青藏高原高寒草地生态系统碳氮储量

上传人:ba****u6 文档编号:182687407 上传时间:2023-01-27 格式:DOCX 页数:4 大小:16.72KB
收藏 版权申诉 举报 下载
青藏高原高寒草地生态系统碳氮储量_第1页
第1页 / 共4页
青藏高原高寒草地生态系统碳氮储量_第2页
第2页 / 共4页
青藏高原高寒草地生态系统碳氮储量_第3页
第3页 / 共4页
资源描述:

《青藏高原高寒草地生态系统碳氮储量》由会员分享,可在线阅读,更多相关《青藏高原高寒草地生态系统碳氮储量(4页珍藏版)》请在装配图网上搜索。

1、附件2论文中英文摘要格式作者姓名:杨元合论文题目:青藏高原高寒草地生态系统碳氮储量 作者简介:杨元合,男,1981年08月出生,2003年09 月师从于北京大学方 精云教授,于 2008年 07月获博士学位。中文摘要准确了解物种多样性与生产力的关系将有助于认识生物多样性的维持机制;准确揭示生 物量的大小及其控制因素、阐明其地下与地上分配关系,将有助于预测陆地生态系统对全球 变化的响应;准确估算土壤有机碳库、揭示其分布格局及其动态变化将有助于预测陆地生态 系统与气候变化之间的反馈关系。但是,目前草地生态系统中关于物种多样性与生产力关系 及其形成机制、生物量大小及其分配格局、土壤有机碳库分布及其动

2、态变化等方面的研究主 要集中在温带地区,而来自高寒草地的研究相对较少。因此,尚不清楚高寒草地中物种多样 性与生产力之间的关系及其形成机制,也不清楚高寒草地生物量的控制因素及其地上-地下分 配机制,更不清楚高寒草地土壤有机碳库的时空变化特征。青藏高原是地球上最高、最大的高原。高寒草地是高原分布最为广泛的植被类型,受人 为活动影响相对较少,这些为开展相关生态学研究提供了理想的天然场所。我们于 2001-2004 年间在青藏高原高寒草地调查了 135处样地,共计675个1 x 1 m2的群落样方和405个土壤 剖面。此外,我们还于 2005 年补充调查了 29 处样地的根系生物量垂直分布特征。利用这

3、些 野外调查的群落资料、生物量数据和土壤碳/氮等理化属性以及全国第二次土壤普查资料、遥 感(MODIS-EVI、AVHRR-NDVI)和气候信息等数据,借助 II 类回归(Reduced Major Axis, RMA)、一般线性模型(General Linear Model, GLM)等经典统计方法和克立格(kriging)插值 等地统计学手段,研究了青藏高原高寒草地物种丰富度与地上生物量的关系、生物量的大小 及其分配机制以及土壤有机碳库的空间分布及其动态变化特征。主要结果如下:(1) 水分是影响高寒草地群落空间分布的主导因素,也是影响高寒草地物种丰富度空间 分布的重要因素。高寒草地物种丰富

4、度与其地上生物量呈正相关;而且这种正相关关系不随 草地类型而变化。高寒草地物种丰富度和地上生物量沿着水分梯度的共变可能是出现两者之 间正相关关系的原因。(2) 基于实测生物量资料与遥感信息相结合的方法,估算了高寒草地的地上、地下和总 生物量,分别为68.8, 366.0和434.8 g m-2。它们呈现自研究区东南向西北递减的空间分布格 局。此外,高寒草地中约有90%的根系分布在表层30 cm,而高寒草甸的根系分布较高寒草 原更加集中于土壤表层 (96% vs. 86%)。(3) 高寒草地地上生物量随着生长季温度的增加并未表现出显著变化趋势 (r2= 0.01, P 0.05),但地上生物量与

5、生长季温度的关系沿着降水梯度而变化。在干旱地区,与生长季温度 显著负相关 (P 0.05);而在湿润地区,则与生长季温度正相关。高寒草地地上生物量随着土 壤粉粒含量的增加而显著增加 (r2= 0.30, P 0.001),但随着土壤砂粒含量的增加则呈显著下 降趋势 (r2= 0.28, P 0.001)。并且,地上生物量与土壤质地的关系沿着降水梯度而变化。干 旱地区地上生物量与土壤粉粒含量负相关,而与土壤砂粒含量正相关;湿润地区地上生物量 与土壤粉粒含量正相关,而与土壤砂粒含量负相关。上述结果支持前人在温带地区提出的 inverse texture 假说。 GLM 分析的结果显示,生长季降水能

6、够解释地上生物量空间变异的 30%,是影响高寒草地地上生物量的重要因素。(4) 高寒草地生物量的地下地上比为 6.3,随年均温的增加呈微弱增加趋势 (r2= 0.07, P 0.05; r2 = 0.01, P 0.05; r2 = 0.01, P 0.05) 。而且,高寒草地生物量的地上-地下分配关系 不受土壤含水率和氮含量的影响。上述结果表明土壤中水分和养分可利用性的增加并未导致 高寒草地生物量向地上部分的更多分配,同时也意味着高寒草地生物量的地上-地下分配格局 并不支持平衡生长假说(Optimal partitioning hypothesis)。高寒草地地上生物量与地下生物量 分配关系

7、的斜率 (0.92) 与 1 没有显著差异 (P 0.05),表明高寒草地生物量的地上-地下分配 符合等速生长假说 (Isometric allocation hypothesis)。(5) 基于实测土壤剖面数据与遥感资料相结合的方法,估算了高寒草地 1 m 深度的土壤 有机碳和总氮密度,分别为6.52和0.86 kg m-2,对应的土壤有机碳和总氮库分别为7.36 Pg C 和0.96 Pg N (1 Pg = 1015 g)。土壤有机碳和总氮密度均表现出自高原东南部向西北部逐渐递减 的变化趋势。此外,高寒草地中约有50%的土壤有机碳分布在表层20 cm,但高寒草甸的土 壤有机碳的分布较高寒

8、草原更加集中于土壤表层 (55%vs. 41%)。对应地,约43%的土壤总氮 分布在表层20 cm,但高寒草甸的土壤总氮的分布较高寒草原更加集中于土壤表层(46% vs. 38%)。(6) 高寒草地土壤有机碳密度随着年均温、土壤含水率、土壤黏粒和土壤粉粒含量的增 加均呈显著增加趋势 (P 0.05)。但当土壤含水率超过 30%后,土壤有机碳密度的增加速率 减缓,并逐渐达到平稳状态。高寒草地土壤总氮密度随环境因素的变化趋势与有机碳密度基 本一致。GLM分析的结果表明,土壤含水率能解释高寒草地土壤有机碳密度空间变异的54%, 能够解释土壤总氮密度空间变异的 43%,是影响高寒草地土壤有机碳/总氮库

9、空间分布的主要 因素。(7) 高寒草地土壤有机碳密度与环境因素的关系在土壤表层最为密切,并随着土壤深度 的增加而逐渐减弱。表层 20 cm 土壤有机碳密度占其 1 m 深度总量的比例随着气候变量和土 壤黏粒含量的增加呈微弱增加趋势 (P 0.05),但随着土壤砂粒含量呈微弱下降趋势 (P 0.05)。 GLM 分析显示,草地类型是影响高寒草地土壤有机碳垂直分布的主要因素。这意味着 土地利用变化能通过改变土壤碳的垂直分布引起土壤有机碳库的变化。(8) 近 20 年来高寒草地生物量碳库在增加。地上、地下和总生物量密度分别由 80 年代 初期的25.4、139.0、164.4 g C m-2 增加至

10、21世纪初期的30.9、164.7、195.6 g C m-2; 地上、 地下和总生物量碳库分别由80年代初期的28.7、156.8、185.5 Tg C 增加至21世纪初的34.9、 185.8、220.7 Tg C (1 Tg = 1012 g); 分别增加了21.7%、18.5%和19.0%。并且,高寒草地土壤 有机碳库也在以29 g C m -2 yr-i的速率增加。青藏高原独特的气候特征和过去20年的气候变 化可能导致了高寒草地生态系统碳汇。关键词:高寒草地, 青藏高原, 生物量, 土壤有机碳, 物种丰富度, 总氮Carbon and Nitrogen Storage in Alpi

11、ne Grasslands on the TibetanPlateauYuanhe YangABSTRACTAccurate understanding of spatio-temporal distributions and environmental controls of carbon (C) storage in grassland ecosystems is critical for predicting the consequences of global change and designing sustainable rangeland management. However,

12、 little evidence on those is available for alpine grasslands. The Tibetan Plateau is the highest and largest plateau on the earth. The alpine grasslands (alpine steppe and alpine meadow) are the most dominant ecosystems on the plateau, occupying over 60% of the plateau. The unique climate and vegeta

13、tion types, together with a low intensity of human disturbance, make the plateau an ideal region for investigating spatio-temporal patterns and environmental controls of C storage in alpine ecosystems. During the last five years from 2001 to 2005, we conducted large-scale field campaigns to investig

14、ate carbon and nitrogen storage for alpine grasslands. We collected 675 biomass plots and 405 soil profiles from 135 sites across the plateau during 2001-2004. In addition, we supplemented 29 sites across the plateau in 2005 to investigate vertical distribution of roots in alpine grasslands. Using t

15、hese data from field measurements and the concurrent satellite-based dataset of vegetation index, we examined the relationship between species richness and productivity, then investigated biomass allocation in alpine grasslands, and further estimated spatio-temporal distributions and environmental c

16、ontrols of C storage in alpine grasslands. The main results are summarized as follows:(1) Both CCA (Canonical Correspondence Analysis) and NMS (Nonmetric Multi-dimensional Scaling) analysis showed that water availability determined spatial distribution of community type and species richness in alpin

17、e grasslands. Species richness in alpine grasslands was positively correlated with productivity, possibly due to their co-variations along the precipitation gradient.(2) Aboveground biomass (AGB), belowground biomass (BGB), and total biomass (TB) in alpine grasslands was estimated at 68.8, 366.0 and

18、 434.8 g m-2, respectively. The regional patterns of biomass reflected the southeast-to-northwest gradient in precipitation. About 90% of total root biomass occurred in the top 30 cm of soil, with a larger value in alpine meadow than in alpine steppe (96% vs.86%).(3) AGB increased with growing seaso

19、n precipitation (GSP), but did not show significant trend with growing season temperature (GST) despite a significantly negative relationship with GST at 200 mm of GSP. Soil texture also influenced AGB, but the effect was associated with precipitation: increased silt content caused a decrease of AGB

20、 at small GSP, while generated a meaningful increase of AGB under humid conditions. The correlations between AGB and sand content showed an opposite trend with this. Generalized linear model (GLM) analysis showed that precipitation, temperature, and soil texture together explained 54.2% of total var

21、iance of AGB. Our results suggest a critical control of moisture availability on plant production, but that temperature and soil texture also affect vegetation growth in high-altitude regions.(4) The root: shoot (R: S) ratio in alpine grasslands was 6.3. It did not show a significant change with the

22、 increase of soil nitrogen and soil moisture. Moreover, the allometric relationship between AGB and BGB is independent of soil nitrogen and soil moisture. AGB scaled as 0.92 power of BGB, with 95% confidence intervals of 0.82-1.02. The slope of the allometric relationship between AGB and BGB did not

23、 differ significantly between alpine steppe and alpine meadow. Our results support the allometric allocation hypothesis for the relationship between AGB and BGB in Tibetan grasslands.(5) Soil organic carbon (SOC) and total nitrogen (TN) storage in the top 1 meter in the alpine grasslands was estimat

24、ed at 7.36 Pg C and 0.96 Pg N (1 Pg = 1015 g), with an average density of 6.52 and 0.86kg m-2, respectively. The density of SOC and TN decreased from the southeastern to the northwestern areas along the precipitation gradient. SOC in the top 20 cm accounted for about 49% of that in the top 1 meter,

25、with a larger proportion in alpine meadow than in alpine steppe (55% vs. 41%). The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature (MAT). These variables could together explain about 72% of total variation in SOC density, of whic

26、h 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in alpine grasslands.(6) SOC density was positively correlated with MAT, annual precipitation (AP), and clay content, but these associations decreased with soil depth. The proport

27、ion of SOC in the top 20 cm increased with MAT, AP, and clay content. General linear model incorporating climatic variables, grassland type, and soil texture indicated that grassland type was the most important in affecting the vertical distribution of SOC, suggesting the potential influence of vege

28、tation change on SOC storage.(7) Over the past two decades, the total biomass C stock in alpine grasslands increased from 185.5 Tg C (1 Tg = 1012 g) in the early 1980s (average of 1982-1985) to 220.7 Tg C by 2001-2004 (average of 2001-2004). Soil organic carbon in the top 30 cm in alpine grasslands

29、on the plateau increased from 4.4 Pg C in the 1980s (average of 1982-1989) to 5.0 Pg C by 2001-2004 (average of 2001-2004), with an accumulation rate of 29 g C m-2 yr-1. Enhanced vegetation growth and reduced temperature sensitivity of soil carbon decomposition may contribute to this significant carbon sequestration.Key words: alpine grasslands, biomass, soil organic carbon, species richness,Tibetan Plateau, total nitrogen

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!