汽车底盘知识及构造

上传人:沈*** 文档编号:185619401 上传时间:2023-02-04 格式:PPT 页数:55 大小:1.47MB
收藏 版权申诉 举报 下载
汽车底盘知识及构造_第1页
第1页 / 共55页
汽车底盘知识及构造_第2页
第2页 / 共55页
汽车底盘知识及构造_第3页
第3页 / 共55页
资源描述:

《汽车底盘知识及构造》由会员分享,可在线阅读,更多相关《汽车底盘知识及构造(55页珍藏版)》请在装配图网上搜索。

1、汽车底盘知识汽车底盘知识汽车底盘知识一.汽车的悬挂 汽车的避震指的是什么,不清楚哪种是最好的,哪种是落后的。大卡车上为什么使用钢板弹簧来作为避震?另外,还有人将避震叫悬挂或悬架的,到底应怎么叫?避震、悬挂和悬架的意思都一样,都是指车轮与车身之间的连接物,避震是通俗叫法,而悬挂和悬架均是“学名”。所谓悬挂就是把车身和车轮弹性地连接起来的机构,其功能除了传递作用力以外,就是缓冲在不平路面行驶时车轮传给车身的冲击和振动,保证汽车正常行驶。生活中的悬挂其实也常见,如自行车座子下面的弹簧、三轮板车上的“钢弓子”,都是悬挂。汽车上的悬挂结构大体可分为两种:一种是左、右车轮用一根刚性轴连起来并与车身相连的叫

2、非独立悬挂。大卡车使用的钢板弹簧避震就是非独立悬挂。它具有结构简单、强度高、稳定性好、容易制造、维修方便、轮胎磨损小和价格低廉等优点。其缺点是汽车在高速或在不平路面行驶时,颠簸厉害,使人感到不舒服。另一种是左、右车轮不连在一根轴上,而是单独通过悬挂与车身连接的叫 独立悬挂。为什么轿车的舒适性较大卡车好呢?因为这些车采用了独立悬挂,这种悬挂的结构是用轻便的杠杆、摆臂代替了整体车轴,当一侧车轮驶入凹凸不平路面时,不会牵动另一侧车轮而引起冲击振动,这就提高了乘座舒适性。但采用独立悬挂后也相应使结构复杂,产品价格上升。独立悬挂结构型式也有多种,常见的有:螺旋弹簧双横臂独立悬挂、扭杆式独立悬挂、滑柱摆臂

3、式独立悬挂和麦弗逊式独立悬挂等。现在几乎所有轿车的前轮都采用独立悬挂,后轮虽然比前轮采用独立悬挂的要少,但中、高级轿车一般都是四轮独立悬挂。雪铁龙有一种液压悬挂,它是用一个液压筒代替一组弹簧和减震器。液压筒根据中央控制器的指令来调整自身的工作情况。而中央控制器是按车身上的传感器所收集的资料信息计算后发出指令的。这些信息资料包括车速、车身侧偏程度、方向盘及油门位置等。液压悬挂现在几乎成了雪铁龙的“独门”技术,自然也成了雪铁龙的最大个性之一,现在几乎所有雪铁龙汽车都使用液压悬挂。此外还有一种悬挂就是空气悬挂。它是在夹有帘线的橡胶囊内充入压缩空气组成。除具有减振功能和导向机构外还设有车身高度调节装置

4、。空气悬挂虽然储能量大,但因结构复杂、维修麻烦以及轮廓尺寸大不易布置等缺点,目前多用于大客车和无轨电车上。至于哪种悬挂最好,其实这是一个很复杂的问题,每种悬挂各有利弊。如果想提高舒适性而采用较软的悬挂,那么就会影响汽车行驶时的稳定性,尤其是在转弯时侧倾会加大,加速和刹车时会“前仰后合”;反之,为了避免上述不利因素,增加悬挂的刚性,则必然要降低汽车的舒适性。如何调整它们之间的关系,有时竟是进退两难,只能根据汽车的用途、车型来确定。因此,只能说最适合的悬挂就是最好的悬挂。二.汽车悬挂系统相关知识介绍 汽车悬挂系统与操纵性能之间有着密切的关系。理想的悬挂不仅能使车随路面起伏而上下运动,并能借此使整个

5、车身在前进过程中尽量保持水平,而且还能随车速、路况、运动方式的变化做出适当、灵敏的反应;同时,它还能使轮胎与路面随时贴合,并使车轮保持适当的角度,从而使汽车的动力性能、制动性能以及转向性能得以充分体现。汽车的车速越快,对操纵性能要求也就越高。因此,现代汽车的悬挂系统越来越受到业内人士的重视。悬挂系统的功能 悬挂系统作用是将车轮所受的各种力和力矩传递给车架和车身,并能吸收、缓和路面传来的振动和冲击,减少驾驶室内噪声,增加乘员的舒适性,以及保持汽车良好的操作性和平稳的行驶性。另外,悬挂系统能配合汽车的运动产生适当的反应,当汽车在不同路况作加速、制动、转向等运动时,能提供足够的安全性,保证操纵不失控

6、。车轮定位是悬挂系统中重要的一环。正确的车轮定位,不仅能减少轮胎的磨损,延长零部件使用寿命,还能确保汽车直线行驶的稳定性。因此,悬挂系统除使车轮与地面完全贴合外,还必须保证车轮的定位,从而使汽车操纵性能得以完全发挥。悬挂系统的类型 不同的悬挂系统对汽车的操纵性能产生不同的影响。一般悬挂系统有两种型式:(1)非独立悬挂 这种悬挂以刚性梁横贯车体下方,其结构简单、工作可靠,但舒适性差、结构不紧凑,在现代汽车中往往只用于后轮。(2)独立悬挂 这种悬挂中,车轮是以独立的连杆机构来控制,可以单独随路况变化运动而不影响整个车身,增加引行驶的平顺性、安全性。前轮采用独立式悬挂,可以使发动机的位置降低和前移,

7、整车重心得以下降,提高了汽车的行驶稳定性。另外,独立式悬挂中广泛采用较软的螺旋弹簧来做缓冲元件,所以乘驾舒适性也比较好。因此,独立式悬挂被广泛应用在现代汽车上。独立悬架虽然优点很多,但由于车轮外倾角与轮距变化较大,轮胎磨损较严重,而非独立悬挂在行驶中始终保持贴地状态,轮胎的附着刀较强,磨损较均匀,而且成本也远远低于独立悬挂,因此许多车辆上仍还保持这种结构。优秀悬挂系统可提高操纵性能 汽车在行驶中,随着路况和车速的变化,车身会发生不同程度侧倾斜,如转弯时侧倾、制动时车尾上扬等。好的悬挂系统能够使车身发生倾斜的幅度减小,增大轮胎的附着力,从而增强汽车的操纵性能。但是实践证明,比较硬的悬挂系统对车身

8、倾斜的控制较佳,但也因为如此,在乘坐舒适方面就有所欠缺。正所谓鱼和熊掌不可兼得,许多看上去非常气派的高级跑车,坐上去反不如一些中高档轿车舒适。为了使这二者之间能够相容,现代一些高级轿车上采用了主动悬挂设计。这种悬挂系统能够根据路况及车身的变化,自动调节悬挂的高度、弹性及硬度,使整个车身不论在何种状况下,能始终平稳地高速前进,提高了汽车行驶平顺性;而且,主动悬挂还能提高汽车的抗侧倾、抗纵倾的能力,大大加强了汽车的操纵性能。悬挂系统还有待于开发 轮胎的附着力越强,汽车才更容易操纵;对于驾乘者,安全性也越好。以现在的悬挂系统来说,要提高轮胎附着力,只能从悬挂结构本身及轮胎来着手。只不过这样一来,乘坐

9、舒适性将大打折扣。采用主动悬挂也是一个解决办法,但主动悬挂结构复杂,成本高,技术上还不是很完善,普及率也不是很高。因此,既要使汽车的操纵性能更加提高,又要使乘坐更为舒适,这还有待于更新的悬挂系统开发。三.汽车自动变速器的类型及其分析比较 1 汽车自动变速器(AT)的主要类型及目前的使用情况 AT有以下几种形式:(1)液力机械ATHMT(Hydrodynamic Mechanical Transmission)广泛应用于轿车、公共汽车、重型车辆、商用车和工程车辆上,它是目前AT的主流。(2)机械式ATAMT(Automated Mechanical Transmission)在通常机械式变速器基

10、础上加上微机控制电液伺服操纵自动换档机构组成,目前它应用于部分低档轿车上和局部卡车和商用车上。(3)无级式ATCVT(Continuously Variable Transmission)有以下几种形式:机械式:有不少形式,目前主要的是推块金属V型带式传动,在轿车上已开始批量试用。液压传动式(HST hydrostatic transmission):在工程车辆和农业机械上已应用。虽本田公司最近开发了泵和马达制成一体的液压和机械双流传动的AT,用于微型多功能车上,但存在转速限制、效率、噪声、重量和尺寸等问题,在汽车上基本没有应用。电力式:用于电动汽车(EV electric vehicle)。

11、下面对HMT、AMT和CVT 3种AT的结构特点和性能特点加以说明,并进行分析对比。2 AMT的结构和性能特点分析 AMT是在普通人工换档机械式变速器基础上加上替代人工换档的电子控制操纵机构组成,此自动换档机构有人称为换档机械手。AMT是在普通机械变速器上进行改造而成的,仅改变其中手动换挡操纵部分,生产制造继承性好,改造投入费用少,技术难度似乎不大,可以先局部自动化。例如:先离合器自动操纵、局部档位间实现自动操纵等,然后再实现全面自动化。这对资金缺乏、制造能力低、技术力量薄弱的我国汽车工业来说,具有一定的吸引力。已有几家国内单位进行了研究开发,取得了可喜的成绩。AMT保留原来的机械变速器,因此

12、其传动性能基本上和机械变速器相同。除了齿轮传动外,主要特点是具有以下两大机构:起步装置,带扭矩减振器的主离合器;换档装置,带同步器的换档啮合套。这种纯机械传动,具有传动效率高,结构简单等优点,但是换档过程不可避免存在动力中断。只有一个结合元件脱开后,另一个结合元件才能结合的缺点,不能实现换档过程结合元件转换时的搭接控制。因此起步和换档必然不够平稳和冲击较大。同时机械传动很难阻隔发动机扭矩不均匀引起的震动。AMT车振动和噪声较大,乘坐舒适性差,对高级豪华车不太合适。实际上,要搞高水平微机控制自动换档机构在技术上是很难的,除了需高水平的电液比例控制技术外,还要满足驾驶员的驾驶愿望和适应各种行驶工况

13、来进行换档,另外换档过程是复杂的综合操纵过程,除了要操纵主离合器和变速器外,还涉及到发动机油门和制动操纵。从目前来看AMT还比较难达到这个水平,而且这套换档机械手系统的制造成本是不低的,AMT与HMT相比没有价格优势。另外AMT自动换档机构需要动力,因此或多或少也得降低传动效率。基于以上分析,我们认为AMT适用于商用车和卡车,这些车档位较多,采用HMT困难,需要自动操纵,减轻驾驶员劳动,而且换档过程动力切断影响不大,对乘坐舒适性要求也不高。AMT也可用于低档轿车上,且不一定搞全自动,搞局部自动操纵和换档也可以,解决人工换档机械变速器起步换档操纵复杂、劳动强度大的问题,作为简化驾驶操纵的具体技术

14、措施。3 HMT的结构和性能特点分析 HMT是由液力变矩器和液压操纵换档变速器组成。HMT和AMT对比主要差异是:31 起步装置以液力变矩器代替主离合器 变矩器传递扭矩与泵轮转速成平方关系,在发动机低转速时传递力矩小,它解决了内燃机不能有载启动问题,具有不需操纵,只需加油门就能自动起步的功能。通过长期使用证明液力变矩器对汽车来说是一个有效的部件,它具有以下优点:自动变矩,起步时扭矩自动增加,提高起步性能,行驶时能自动适应外界阻力的变化。扭矩和牵引力随油门踏板变化很容易操纵调节,特别是低速起动或爬坡时,使得驾驶容易方便。起步加速和换档平稳,降低传动系统动载荷,延长传动系统寿命。阻隔发动机扭矩不均

15、匀性引起的振动,降低噪声,提高乘坐舒适性给人以驾驶平稳高级的感觉。防止发动机因过载而突然熄火,提高车辆的通过性。变矩器主要缺点是传动效率低,增加油耗。在变矩器应用的初期,人们存在着一种错误认识,认为变矩器能起自动变矩作用,因此最初的HMT变矩器的失速比很大,变矩主要靠变矩器来实现,而变速器是辅助的,因此档位很少,最初只有两档,后来才逐渐明白,要靠变矩器提高变矩比,必然会导致变矩器油耗增大,是行不通的。HMT适应外界阻力的变化变速变矩主要还得依靠变速器。因此HMT的变速器档位数在不断增加,从2档发展到3、4档,目前高档轿车采用5档,并有可能发展到6档。而变矩器的失速变矩比降低到2以下,以提高其最

16、高效率。同时对变矩器的作用也有了进一步的明确,它仅在起步加速和换档过程中起有效作用,在稳定行驶时不起什么作用,反而使油耗增加。因此采用闭锁离合器,将变矩器闭锁成机械传动,以提高效率。刚开始采用闭锁离合器,其闭锁区域仅限于高档位、高车速和低油门较狭窄的区域。因为在低档区域变矩器闭锁后,发动机转矩不均匀产生的振动没有经过液力传动减振直接传给机械传动系,会产生振动和噪音,影响乘坐的舒适性。为了解决燃油经济性和驾驶平稳性之间的矛盾,使得闭锁区域向低速档、低车速和大油门开度领域扩展。最近在轿车上大多采用了闭锁离合器微小打滑控制,使得油耗稍有增加,但驾驶平稳性大大改善。从上面分析可知在汽车上使用液力变矩器

17、已经日趋成熟,尽量解决其传动效率低的缺点,发挥其传动平稳、自动增扭的优点。在变矩器的设计上采用了先进的三维叶栅理论,对循环园形状、各叶轮的叶片和形状进行优化设计,合理确定变矩器力矩系数,使变矩器和发动机匹配优化,改善其共同工作的经济性和动力性。从制造角度来看,变矩器制造不算复杂,成本不高,从使用角度看,变矩器工作可靠,使用寿命长。换档机构采用液压操纵摩擦结合元件。与带同步器啮合套换档相比,换档过程无明显动力中断,可以通过控制在分离的结合元件的油压释放和在结合的结合元件的油压上升,来精确控制换档搭接,实现快速、平稳、无冲击换档。32 从整体控制系统来看 AMT:机械变速器换档是同步器+杆杠拨叉+

18、电液操纵机构。操纵过程由电信号液压信号再通过机械机构(杆杠和同步器)来换档 HMT:动力换档变速器换档过程由电信号液压信号,直接控制换档结合元件的结合与分离。33 从AMT和HMT换档操纵方式来看(1)HMT换档操纵方式比较简单直接,电信号转换至液压信号直接去控制结合元件换档,而AMT转换至液压信号后,再需要通过机械机构去控制换档,显然比较麻烦。(2)AMT是开关型操纵(分离和结合);HMT是比例型的操纵,可控制一个结合元件的逐渐分离,另一个结合元件的逐渐结合。这样就可以控制换档过程的搭接和平稳过渡。如果AMT和HMT都采用定轴式变速器(本田HMT就采用定轴式)从结构复杂程度和制造难易程度来说

19、,HMT并不比AMT差。应该说HMT采用油压控制结合元件换档要比AMT采用液压机构同步器换档性能要好,而且结构并不复杂。目前不少HMT具有手动模式,在手动模式下HMT相当于动力换档变速器,即所谓手动与自动一体的变速器。它具有普通机械变速器的效率高、人工选择换档等特点,但换档操纵却大大简化了。从以上分析可知,HMT在性能上优于AMT,这也就说明了为什么HMT是AT的主流。我们认为HMT可选择的多种工作模式,操纵驾驶容易方便,起步换档无冲击,驾驶平稳,振动噪声低,给人以舒服和高档的感觉,它特别适用于高档轿车。随着HMT的不断改进和完善,对一般驾驶者来说,其动力性能和经济性能也不比AMT差。4 CV

20、T的结构和性能特点分析 CVT有多种形式,这里仅对具有代表性的推块式V型金属带式来进行分析。41 CVT的结构组成(1)起步装置,有以下3种形式:电磁离合器:重量尺寸大,热负荷能力低,一般仅用于微型车辆上;电子控制式湿式摩擦离合器:结构尺寸小,响应快,能量损失小,在有些轿车上采用;液力变矩器:起步扭矩大,坡道起步性能好,驾驶容易方便,微动性能好(进出车库),而且能阻隔发动机扭矩不均匀所引起的振动和冲击。因此,目前CVT也比较倾向于采用变矩器。(2)推块式金属V型带无级变速装置。(3)前进后退换向机构,有行星式和定轴式两种。42 CVT和HMT的比较 从性能上看,CVT是无级传动,能最大限度地利

21、用发动机特性,提高动力性和经济性,同时变速平稳,行驶性能和驾驶感觉都好,HMT是有级传动,为了改善性能必须增加档位数,目前已增加至5档,与CVT性能较接近,但仍稍有差距。(2)从结构制造上看,CVT上仍采用变矩器,还需要前进后退转向机构和液压操纵摩擦结合元件。从结构制造复杂程度上看两者差距不大,目前来看CVT制造成本稍高。(3)CVT作为新产品,从诞生、发展到成熟需要经历充分时间考验和使用证实;对用户来说要有一个认识、信任和接受的过程。目前CVT产品尚有不成熟尚需改进的地方。金属带的结构形状和参数还在不断改进和完善,其传递扭矩的能力在进一步提高。在变速过程中,带的轴向偏移会造成主从动轮的带平面

22、中心线不在同一平面上的现象。此现象会使带在运转过程中发生扭曲,在带轮的入端和出端造成冲击,使噪声增大,传动变的不平稳,并会使带的寿命急剧下降。为解决此问题,目前采用与金属带相接触的带轮的锥面形状进行修正设计。但是最好能使主从带轮两侧对称轴向移动,使两轮带平面中心线不产生偏移。在使用上曾出现不够理想的地方,例如起步和低速行驶时会感到有种CVT独特的滞涩不圆滑的感觉,在紧急停车后再起步时,偶尔会发生低速无法起步的现象。从控制系统来看,包括变速控制,带夹紧力控制和起步控制等都有不够完善的地方。从目前来看,CVT尚未替代HMT大规模使用,主要是因为与HMT相比,性能没有明显突出的优越地方,尚存在不够成

23、熟的地方,而HMT已有60多年的生产制造使用历史,性能相当完善,产品相当成熟。因此虽然很多厂家都在研究、试验、试用CVT,并进行了批量生产,但仍对CVT抱谨慎态度,从目前来看,HMT的主流地位尚未动摇。四.全面了解底盘 底盘的作用是接受发动机的动力,使车轮转动,并保证汽车按驾驶员的操纵正常行驶。底盘包括传动系统、行驶系统、转向系统和制动系统这四大部分,通常,这四大系统也简称为传动系、行驶系、转向系和制动系。传动系我们应该不会感到陌生。大家都知道离合器和变速器吧,它们就是传动系里面的重要部件,驾驶员和它们打的交道都是相当多的(仅次于方向盘了),一趟车跑下来,谁能记得消自己到底踩了多少下离合、换了

24、多少次挡?从动力的传输过程来看,传动系是连接发动机和车轮的纽带,包括离合器、变速器、传动轴、驱动桥等。汽车传动系按照结构和传动介质可以分为机械式、液力机械式、静液式、电力式等四种型式,对于绝大部分汽车来说,目的最常见的是机械式和液力机械式这两种。传动系有多种布置方式,轿车常用FF方式(即发动机前置、前轮驱动);载货车、大部分客车和少部分豪华轿车常用FR方式(即发动机前置、后轮驱动);豪华客车一般采用RR方式(即发机机后置、后轮驱动);越野车多用nWD分式(即全轮驱劝,n表示车轮数量);而赛车一般是采用MR方式(即发动机中置、后轮驱动)。此外,发动机是采取横置还是纵置也都会影响到传动系的布置。传

25、动系的首要任务就是与发动机协调工作,以保证汽车能在不问的使用条件下正常行驶。并具有良好的动力性和燃油经济性。出此,无论是什么型式的传动系,至少都应该具备以卜四种基本功能:1减速和变速 我们知道,只有当作用在驱动轮上的牵引力足以克服外界对汽车的阻力时,汽车方能起步和正常行驶。我们不妨以普通型桑塔纳轿车为例,桑塔纳轿车自重1070kg,发动机排量18升,最大扭矩为150Nm3100rpm,最大功率为72kw5200rpm,车轮规格为19560R14。假设它在水平干燥的水泥路面上以90kmh的速度匀速行驶,这时,它受到的阻力可以用简化公式来计算:Fmgf十CdAua22115(m也就是汽车的自重,前

26、面我们说了为1070kg;g为重力加速度,也就是98ms2;f为轮胎的滚动阻力系数,对于水泥路面,f0014x(1十ua219440);Cd为空气阻力系数、约为032;A为汽车迎风面积,桑塔纳的为189m2;ua为车速,我们已经定为90kmh),计算的结果为440N。接下来,我们再来计算它的驱动力,驱动力计算公式为FtTtqigi0 nT/r(Ttq为发动机扭矩,本例中的最大扭矩为150Nm/3100rpm;ig和i0分别为变速器传动比和主减速器传动比;nT为传动系的机械效率;r为轮胎半径,r14x0.0251十0.195x600.47m),如果将发动机的扭矩直接作用于驱动轮(也就是说发动机的

27、动力不经过传动系而直接作用于车轮,此时,ig和i。均为1,nT为1)。则驱动轮能够得到的最大牵引力约为319N。很显然,牵引力还没有行驶阻力大,这种情况下汽车是无法起步或继续行驶的,它会逐渐减速直至停下。同时,我们还可以看一下,如果将发动机直接与轮胎相连,当发动机以5000rpm的转速运转时,根据ua0.377rnigi。(参数同上,n为发动机转速),车速将达到惊人的886kmh,这样的速度既不实用,也是不可能达到的(因为这时候的阻力非常大,牵引力又小,车子根本就没办法前进)。为了解决上述矛盾,我们就要求传动系必须具备减速增扭的作用(简称减速作用),而主减速器就是起着这样的作用。还有,汽车的使

28、用条件(比如实际装载质量、道路坡度、路面状况,以及道路的宽度和曲率,交通状况所允许的车速等等)由于很多因素的影响而不断变化,这就要求汽车的牵引力和速度要有相当大的变化范围。另一方面,由于发动机在整个转速范围内扭矩变化不大,功率和燃油消耗曲线变化却相当大,这就使得发动机保持高功率低油耗的转速范围(我们可以称之为有利转速范围)是很窄的、为了使发动机能保持在有利的转速范围内工作,传动系的传动比就需要在一定范围内变化。所以,从这个角度来说,传动系还必须具备受速作用,变速器也就应运而生。2实现汽车倒驶 如果汽车连这个功能都不具备的话,很难想象人们怎样进出停东场、车库等,当然在那些狭窄的路而上想倒车也是不

29、可能的了。也许你会说让发动机反着转,不要说目前没有这样的发动机,就是在未来相当长的一段时间内。我们都不可能看到这样的发动机、所以,传动系能够在保持发动机旋转方向不变的情况下使汽车实现反向行驶,这个功能就是通过变速器的例挡来实现的。3必要时中断传动 有过驾驶经验的人都知道。发动机必须是在踩下离合器以后才能启动(踩下离合器就使得发动机不会承受地面的阻力,也就是说让发动机空载,这和汽车空载可是两码事),启动后的发动机也必须保持在最低稳定转速以上才能保证不熄火。除了汽车起步的时候,中断发动机对驱动轮的动力输出也是常有的事,比如换挡、减速停车、遇红灯时等等,所有这些都要求传动系能够在必要的时候切断动力输

30、出,而离合器和变速器的空挡就承担了这个任务。4差速作用 汽车转弯是最平常不过的事,但是大家有没有注意到汽车转弯时车轮是怎样运动的呢?也许你从没注意过这些芝麻蒜皮的小事,那么你到大街上随便找个弯道仔细看一看就会发现:转弯时,汽车的左右车轮转速不一样,弯内侧的车轮比外侧的车轮转得慢些。这个现象并不难理解,因为左右车轮在转弯时通过的距离是不同的。请不要小看这样一个简单的现象,对于非驱动轮来说,这根本就不是问题,可对驱动轮来说就不一样了,如果左右驱动轮在转向时转速一样,必然会使车轮产生相对于地面滑动的现象,这不仅会造成转向困难,还会增加汽车的动力消耗,加速轮胎和传动系零部件磨损,为了避免这些问题的发生

31、,我们就使用了差速器。行驶系的功用是接受由发动机经传动系传来的扭矩,并通过驱动轮与路面的附着作用,产生路而对汽车的牵引力,以保证汽车正常行驶;传递并承受路面作用于车轮上的各向反作用力及其所形成的力矩;此外,它应尽可能地缓和不平路面对车身造成的冲击和振动,保证汽车行驶平顺,并且与汽车转向系很好地配合工作,实现汽车行驶方向的控制,以保证汽车的操纵稳定性。行驶系包括车架、车桥、车轮、悬架等,有的车还包括桥壳(比如载货车、客车、越野车等等)。车架可以说是汽车的骨架,它的作用是支撑并连接汽车的各个总成和零部件,并承受来自车内外的各种载荷。车桥也称为车轴、它通过悬架和车架(或车身)相连,两端安装车轮,其功

32、用也就是传递车架(或车身)与车轮之间各个方向的作用力,承受车架和车身的重量。桥壳和车桥样,都能承受车架和车身重量,承受由车轮传来的路面反作用力和力矩,除此以外。还能保护主减速器、差速器、驱动轴等部件。车轮与轮胎是行驶系中的重要部件,它们的作用很多:支撑整车的重量;缓和由路面传来的冲占力;通过轮胎同路面间存在的附着力来产生驱动力和制动力等等。悬架是车架(或车身)与车桥(或伞轮)之间的传力连接装置的总称,它的功用是把路面作用于车轮上的支撑力、牵引力、制动力和侧向力以及这些作用力所造成的力矩传递到车架(或车身)上,以保证汽车的正常行驶。方向盘应该足每一位驾驶员最熟悉的部件了(用“密切”这个词来形容驾

33、驶员与方向盘的关系丝毫不为过),而它就是我们下面要提到的转向系的组成部分。汽车在行驶过程中需要经常改变行驶方向(也就是转向),除此以外,在汽车直线行驶时,由于车轮受到路面侧向干扰力的作用,就会偏离行驶方向。这样,我们又需要通过方向盘不断地修正偏离的方向以保持正确的行驶方向。所以,转向系的作用就是保证汽车能够按照驾驶员选择的方向行驶。按照转向能源的不同,转向系可以分为机械转向系和动力转向系这两大类。机械转向系以驾驶员的体力作为转向能源,其中所有的传力部件都是机械的,机械式转向系由转向操纵机构(方向盘)、转向器和转向传动机构三大部分组成。由于它完全是以人的体力作为转向能源,容易使驾驶员感到疲劳。为

34、了解决这个问题,动力转向系出现了,它是以驾驶员的体力和发动机动力作为转向能源的。在正常情况下,汽车转向所需的能量只有一小部分由驾驶员提供,而人部分是由发动机通过转向助力装置提供的,但当转向助力装置失效时,还必须保证能由驾驶员自己独立完成汽车转向的任务。因此,动力转向系也就是在机械式转向系的基础上加设了一套转向助力装置。为丁充分减轻驾驶员的负担,现代轿车一般都有动力转向系统。尽可能提高汽车行驶速度,是提高运输生产率的主要技术措施之一,但这必须是以保证汽车行驶安全为前提。因此,在宽阔平坦、车流和人流较小的情况下,汽车可以用高速行驶,而在更多的时候,比如即将转向、行经不平路面、两车交会、遇到障碍物等

35、等,我们都需要降低车速、甚至停车。如果不具备制动这一性能,汽车根本不能按驾驶员的意图减速或停车,就更别汽车的行驶安全了。说到这里,制动系也就不难理解了。它的作用也就是使汽车减速或停车,并保证驾驶员离去后汽车能可靠地停住。每一辆汽车的制动系至少应该具备两套系统,即行车制动系和驻车制动系。行车制动系(可以理解为我们平时所说的脚刹)的作用也就是在汽本行驶过程中降低速度和停车,驻车制动系(可以理解为我们平时所说的手刹)的作用是使已经停驶的汽车驻留原地不动。除了这两套基本的制动系统外,许多国家还规定了汽车必须具备第二制动系,其作用是保证行车制动系失效后能够实现正常减速和停车。制动系由供能装置、控制装置、

36、传动装置和制动器这四部分组成。以上就是汽车底盘的四大组成部分,它的基本功能和构造我们仅仅作了一个非常简单的介绍,在读完本文后,希望大家对底盘的轮廓能有一定的印象,以后,我们将详细地介绍汽车的各个组成部分,欢迎大家能继续关注汽车构造系列讲座。五.什么是麦弗逊式悬挂?什么是麦弗逊式独立悬挂?为什么要叫“麦弗逊式”悬挂?“麦弗逊”是人名吗?麦弗逊(Macphersan)式悬挂是独立悬挂的一种,是当今最为流行的独立悬挂之一,一般用于轿车的前轮。简单地说,麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并可以用减震

37、器的行程长短及松紧,来设定悬挂的软硬及性能。虽然麦弗逊式悬挂在行车舒适性上的表现令人满意,其结构体积不大,可有效扩大车内乘坐空间,但也由于其构造为直筒式,对左右方向的冲击缺乏阻挡力,抗刹车点头作用较差。麦弗逊式悬挂是因应前置发动机前轮驱动(FF)车型的出现而诞生的。FF车型不仅要求发动机要横向放置,而且还要增加变速箱、差速器、驱动机构、转向机,以往的前悬挂空间不得不加以压缩并大幅删掉,因此工程师才设计出节省空间、成本低的麦弗逊式悬挂,以符合汽车需求。现在一般轿车的前后悬挂基本都是麦弗逊式或其变型。麦弗逊(Mcpherson)是个人名。他是美国伊利诺斯州人,1891年生。大学毕业后他曾在欧洲搞了

38、多年的航空发动机,并于1924年加入通用汽车公司的工程中心。30年代,通用的雪佛兰公司想设计一种真正的小型汽车,总设计师就是麦弗逊。他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在09吨以内,轴距控制在274米以内,设计的关键是悬挂。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬挂方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实践证明这种悬挂形式构造简单,占用空间小,而且操纵性很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬挂的商品车。麦弗逊悬挂由于构造简单,性能优越的缘故,被行家誉为经典的设计。六.四轮定位的作用 汽车为什么要做

39、四轮定位,这是广大用户和司机同志很关心的一个问题。让我们先从汽车的构造说起。拿当前路上行驶的多数四轮轿车为例,轿车的转向车轮、转向节和前轴三者之间的安装具有一定的相对位置,这种具有一定相对位置的安装叫做转向车轮定位,也称前轮定位。前轮定位包括主销后倾(角)、主销内倾(角)、前轮外倾(角)和前轮前束四个内容。这是对两个转向前轮而言,对两个后轮来说也同样存在与后轴之间安装的相对位置,称后轮定位。后轮定位包括车轮外倾(角)和逐个后轮前束。这样前轮定位和后轮定位总起来说叫四轮定位。四轮定位的作用是使汽车保持稳定的直线行驶和转向轻便,并减少汽车在行驶中轮胎和转向机件的磨损。由于各汽车生产厂家对四轮定位原

40、设计的不同、制造的不同,使得各轮的各种倾角和束值就各有不同,并且有可调部分和不可调部分之分;做四轮定位就是通过四轮定位仪,检测出被测车辆的各轮倾角和束值是否符合原厂标准,如不符合可做随机调整。换句话说,当驾驶员感到方向转向沉重、发抖、跑偏、不正、不归位或者发现轮胎单边磨损、波状磨损、块状磨损、偏磨等不正常磨损以及驾驶时车感飘浮、颠颤、摇摆等现象出现时,就应考虑做四轮定位了。七.原理与技巧 讲讲自动变速器(AT)的使用 自动变速器(也称AT)的应用使汽车的操纵更为简便。不过许多人将其与无级变速器概念混淆。其实,现在使用的自动变速器绝大多数还是根据车速和发动机负荷情况自动变换挡位的有级变速器。它只

41、能在一定范围内实现扭矩传递的变化,所以不能称之为“无级变速”。由于许多用户对自动变速器的结构和工作方式不太了解,在使用中难免会有不当之处,也就必然会引发一些自动变速器的故障。在使用自动变速器时,应该了解以下几个问题:自动变速器的换挡时机是非常重要的。何时准确换挡主要取决于车速和发动机负荷。发动机油门开度较大时,发动机负荷较大,变速器处于较低挡位。相同车速下,发动机油门开度较小时,发动机负荷较小,变速器可处于较高挡位。因此可以运用油门的变化在一定程度上控制换挡时机。驾驶装备自动变速器的车辆起步后,如果希望保持较好的加速性能,可以始终保持较大的油门开度,自动变速器会在较高车速时升入较高挡位;如果希

42、望平稳行驶时,可以在适当时候轻抬油门踏板,变速器就会自动升挡。使发动机在相同车速时保持较低转速,可获得较好的经济性和宁静的驾驶感觉。这时再轻踏油门踏板继续加速,变速器不会马上退回原挡位,这是设计者为防止频繁换挡而设计的提前升挡、滞后降挡功能。明白了这个道理就可以随心所欲地享受自动变速器带来的驾驶乐趣了。另外,装有自动变速器的车辆还普遍设置了全负荷开关。当油门踏板踩到底时,就会触动此开关,使车辆在高速行驶时,变速器会马上强制降1个挡,使车辆在需要短距离加速超车时,能够获得良好的加速性。这是由自动变速器本身设计决定的。由于单向离合器在自动变速器中的应用,不是所有挡位都能像手动变速器一样,能在下坡时

43、利用发动机产生的反拖作用来控制车辆的下坡滑行速度,所以只有把自动变速器的操纵杆根据车速挂到3、2、1的限制挡位上,才能实现利用发动机反拖作用,来控制车辆下坡的滑行速度。八.自动变速器执行机构的结构与原理 一单向离合器 在汽车自动变速器执行机构中,除湿式多片离合器外,还有一种起单向止动作用的单向离合器。它可以是滚子式的,也可以是楔块式的。一般来说,前者使用得更为普遍一些。当然,在自动变速器中,单向离合器的使用还不仅仅局限于执行机构,例如,在液力变矩器的导轮支承处,也采用了单向离合器。1)滚子式单向离合器 滚子式单向离合器由外围、滚子、弹簧和内圈组成,滚子数目通常为68个。工作过程中,若单向离合器

44、的外圈相对于内圈沿逆时针方向转动,那么,滚子便在具有凸轮型线的开口槽中向大端移动并压缩弹簧。这时,单向离合器不会出现锁止现象,而允许外圈转动,也就是说,图示的单向离合器在任何时候都允许其外圈相对于内圈作逆时针转动。换一种说法,即允许其内圈相对于外圈作顺时针转动。但在工作过程中,若单向离合器的外圈试图相对于内圈沿顺时针方向转动,那么,滚子便在开口槽中向小端移动,楔入内、外圈之间,将两者锁住,与此同时,还可以在两者之间传递扭矩。此刻,弹簧的作用是改善滚子最初的楔入动作,一旦滚子楔入开口槽的小端,则单向离合器出现锁止,从而不允许其外圈相对于内圈作顺时针转动,或内圈相对于外圈作逆时针转动。外圈与滚子的

45、接触面制成凸轮型线表面,并具有一定的楔入角。在现有结构中,此角一般为6度8度。考虑到机加工误差及使用中磨损的影响,为在接触区段保持不变的楔入角,常将开口槽的凸轮表面型线加工成对数螺旋线。滚子式单向离合器工作时,最大接触应力发生在滚子与内、外圈的接触处。严格地讲,由于滚子两侧的作用力相等,而且其与内圈凸面的接触面积要小于与外圈凹面的接触面积,所以,最大接触应力发生在滚子与内圈的接触表面上。这里,最易发生的是表面疲劳磨损,典型的失效形式是点蚀剥落。制造单向离合器滚子及内、外圈的金属材料,一般与滚动轴承材料相同。由于单向离合器工作时,滚子始终受到旋转离心力的作用,因而总是试图从与外围的接触点向外偏移

46、。所以,必须借助弹簧将滚子向开口槽小端压紧,以制止这种偏移,这也就是为什么要求弹簧应有一定预紧力的原因。2)楔块式单向离合器 楔块式单向离合器由外圈、8字形楔块、保持弹簧和内圈组成,这些楔块以与滚子式单向离合器中的滚子类似的方式工作。当图示中的外圈相对于内圈沿逆时针方向转动时,楔块被推动发生倾斜,在内、外围之间让出一定空间,因而不会锁止离合器。换言之,图示楔块式单向离合器在任何时候都允许其外圈相对于内圈沿逆时针方向旋转,或允许其内圈相对于外围沿顺时针方向旋转。然而,若外圈试图相对于内圈沿顺时针方向转动时,楔块因几何形状的缘故,将卡在内、外圈之间无法活动,从而将两者锁死在一起。这就是说,一旦楔块

47、卡住内、外圈,则单向离合器出现锁止,使外圈无法相对于内圈按顺时针方向旋转,或内圈相对于外圈按逆时针方向旋转。为保证楔块能可靠地楔在内、外圈之间,在这种单向离合器中,装有一个保持弹簧,使楔块按能锁住两圈的方向,始终保持一点倾斜。楔块式单向离合器的失效形式及制造材料等,均与滚子式单向离合器相同。比较而言,单向离合器较之其他型式的执行装置,有几个显著的特点:首先,单向离合器是纯粹而简单的机械装置,因而不必通过液压油来使其工作;其次,当作用于其内、外圈上的力矩方向或相对运动方向发生改变时,即可自动地产生或解除锁止;再者,单向离合器的锁止与松脱几乎是瞬时发生的。二、自动变速器制动器的结构与工作原理 汽车

48、自动变速器的制动器,有湿式多片式和带式两种。浸在自动变速器油中工作的湿式制动器,采用多片式结构,其主要优点在于接触面多,所以制动平顺柔和,可以保证换档质量。另外,制动器浸在油液中工作,能及时带走摩擦时所产生的热量,提高可靠性和耐久性。至于带式制动器,其最大的长处是结构简单,占用空间小。无论是片式制动器还是带式制动器,都是通过液力的方式而起作用的,即通过一个液压活塞来控制其动作。1湿式多片制动器 湿式多片制动器在工作原理上,与湿式多片离合器相同,只不过是出于不同的工作要求,在具体结构上略有差异而已。摩擦片内缘处有内花键齿,以便与制动器鼓上的外花键相啮合。与摩擦片相互交错排列的仍是钢片盘,它们的外

49、缘上加工有花键齿,且与在自动变速器壳体中的内花键相啮合。显然,若在摩擦片与钢片盘间留有间隙,则制动器鼓就可以自由地沿顺时针或逆时针两个方向旋转。一旦湿式多片制动器接合,即其、中的摩擦片与钢片盘之间的间隙由于液压活塞的动作而消失,那么,两组盘片将被压紧成为一体。由于壳体是静止的,盘片间的摩擦力矩阻止了制动器鼓的转动。因此,与制动器鼓相连的行星齿轮机构部件也被夹持固定,直至湿式多片制动器再度分离为止。与湿式多片离合器相同的是,驱动湿式多片制动器工作的活塞,也位于在自动变速器壳体中加工出的缸孔内,而壳体中加工出的油液通道,则将自动变速器油引向制动器油缸处。另外,汽车自动变速器湿式多片制动器的工作原理

50、,也与湿式多片离合器相仿;制动作用的化解,一般是在制动油压解除后,靠制动器活塞复位弹簧的张力使活塞复位,从而使制动器盘片分离来实现的。当然,也有在制动器油缸的复位弹簧一侧另外提供一个油压来帮助活塞复位的情形。2带式制动器 汽车自动变速器中的带式制动器,采用一条内敷摩擦材料的制动带,包绕在转鼓的外圆表面,制动带的一端固定在变速器壳体上,另一端则与制动油缸中的活塞相连。当制动油进入制动油缸后,压缩活塞复位弹簧推动活塞,进而使制动带的活动端移动,箍紧转鼓。由于转鼓与行星齿轮机构中的某一部件构成一体,所以箍紧转鼓即意味着夹持固定了该部件,使其无法转动。制动油压力解除后,复位弹簧使活塞在制动油缸中复位,

51、并拉回制动带活动端,从而松开转鼓,解除制动。显然,对带式制动器来说,箍紧转鼓的制动力矩的大小,取决于制动带的长度和宽度,以及作用于制动带活动端的力之大小。在自动变速器中,依其所需完成的任务不同,制动带在尺寸和结构上有所不同。例如,某些制动带仅由一根柔性的,内表面敷有摩擦材料的钢片制成,称为单匝制动带;也有除两端外,中间完全分开的双匝制动带。一般来说,双匝制动带能更好地与转鼓外圆表面贴合,因而在活动端作用力一定的情况下,可以提供更大的制动摩擦力矩;同时,双匝制动带与转鼓的接合也较单匝制动带更为平稳,使换档动作更趋柔和。然而,自动变速器中的单匝制动带,就其制造成本来说,要较双匝制动带低,而且在许多

52、应用场合其性能也相当令人满意,因此,大多数新型汽车自动变速器都采用柔性好、轻巧、成本低且制造简单的单匝制动带。在制动时,允许制动带与转鼓之间有轻微的滑摩,以便被制动的行星齿轮机构部件不至于突然止动,因为非常突然的止动将产生冲击,并可能对自动变速器造成损害。但另一方面,制动带与转鼓之间太多的滑动,即制动带打滑,也会引起制动带磨损或烧蚀。制动带的打滑程度一般随其内表面所衬敷的摩擦材料磨损及制动带与转鼓之间的间隙增大而增大,这就意味着制动带需不时地予以调整。的确,大多数早期的汽车自动变速器必须定期地进行此项调整工作,但随着制动带设计的改进,大多数20世纪90年代生产的自动变速器已不需要定期地调整带式

53、制动器的制动带了。制动带箍住或松开转鼓的动作,是由一个可在制动液压油缸中往复移动的活塞控制的。当无制动油压时,活塞在复位弹簧张力的作用下,被顶靠在制动油缸的一端;一旦具有一定压力的自动变速器油进入油缸并克服复位弹簧的张力,活塞就被移向油缸的另一端。在此过程中,通过一个连杆带动制动带的活动端箍紧转鼓,当制动油缸的油压切断并泄放时,活塞在复位弹簧的作用下复位,拉动连杆及制动带的活动端,解除制动作用。在新型汽车自动变速器中,制动作用的解除通常是由复位弹簧及油液压力共同完成的,即伴随活塞一侧制动油压的切断和泄放,另一侧额外地提供一个制动解除油压,以此来协助复位弹簧尽快地解除制动。当活塞完全复位后,该制

54、动解除油压仍将继续作用,以确保制动带处于完全放松的状态。位于制动油缸活塞与制动带活动端之间的连杆,有直杆、杠杆和钳形杆三种形式。毫无疑问,直杆式连杆所需的设计空间最大,原因是它必须将一端连接于制动带活动端的直杆安排得与制动油缸及活塞的轴线重合,从而使活塞在制动油缸中的往复移动直接转变为制动带活动端的动作。另外,这种结构形式所需的制动油缸尺寸也最大,因为直杆无任何增力作用,而活塞的推力必须大到足以在最大力矩作用于转鼓时,仍可防止制动带的打滑。带式制动器,采用一个杠杆来推动作用于制动带活动端的推杆。在设计中,当出于种种考虑,制动油缸必须被安排在自动变速器壳体中的某一位置,而在此位置活塞的位移又不能

55、直接作用于制动带活动端时,即要采用杠杆传动。这种传动方式改变了制动活塞推力的方向,然后再使其作用于制动带。此外,众所周知,杠杆传动还可以有效地增大作用力。第三种连杆形式即钳形杆,这时,制动器使用一个摇臂和一个活动支承在制动带两端的钳形杆。当制动器活塞在油压作用下推动顶杆时,项杆下压摇臂的右端,并通过图中所示的推杆将力传至制动带的一端。与此同时,扣在制动带另一端的钳形杆随着推杆的移动而向支承销方向位移,从而共同收紧制动带的两活动端,箍住转鼓。这种传动形式除了像杠杆传动那样,在给定的制动油缸直径下可增大制动摩擦力矩外,还可以减轻制动带的磨损,并且使制动平缓柔和,其原因在于这时制动带可自动找正中心位

56、置,而且其包绕转鼓收缩得也更加平稳。对大多数在制动带磨损后需进行调整的直杆型或杠杆型连杆来说,制动带与转鼓之间的间隙是由作为制动带固定端的调整螺栓确定的。此调整螺栓旋在贯通自动变速器壳体的螺纹孔中,所以制动带与转鼓的间隙可在壳体外进行调整,调完后,再用锁止螺母锁紧。但对于所给出的钳形杆传动,制动带调整螺钉及锁止螺母位于摇臂一端,因此,制动带与转鼓的间隙必须在拆下自动变速器油底壳之后才能进行调整。3工作缓冲装置 在自动变速器执行机构中,多片离合器及制动器的接合和分离,以及带式制动器的箍紧和放松,都不能过于突然,以免产生换档冲击,影响乘车的舒适性,甚至造成总成中零部件的损坏。因此,在执行机构的液压

57、系统中,专门设置了用于吸收因油压突然升高而产生冲击的缓冲装置,目的即在于控制换档质量,避免执行机构发生振动或接合过猛。在各种缓冲装置中,实际使用较多的是液压蓄能减振器。蓄能减振器之所以能够缓冲液压油的压力冲击,是由于它可以暂时性地将一部分液压油引至一个并联油路或空腔,从而使油压在主要油路中的增高要平稳得多,并使离合器或制动器平顺接合。蓄能减振器可分为活塞型和阀型两类,活塞型的看上去像是一个制动器的液压油缸。事实上,某些蓄能减振器的活塞就是与制动器活塞共用一个油缸的,这种设计称为整体式蓄能减振器。当然,也有将活塞型蓄能减振器安装在自动变速器壳体中单独设的孔内的,这种设计被称为独立式蓄能减振器。但

58、无论怎样,这两种蓄能减振器的工作原理基本上是相同的。阀型蓄能减振器则与自动变速器液压系统中的滑动柱塞阀相似,其任务与活塞型的相同,即暂时分流一部分原可直接作用于离合器或制动器油缸的液压油。一、概述 1、定义 车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。2、功用 保证车轮与地面的附着;传递载荷(车轮与车架间);缓和冲击,衰减振动;保持行驶中车轮、车身运动姿态。3、组成 弹性元件、减振器、导向机构、横向稳定器。弹性元件-传递垂直载荷,缓和冲击;减振器-加速衰减车身的振动第十一章 悬架系统第十一章悬架系统第十一章悬架系统 导向机构-传递纵向力,侧向力及其力矩,保证车轮的运动轨迹

59、。横向稳定器-防止车身在转向行驶等情况下发生过大的横向倾斜,在悬架中加设的辅助性元件。4、悬架系统的固有频率步行速度步行速度:0.75m/步步,3-4km/h振振 动动:65-85次次/分分,1.081.4Hz 悬架系统自振频率悬架系统自振频率n 11.6Hzk-悬架刚度悬架刚度M-簧载质量簧载质量n=1/(2)K/M=1/(2)g/f第十一章悬架系统 g:重力加速度;f:悬架垂直变形(挠度);K:悬架刚度(不一定等于弹性元件的刚度),指使车轮中心相对于车架和车身向上移动的单位距离(悬架产生单位垂直压缩变形)所需加于悬架上垂直载荷。M:悬架簧载质量,被悬挂系统支承的所有汽车零件的质量。补充:非

60、簧载质量:簧下质量,不是由悬挂系统支承的那些汽车部件质量,而是直接由轮胎和车轮总成支承,并随车轮一起运动的这部分的质量。第十一章悬架系统 人习惯的垂直振动频率是步行时身体上下运动的频率,约为1-1.6Hz。人最敏感的加速度频率范围:垂直振动频率:4-8Hz,水平振动频率:2Hz以下。当M上升则K上升,这样才能保证n为常数,悬架为变刚度悬架。若K为一定,若M上升则f上升,此时n会下降。说明空车行驶车身自然振动频率比满载行驶时的要高。M一定时,K越小,n越低,但垂直变形越大。为了使簧载质量从相当于汽车空载到满载的范围内变化时,车身自然振动频率保持不变或变化很小就需要将悬架刚度做成可变的,即空车时悬

61、架刚度小,而载荷增加时,悬架刚度随之增加。K=Mg/f第十一章悬架系统5、悬架分类 按结构特征分:非独立悬架:两侧车轮由一整体式车桥相连,车轮和车桥一起通过弹性悬架悬挂在车架下面;独立悬架:每一侧的车轮单独地通过弹性悬架悬挂在车架下,车桥是断开的;从弹性元件分:螺旋弹簧悬架、钢板弹簧悬架、扭杆弹簧悬架、气体弹簧悬架;被动悬架、半主动悬架、主动悬架(根据使用状态,固定和调整悬架参数,一般由电脑改变刚度和阻尼)。第十一章悬架系统非独立悬架非独立悬架独立悬架独立悬架第十一章悬架系统 二二、弹性元件 1、分类:金属弹簧:钢板弹簧、螺旋弹簧、扭杆弹簧 非金属弹簧:气体弹簧、橡胶弹簧。2、钢板弹簧 分类:

62、多片式、少片式、变断面式;对称式、非对称式。断面形式:梯形、双槽形、单槽形。开槽为了平衡上下抗拉和抗压的能力,减少M。第十一章悬架系统结构结构:钢板弹簧、中心螺栓、弹簧夹 钢板弹簧是应用最广泛。最常用的是若干片不等长(厚度可等可不等)的合金弹簧片组成的近似等强度弹性梁。除了能承受垂直载荷外,各弹簧间的摩擦起一定减振作用,钢板弹簧还兼导向机构作用。缺点:弹簧间的摩擦是不利的,有噪声,需润滑防污,质量大。(改进:用单片或少片变截面钢板弹簧)。一定的摩擦能促进振动的衰减,但各片间的干摩擦降低了悬架缓和冲击的能力,加剧磨损,故片间要加较稠润滑剂。要定期保养。钢板弹簧作导向机构时,摩擦作用起到一定的减振

63、作用,为了消除噪声,可在簧片间加塑料垫片。第十一章悬架系统第五节 悬架系统第十一章悬架系统第十一章悬架系统 3、螺旋弹簧 广泛用于独立悬架。刚度不可变。优点:无需润滑,不忌泥污,安装所需纵向空间不大,这样可给转向轮很大空间,弹簧本身质量小。缺点:只能承受垂直载荷,且无减振作用,故需另设导向和减振机构。4、扭杆弹簧 一端固定在车架上,另一端固定在悬架的摆臂上。优点:质量小,无需润滑,可调节车身高度,悬架刚度可变(结合导向机构);缺点:加工复杂,无阻尼导向作用。左右不能互换。(扭簧出厂时加设预加扭力,扭力方向与实际工作承受扭转方向相同,这样减少工作时的实际应力)第十一章悬架系统第十一章悬架系统5、

64、气体弹簧 分类:空气弹簧、油气弹簧 空气弹簧(囊式空气弹簧,膜式空气弹簧)油气弹簧(单气室式,双气室式,两极压力室)单气室式油气弹簧(油气分隔式,油气不分隔式)优点:弹簧刚度可变。载荷增加,刚度大;载荷减少,刚度小,易实现对汽车悬架的控制。缺点:高度尺寸较大,难布置,密封环节多,易漏气。6、橡胶弹簧 利用橡胶本身的弹性来起弹性元件的作用。优点:可承受压缩与扭转载荷。单位质量的储能比金属弹簧的多,隔音性能好,可兼用作悬架副弹簧和缓冲块。缺点:不能承受拉伸载荷,不能用作导向机构。第十一章悬架系统第十一章悬架系统空气弹簧,刚度可变,调整车身高度。空气弹簧,刚度可变,调整车身高度。第十一章悬架系统第十

65、一章悬架系统第十一章悬架系统三、减振器 为加速车架与车身振动的衰减,以改善汽车的行驶平顺性,在大多数汽车的悬架系统内都装有减振器。减振器和弹性元件是并联安装的。分为双向作用式减振器和单向作用式减振器。1、液力减振器的基本原理 当车架和车桥做往复运动时,而活塞在缸筒内往复移动时,减振器壳内的油液反复从一个内腔通过一些窄小的孔隙流入另一腔,孔壁与油液间的摩擦与液体分子内摩擦形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体吸收,散到大气中。减振器的阻尼力的大小随车架与车桥(或车轮)的相对速度的增减而增减,并且与油液粘度有关。第十一章悬架系统第十一章悬架系统2、对减振器的要求

66、减振器的阻尼力愈大,振动消除得愈快,但却使并联的弹性元件的作用不能充分发挥,同时,过大的阻尼力还可能导致减振器连接零件及车架损坏。为解决弹性元件与减振器之间的这一矛盾,对减振器提出如下要求:在悬架压缩行程(车桥车架相互移近)内,减振器阻尼力应较小,以便充分利用弹性元件的弹性,缓和冲击;在悬架伸张行程减振器阻尼力应大,迅速减振。当车轮(车桥)与车架的相对速度过大时,减振器应能自动加大液流通道截面积,使阻尼力始终保持在一定限度范围内,避免承受过大的载荷。第十一章悬架系统3、双向作用筒式减振器 构成:上工作腔、下工作腔、储油腔、伸张阀、流通阀、压缩阀、补偿阀、活塞。l 油压和簧力同向时,阀关闭;油压和簧力反向时,阀开启。l 伸张阀和压缩阀弹簧较强,预紧力大,是卸载阀(只有当油压增加到一定程度,阀才能开启,而当油压减低到一定程度,阀自动关闭);流通阀和补偿阀弹簧弱,是一般的单向阀。第十一章悬架系统(1)压缩行程:当车轮滚上凸起或驶离凹坑时,工作缸筒上升,相应的活塞下移,减振器受压,下腔体积减少,油液经流通阀进入上腔,由于活塞杆的存在,上腔内增加的容积小于下腔减少的容积,故一部分油经压缩阀流回储

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!