射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系

上传人:lis****211 文档编号:187936911 上传时间:2023-02-16 格式:DOCX 页数:11 大小:27.57KB
收藏 版权申诉 举报 下载
射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系_第1页
第1页 / 共11页
射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系_第2页
第2页 / 共11页
射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系_第3页
第3页 / 共11页
资源描述:

《射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系》由会员分享,可在线阅读,更多相关《射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系(11页珍藏版)》请在装配图网上搜索。

1、射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系射频中的回波损耗,反射系数,电压驻波比以及S参数的含义和关系回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下:回波损耗(Return Loss):入射功率/反射功率,为dB数值反射系数(r):反射电压/入射电压,为标量电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损 耗,S22为输出反射系数,也就是输出回波损耗。四者的关系:VSWR=(1

2、+)/(1-)(1)S11 = 20lg(r)(2)RL=-S11(3)以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的 参数。其中,S11实际上就是反射系数,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射 电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输线有关,将两个网络连接在一起, 虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电 压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以

3、及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义回波损耗反射系数电压驻波比s参数射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12 = S21,对于对称网络有S11 = S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口 1输入的能量不是被反射回端口 1就是传输到端口 2上了。在高速电路设计中用到以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12 = S21, 对于对称网络有S11 = S

4、22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口 1输入 的能量不是被反射回端口 1就是传输到端口 2上了。在高速电路设计中用到的微带线或带状线,都有参考平面, 为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假 设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗, 也就是有多少能量被反射回源端(Port1) 了,这个值越小越好,一般建议S110.7,即一3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S210.7 的

5、要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的 传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串扰系 统,注意在奇模激励和偶模激励下的S参数值不同。需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的 指标只要在由信号的边缘速率表示的EMI发射带宽范围内满足要求就可以了。回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下:回

6、波损耗(Return Loss):入射功率/反射功率,为dB数值反射系数():反射电压/入射电压,为标量 射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是 输入回波损耗,S22为输出反射系数,也就是输出回波损耗。四者的关系:vswR=(i+r)/(i-r)(1)S11=20lg(r)(2)RL=-S11(3)以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描

7、述阻抗匹 配好坏程度的参数。其中,S11实际上就是反射系数r,只不过它特指一个网络1号端口的反射系数。反射系 数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义 与传输线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没 有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用 哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗与VSWR之间的转换关系,读者可以采用上面的式子1和2来手动计算.反射系数 行波系数 驻波比 回波损耗1定义:天馈线匹配:阻抗匹配的优劣

8、一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一 个均出于习惯。通常用的较多的是驻波比和回波损耗.比: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小 于 1.5。射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。2公式表达2.1驻波比:S=电压最大值/电

9、压最小值=Umax/Umin2.2行波系数:K=电压最小值/电压最大值= Umin/Umax=(入射波振幅-反射波振幅)/(反射波振幅+入射波振幅)2.3反射系数:P=反射波振幅/入射波振幅=(传输线特性阻抗-负载阻抗)/(传输线特性阻抗+负载阻抗)即 P= | (Zb-Za) / (Zb+Za) | 取绝对值2.4回波损耗:L=1/P= | (Zb+Za) / (Zb-Za) |2.5驻波比与反射系数:S=(1+P) / (1-P)vswr百科名片VSWR翻译为电压驻波比(Voltage Standing Wave Ratio),一般简称驻波比。电磁波从甲介质传导到乙介质,会由于介质不同,

10、电磁波的能量会有一部分被反射,从而在甲区域形成“行驻波”。电压驻波比,指的就是行驻波的电压峰值与电压谷值之比, 此值可以通过反射系数的模值计算:VSWR=(1+反射系数模值)/(1-反射系数模值)。而入射波能量与反射波能量的比值为1: (反射系数模的平方)由上可知,驻波比越大,反射功率越高,传输效率越低。目录简介具体描述简介具体描述展开编辑本段简介射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系VSWR翻译为电压驻波比(Voltage Standing Wave Ratio),一般简称驻波比。电磁波从甲介质传导到乙介质,会由于介质不同,电磁波的能量会有一部分被反射, 从而在甲区域形成“

11、行驻波”。电压驻波比,指的就是行驻波的电压峰值与电压谷值之比,此值可以通过反射系数 的模值计算:VSWR=(1+反射系数模值)/(1-反射系数模值)。而入射波能量与反射波能量的比值为1:(反射系数模的平方)从能量传输的角度考虑,理想的 VSWR为1:1,即此时为行波传速状态,在传 输线中,称为阻抗匹配;最差时VSWR无穷大,此时反射系数模为1,为纯驻波状态, 称为全反射,没有能量传输。由上可知,驻波比越大,反射功率越高,传输效率越低。编辑本段具体描述电压驻波比(VSWR)电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是 否良好。当业余无线电爱好者进行联络时,当然首先会想

12、到测量一下天线系统的驻波 比是否接近1:1,如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻 波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?VSWR及标称阻抗发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果 发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻 抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平 行馈线,因此发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机的天线 标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。如果你拥有一台输出阻抗

13、为600欧姆的老电台,那就大可不必费心血用50欧姆的 VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就 可以了。VSWR不是1时,比较VSWR的值没有意义正因为VSWR除了 1以外的数值不值得那么精确地认定(除非有特殊需要),所 以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有 VSWR给出它 的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数 VSWR表在不同频率、不同功率下的误差并不均匀。VSWR都=1不等于都是好天线影响天线效果的最重要因素:谐振 射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系让我们用弦乐器的弦来加

14、以说明。无论是提琴还是古筝,它的每一根弦在特定的 长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移 动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振 的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹), 中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱 动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就 是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓 或者拨弦位置错误会影响弦的发声强度

15、,但稍有不当还不至于影响太多,而要发出与 琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱, 即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。天线也是同样,要使天线发射的电磁场最强,一是发射频率必须和天线的固有频 率相同,二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐 振,效果会略受影响,但是如果天线与信号频率不谐振,则发射效率会大打折扣。所以,在天线匹配需要做到的两点中,谐振是最关键的因素。在早期的发信机,例如本期介绍的71型报话机中,天线电路只用串联电感、电容 的办法取得与工作频率的严格谐振,而进一步的阻抗配合是由线圈之间的固定耦合

16、确 定死的,在不同频率下未必真正达到阻抗的严格匹配,但是实际效果证明只要谐振就 足以好好工作了。因此在没有条件做到VSWR绝对为1时,业余电台天线最重要的调整是使整个天 线电路与工作频率谐振。天线的驻波比和天线系统的驻波比天线的VSWR需要在天线的馈电端测量。但天线馈电点常常高悬在空中,我们只 能在天线电缆的下端测量VSWR,这样测量的是包括电缆的整个天线系统的VSWR。 当天线本身的阻抗确实为50欧姆纯电阻、电缆的特性阻抗也确实是50欧姆时,测出 的结果是正确的。当天线阻抗不是50欧姆时而电缆为50欧姆时,测出的VSWR值会严重受到天线 长度的影响,只有当电缆的电器长度正好为波长的整倍数时、

17、而且电缆损耗可以忽略 不计时,电缆下端呈现的阻抗正好和天线的阻抗完全一样。但即便电缆长度是整倍波 长,但电缆有损耗,例如电缆较细、电缆的电气长度达到波长的几十倍以上,那么电 缆下端测出的VSWR还是会比天线的实际VSWR低。所以,测量VSWR时,尤其在UHF以上频段,不要忽略电缆的影响。不对称天线我们知道偶极天线每臂电气长度应为1/4波长。那么如果两臂长度不同,它的谐 振波长如何计算?是否会出现两个谐振点?如果想清了上述琴弦的例子,答案就清楚了。系统总长度不足 3/4波长的偶极天 线(或者以地球、地网为镜象的单臂天线)只有一个谐振频率,取决于两臂的总长度。射频中的回波损耗反射系数电压驻波比以及

18、S参数的含义和关系两臂对称,相当于在阻抗最低点加以驱动,得到的是最低的阻抗。两臂长度不等,相 当于把弓子偏近琴马拉弦,费的力不同,驱动点的阻抗比较高一些,但是谐振频率仍 旧是一个,由两臂的总长度决定。如果偏到极端,一臂加长到 1/2波长而另一臂缩短 到0,驱动点阻抗增大到几乎无穷大,则成为端馈天线,称为无线电发展早期用在汽 艇上的齐柏林天线和现代的1/2波长R7000垂直天线,当然这时必须增加必要的匹配 电路才能连接到50欧姆的低阻抗发射机上。偶极天线两臂不对称,或者两臂周围导电物体的影响不对称,会使谐振时的阻抗 变高。但只要总电气长度保持1/2波长,不对称不是十分严重,那么虽然特性阻抗会 变

19、高,一定程度上影响VSWR,但是实际发射效果还不至于有十分明显的恶化。QRPer不必苛求VSWR当VSWR过高时,主要是天线系统不谐振时,因而阻抗存在很大电抗分量时,发 射机末级器件可能需要承受较大的瞬间过电压。早期技术不很成熟时,高 VSWR容易 造成射频末级功率器件的损坏。因此,将VSWR控制在较低的数值,例如3以内,是 必要的。现在有些设备具有比较完备的高 VSWR保护,当在线测量到的VSWR过高时, 会自动降低驱动功率,所以烧末级的危险比20年以前降低了很多。但是仍然不要大意。不过对于QRP玩家讲来,末级功率有时小到几乎没有烧末级的可能性。移动运用 时要将便携的临时天线调到VSWR =

20、 1却因为环境的变幻而要绞尽脑汁。这时不必太 丧气。1988 1989年笔者为BY1PK试验4W的CW/QRP,使用长度不足1.5米的三 楼窗帘铁丝和长度为1.5米左右的塑料线做馈线,用串并电容的办法调到天线电流最 大,测得VSWR为无穷大,却也联到了 JA、VK、U9、OH等电台。后来做了一个小 天调,把VSWR调到1,但对比试验中远方友台报告说,VSWR的极大变化并没有 给信号带来什么改进,好像信号还变弱了些,可能本来就微弱的信号被天调的损耗又 吃掉了一些吧。总之,VSWR道理多多。既然有了业余电台,总是免不了和 VSWR打交道,不妨 多观察、积累、交流各自的心得吧。天线系统和输出阻抗天线

21、系统和输出阻抗为50欧的发信机的匹配条件是天线系统阻抗为50欧纯电阻。 要满足这个条件,需要做到两点:第一,天线电路与工作频率谐振(否则天线阻抗就 不是纯电阻);第二,选择适当的馈电点。一些国外杂志文章在介绍天线时经常给出VSWR的曲线。有时会因此产生一种错觉,只要 VSWR = 1,总会是好天线。其实, VSWR = 1只能说明发射机的能量可以有效地传输到天线系统。但是这些能量是否能有 效地辐射到空间,那是另一个问题。一副按理论长度作制作的偶极天线,和一副长度 只有1/20的缩短型天线,只要采取适当措施,它们都可能做到 VSWR = 1,但发射效 果肯定大相径庭,不能同日而语。做为极端例子,

22、一个 50欧姆的电阻,它的VSWR 十分理想地等于1,但是它的发射效率是0。而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐,射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系天线容性失谐,天线谐振但是馈电点不对,等等。在阻抗园图上,每一个 VSWR数值 都是一个园,拥有无穷多个点。也就是说,VSWR数值相同时,天线系统的状态有很 多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意 义。天线VSWR = 1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效 地输送到天线上,匹配的情况只有这一种。vswr百科名片VSWR翻译为电压驻波比

23、(Voltage Standing Wave Ratio),一般简称驻波比。电磁波从甲介质传导到乙介质,会由于介质不同, 电磁波的能量会有一部分被反射,从而在甲区域形成“行驻波”。电压驻波比,指的就是行驻波的电压峰值与电压谷值之比, 此值可以通过反射系数的模值计算:VSWR=(1+反射系数模值)/(1-反射系数模值)。而入射波能量与反射波能量的比值为1: (反射系数模的平方)由上可知,驻波比越大,反射功率越高,传输效率越低。目录简介具体描述简介具体描述展开编辑本段简介VSWR翻译为电压驻波比(Voltage Standing Wave Ratio),一般简称驻波比。电磁波从甲介质传导到乙介质,

24、会由于介质不同,电磁波的能量会有一部分被反射, 从而在甲区域形成“行驻波”。电压驻波比,指的就是行驻波的电压峰值与电压谷值之比,此值可以通过反射系数 的模值计算:VSWR=(1+反射系数模值)/(1-反射系数模值)。而入射波能量与反射波能量的比值为1:(反射系数模的平方)从能量传输的角度考虑,理想的 VSWR为1:1,即此时为行波传速状态,在传 输线中,称为阻抗匹配;最差时VSWR无穷大,此时反射系数模为1,为纯驻波状态, 称为全反射,没有能量传输。由上可知,驻波比越大,反射功率越高,传输效率越低。编辑本段具体描述射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系电压驻波比(VSWR)电

25、压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是 否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波 比是否接近1:1,如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻 波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?VSWR及标称阻抗发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果 发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻 抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平 行馈线,因此发射机的输出阻抗多为几百欧姆。而

26、现代商品固态无线电通信机的天线 标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的 VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就 可以了。VSWR不是1时,比较VSWR的值没有意义正因为VSWR除了 1以外的数值不值得那么精确地认定(除非有特殊需要),所 以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有 VSWR给出它 的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数 VSWR表在不同频率、不同功率下的误差并不均匀。VSWR都=1不等

27、于都是好天线影响天线效果的最重要因素:谐振让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的 长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移 动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振 的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹), 中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱 动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就 是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上

28、。我们在实际中不难发现,拉弓 或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与 琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱, 即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。天线也是同样,要使天线发射的电磁场最强,一是发射频率必须和天线的固有频 率相同,二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐 振,效果会略受影响,但是如果天线与信号频率不谐振,则发射效率会大打折扣。射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系所以,在天线匹配需要做到的两点中,谐振是最关键的因素。在早期的发信机,例如本期介

29、绍的71型报话机中,天线电路只用串联电感、电容 的办法取得与工作频率的严格谐振,而进一步的阻抗配合是由线圈之间的固定耦合确 定死的,在不同频率下未必真正达到阻抗的严格匹配,但是实际效果证明只要谐振就 足以好好工作了。因此在没有条件做到VSWR绝对为1时,业余电台天线最重要的调整是使整个天 线电路与工作频率谐振。天线的驻波比和天线系统的驻波比天线的VSWR需要在天线的馈电端测量。但天线馈电点常常高悬在空中,我们只 能在天线电缆的下端测量VSWR,这样测量的是包括电缆的整个天线系统的VSWR。 当天线本身的阻抗确实为50欧姆纯电阻、电缆的特性阻抗也确实是50欧姆时,测出 的结果是正确的。当天线阻抗

30、不是50欧姆时而电缆为50欧姆时,测出的VSWR值会严重受到天线 长度的影响,只有当电缆的电器长度正好为波长的整倍数时、而且电缆损耗可以忽略 不计时,电缆下端呈现的阻抗正好和天线的阻抗完全一样。但即便电缆长度是整倍波 长,但电缆有损耗,例如电缆较细、电缆的电气长度达到波长的几十倍以上,那么电 缆下端测出的VSWR还是会比天线的实际VSWR低。所以,测量VSWR时,尤其在UHF以上频段,不要忽略电缆的影响。不对称天线我们知道偶极天线每臂电气长度应为1/4波长。那么如果两臂长度不同,它的谐 振波长如何计算?是否会出现两个谐振点?如果想清了上述琴弦的例子,答案就清楚了。系统总长度不足 3/4波长的偶

31、极天 线(或者以地球、地网为镜象的单臂天线)只有一个谐振频率,取决于两臂的总长度。 两臂对称,相当于在阻抗最低点加以驱动,得到的是最低的阻抗。两臂长度不等,相 当于把弓子偏近琴马拉弦,费的力不同,驱动点的阻抗比较高一些,但是谐振频率仍 旧是一个,由两臂的总长度决定。如果偏到极端,一臂加长到1/2波长而另一臂缩短到0,驱动点阻抗增大到几乎无穷大,则成为端馈天线,称为无线电发展早期用在汽 艇上的齐柏林天线和现代的1/2波长R7000垂直天线,当然这时必须增加必要的匹配 电路才能连接到50欧姆的低阻抗发射机上。偶极天线两臂不对称,或者两臂周围导电物体的影响不对称,会使谐振时的阻抗 变高。但只要总电气

32、长度保持1/2波长,不对称不是十分严重,那么虽然特性阻抗会 变高,一定程度上影响VSWR,但是实际发射效果还不至于有十分明显的恶化。QRPer不必苛求VSWR当VSWR过高时,主要是天线系统不谐振时,因而阻抗存在很大电抗分量时,发 射机末级器件可能需要承受较大的瞬间过电压。早期技术不很成熟时,高 VSWR容易 造成射频末级功率器件的损坏。因此,将VSWR控制在较低的数值,例如3以内,是 必要的。射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系现在有些设备具有比较完备的高 VSWR保护,当在线测量到的VSWR过高时, 会自动降低驱动功率,所以烧末级的危险比20年以前降低了很多。但是仍然不

33、要大意。不过对于QRP玩家讲来,末级功率有时小到几乎没有烧末级的可能性。移动运用 时要将便携的临时天线调到VSWR = 1却因为环境的变幻而要绞尽脑汁。这时不必太 丧气。1988 1989年笔者为BY1PK试验4W的CW/QRP,使用长度不足1.5米的三 楼窗帘铁丝和长度为1.5米左右的塑料线做馈线,用串并电容的办法调到天线电流最 大,测得VSWR为无穷大,却也联到了 JA、VK、U9、OH等电台。后来做了一个小 天调,把VSWR调到1,但对比试验中远方友台报告说,VSWR的极大变化并没有 给信号带来什么改进,好像信号还变弱了些,可能本来就微弱的信号被天调的损耗又 吃掉了一些吧。总之,VSWR

34、道理多多。既然有了业余电台,总是免不了和 VSWR打交道,不妨 多观察、积累、交流各自的心得吧。天线系统和输出阻抗天线系统和输出阻抗为50欧的发信机的匹配条件是天线系统阻抗为50欧纯电阻。 要满足这个条件,需要做到两点:第一,天线电路与工作频率谐振(否则天线阻抗就 不是纯电阻);第二,选择适当的馈电点。 一些国外杂志文章在介绍天线时经常给出 VSWR的曲线。有时会因此产生一种错觉,只要 VSWR = 1,总会是好天线。其实, VSWR = 1只能说明发射机的能量可以有效地传输到天线系统。但是这些能量是否能有 效地辐射到空间,那是另一个问题。一副按理论长度作制作的偶极天线,和一副长度 只有1/2

35、0的缩短型天线,只要采取适当措施,它们都可能做到 VSWR = 1,但发射效 果肯定大相径庭,不能同日而语。做为极端例子,一个 50欧姆的电阻,它的VSWR 十分理想地等于1,但是它的发射效率是0。而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐, 天线容性失谐,天线谐振但是馈电点不对,等等。在阻抗园图上,每一个 VSWR数值 都是一个园,拥有无穷多个点。也就是说,VSWR数值相同时,天线系统的状态有很 多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意 义。天线VSWR = 1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效 地输送到天线上,匹配的情况只有这一种。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!