀、掺杂、CMP、金属化等工艺,封装测试包括减薄、切割、贴片、引线键合、模塑、电镀、切筋成型、终测等工艺。整体而言,硅片制造和芯片制造两个环节技术壁垒极高。目前多晶硅厂商多采用三氯氢硅改良西门子法进行多晶硅生产。具体工艺是将氯化氢和工业硅粉在沸腾炉内合成三氯氢硅,通

18、过精馏进一步提纯高纯三氯氢硅,后在1100左右用高纯氢还原高纯三氯氢硅,生成多晶硅沉积在硅芯上,进而得到电子级多晶硅。目前8寸和12寸硅片大多通过直拉法制备,部分6寸和8寸硅片则通过区熔法制得。直拉法是将高纯多晶硅放入石英坩埚内,通过外围的石墨加热器加热至1400,随后坩埚带着多晶硅融化物旋转,将一颗籽晶浸入其中后,由控制棒带着籽晶作反方向旋转,同时慢慢地、垂直地由硅融化物中向上拉出,并在拉出后和冷却后生长成了与籽晶内部晶格方向相同的单晶硅棒。区熔法利用高频线圈在多晶硅棒靠近籽晶一端形成熔化区,移动硅棒或线圈使熔化区超晶体生长方向不断移动,向下拉出得到单晶硅棒。单晶硅棒研磨成相同直径,然后根据

19、客户要求的电阻率,多采用线切割将晶棒切成约1mm厚的晶圆薄片。十、 湿电子化学品:半导体制造材料关键一环湿电子化学品贯穿整个芯片制造流程,是重要的晶圆制造材料。湿电子化学品又称工艺化学品,是指主体成分纯度大于9999%,杂质离子和微粒数符合严格标准的化学试剂。在IC芯片制造中,湿电子化学品常用于清洗、光刻和蚀刻等工艺,可有效清除晶圆表面残留污染物、减少金属杂质含量,为下游产品质量提供保障。在半导体制造工艺中主要用于集成电路前端的晶圆制造及后端的封装测试,用量较少,但产品纯度要求高、价值量大。(一)湿电子化学品种类众多,硫酸和双氧水占比较高根据应用领域的不同,湿电子化学品可分为通用化学品和功能性

20、化学品。其中通用化学品指主体成分纯度大于9999%、杂质离子含量低于PPM级和尘埃颗粒粒径在05m以下的单一高纯试剂。功能湿电子化学品指可通过复配满足制造中特殊工艺需求、达到某些特定功能的配方类和复配类液体化学品。其中通用化学品广泛应用于IC芯片、液晶显示面板和LED制造领域,包括氢氟酸、硫酸、磷酸、盐酸、硝酸、乙酸等。功能性湿电子以光刻胶配套试剂为代表,包括显影液、漂洗液、剥离液等。(二)全球市场空间超50亿美元,国内增速更快受益于三大下游市场扩容,湿电子化学品需求量有望实现稳定增速。近年来,半导体、显示面板、光伏三大板块下游市场规模不断扩大,产业迎来高速发展,带动湿电子化学品市场规模平稳增

21、长。据智研咨询数据,2020年全球湿电子化学品市场规模为5084亿美元,受疫情影响略有下滑。国内湿电子化学品市场规模于2020年达到1006亿元,同比增长92%。中低端领域国产转化率较高,产业升级主要面向G4-G5级产品。国际半导体设备和材料组织(SEMI)于1975年制定了国际统一的湿电子化学品杂质含量标准。该标准下,产品级别越高,所对应的集成电路加工工艺精细度程度越高,制程越先进。半导体领域对湿电子化学品的纯度要求较高,集中在G3、G4级水平,且晶圆尺寸越大对纯度的要求越高,12英寸晶圆制造一般要求G4级以上水平。目前国外主流湿电子化学品企业已实现G5级标准化产品的量产。国内市场半导体领域

22、的湿电子化学品,G2、G3级中低端产品进口转化率高,因为此技术范围内国产产品本土化生产、性价比高、供应稳定等优势较为突出。G4、G5级高端产品仍有较大进口替代空间,为未来主要升级方向。(三)纯化和复配为湿电子化学品核心,半导体要求最高集成电路对超净高纯试剂纯度的要求非常高。按照SEMI等级的分类,G1级属于低档产品,G2级属于中低档产品,G3级属于中高档产品,G4和G5级则属于高档产品。集成电路用超高纯试剂的纯度要求基本集中在G3、G4级水平,中国的研发水平与国际仍存在较大差距。湿电子化学品技术制造复杂,且品类众多,每种产品的制备要求各不相同,无法设计加工通用设备。企业必须根据不同品种的特性来

23、确定适合的工艺路径,设计加工所需的设备,因此显著提升了制造成本和供应难度。研发能力及技术积累。湿电子化学品的生产技术包括混配技术、分离技术、纯化技术以及与其生产相配套的分析检验技术、环境处理与监测技术等。以上技术都需要企业具备研发能力和一定的技术积累。同时,下游产品的生产工艺和专用性需求不尽相同,这需要企业有较强的配套能力和一定的时间去掌握核心的配方工艺以满足不同产品的需求。(四)外企垄断高端湿电子化学品市场,国内厂商有所突破日韩企业长期垄断G4及以上级别高端市场。国际市场上G4及其以上级别的高端产品多数被欧美、日本、韩国等海外公司垄断。2019年海外市场份额合计达到98%。根据新材料在线数据

24、,德国巴斯夫;美国亚什兰化学、Arch化学;日本关东化学、三菱化学、京都化工、住友化学、和光纯药工业;中国台湾鑫林科技;韩国东友精细化工等十家公司共占全球市场份额的80%以上。国内湿电子化学品市场百舸争流。由于进入壁垒相对较低,我国湿电子化学品制造企业众多,约有40余家。其中,以江化微和格林达为首的湿电子化学品专业制造商,主要产品集中在湿电子化学品,产品种类丰富且毛利率高;以晶瑞电材和飞凯材料为代表的综合型微电子材料制造商,涉及领域更广,客户体量相对较大。此外还有例如巨化股份等大型化工企业,湿电子化学品类产品营收占比较少,具有原材料方面的优势。目前国内制造商产能主要集中在G3、G4级领域,多数已开始布局G5级产品产线,预计在2022年实现逐步放量。但目前相较于国际主流公司,国内企业产量较小。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!