光刻技术论文

上传人:ba****u 文档编号:181749290 上传时间:2023-01-16 格式:DOCX 页数:6 大小:53.35KB
收藏 版权申诉 举报 下载
光刻技术论文_第1页
第1页 / 共6页
光刻技术论文_第2页
第2页 / 共6页
光刻技术论文_第3页
第3页 / 共6页
资源描述:

《光刻技术论文》由会员分享,可在线阅读,更多相关《光刻技术论文(6页珍藏版)》请在装配图网上搜索。

1、超大规模基集成电路制造技术名:专业班级:电子与通信工程学号:学院:中南大学物理与电子学院光刻技术:发展路径及未来趋势摘要:光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找coo更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上35年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性

2、和对产业进步的影响。关键词:光刻技术;纳米器件;分辨力增强;Photons;Particles1介绍光刻技术是在一片平整的硅片上构建半导体MOS管和电路的基础,这其中包含有很多步骤与流程。首先要在硅片上涂上一层耐腐蚀的光刻胶,随后让强光通过一块刻有电路图案的镂空掩模板(MASK)照射在硅片上。被照射到的部分(如源区和漏区)光刻胶会发生变质,而构筑栅区的地方不会被照射到,所以光刻胶会仍旧粘连在上面。接下来就是用腐蚀性液体清洗硅片,变质的光刻胶被除去,露出下面的硅片,而栅区在光刻胶的保护下不会受到影响。随后就是粒子沉积、掩膜、刻线等操作,直到最后形成成品晶片(WAFER)。2光刻技术的纷争及其应用

3、状况众说周知,电子产业发展的主流和不可阻挡的趋势是轻、薄、短、小,这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。2.1以Photons为光源的光刻技术在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术

4、、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.350.25卩m的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50的份额;同时,还覆盖了低

5、端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptries)投影光学系统、折反射式(Catadioptries)系统和折射式(Dioptries)系统等.深紫外技术是以KrF气体在高压受激而产生的等离子体发出的深紫外波长(248nm和193nm)的激光作为光源,配合使用i线系统使用的一些成熟技术和分辨率增强技术(RET)、高折射率图形传递介质(如浸没式光刻使用折射率常数大于1的液体)等,可完全满足O.250.18um和0.18um90nm的生产线要求;同时,9065nm的大生产技术已经在开发中,如光刻的成品率问题、光刻胶的问题、光刻工艺中缺陷和颗粒的控制等,仍然在突破中

6、;至于深紫外技术能否满足6545nm的大生产工艺要求,目前尚无明确的技术支持。相比之下,由于深紫外(248nm和193nm)激光的波长更短,对光学系统材料的开发和选择、激光器功率的提高等要求更高。目前材料主要使用的是融石英(Fusedsilica)和氟化钙(GaF2),激光器的功率已经达到了4kW,浸没式光刻使用的液体介质常数已经达到1.644等,使得光刻技术在选择哪种技术完成100nm以下的生产任务时,经过几年的沉默后又开始活跃起来了。投影成像系统方面,主要有反射式系统(Catoptrics)、折射式系统(Dioptries)和折反射式系统(Catadioptrics),极紫外(EUV)光刻

7、技术早期有波长10100nm和波长125nm的软X光两种,两者的主要区别是成像方式,而非波长范围。前者以缩小投影方式为主,后者以接触接近式为主,目前的研发和开发主要集中在13nm波长的系统上。极紫外系统的分辨率主要瞄准在1316nm的生产上。光学系统结构上,由于很多物质对13nm波长具有很强的吸收作用,透射式系统达不到要求,开发的系统以多层的铝(A1)膜加一层MgF2保护膜的反射镜所构成的反射式系统居多。主要是利用了当反射膜的厚度满足布拉格(Bragg)方程时,可得到最大反射率,供反射镜用。目前这种系统主要由一些大学和研究机构在进行技术研发和样机开发,光源的功率提高和反射光学系统方面进步很快,

8、但还没有产业化的公司介入。考虑到技术的延续性和产业发展的成本等因素,极紫外(EUV)光刻技术是众多专家和公司看好的、能够满足未来16nm生产的主要技术。但由于极紫外(EUV)光刻掩模版的成本愈来愈高,产业化生产中由于掩模版的费用增加会导致生产成本的增加,进而会大大降低产品的竞争力,这是极紫外(EUV)光刻技术快速应用的主要障碍。为了降低成本,国外有的研发机构利用极紫外(EUV)光源,结合电子束无掩模版的思想,开发成功了极紫外(EUV)无掩模版光刻系统,但还没有商品化,进入生产线。X射线光刻技术也是20世纪80年代发展非常迅速的、为满足分辨率100nm以下要求生产的技术之一。主要分支是传统靶极X

9、光、激光诱发等离子X光和同步辐射X光光刻技术。特别是同步辐射X光(主要是0.8nm)作为光源的X光刻技术,光源具有功率高、亮度高、光斑小、准直性良好,通过光学系统的光束偏振性小、聚焦深度大、穿透能力强;同时可有效消除半阴影效应(PenumbraEffect)等优越性。X射线光刻技术发展的主要困难是系统体积庞大,系统价格昂贵和运行成本居高不下等等。不过最新的研究成果显示,不仅X射线光源的体积可以大大减小,近而使系统的体积减小外,而且一个X光光源可开出多达20束X光,成本大幅降低,可与深紫外光光刻技术竞争。2.2以Particles为光源的光刻技术以Particles为光源的光刻技术主要包括粒子束

10、光刻、电子束光刻,特别是电子束光刻技术,在掩模版制造业中发挥了重要作用,目前仍然占有霸主地位,没有被取代的迹象;但电子束光刻由于它的产能问题,一直没有在半导体生产线上发挥作用,因此,人们一直想把缩小投影式电子束光刻技术推进半导体生产线。特别是在近几年,取得了很大成就,产能已经提高到20片/h(200mm圆片)。电子束光刻进展和研发较快的是传统电子束光刻、低能电子束光刻、限角度散射投影电子束光刻(SCALPEL)和扫描探针电子束光刻技术(SPL)。传统的电子束光刻已经为人们在掩模版制造业中广泛接受,由于热/冷场发射(FE)比六鹏化镧(LaB6)热游离(TE)发射的亮度能提高1001000倍之多,

11、因此,热/冷场发射是目前的主流,分辨率覆盖了100200nm的范围。但由于传统电子束光刻存在前散射效应、背散射效应和邻近效应等,有时会造成光致抗蚀剂图形失真和电子损伤基底材料等问题,由此产生了低能电子束光刻和扫描探针电子束光刻。低能电子束光刻光源和电子透镜与扫描电子显微镜(SEM)基本一样,将低能电子打入基底材料或者抗蚀剂,以单层或者多层L-B膜(Langmuir-BlodgettFilm)为抗蚀剂,分辨率可达到10nm以下,目前在实验室和科研单位使用较多。扫描探针电子束光刻技术(SPL)是利用扫描隧道电子显微镜和原子力显微镜原理,将探针产生的电子束,在基底或者抗蚀剂材料上直接激发或者诱发选择

12、性化学作用,如刻蚀或者淀积进行微细图形加工和制造oSPL目前比较成熟,主要应用领域是MEMS和M0EMS等纳米器件的制造,随着纳米制造产业的快速发展,扫描探针电子束光刻技术(SPL)的前景有望与光学光刻媲美。另外一种比较有潜力的电子束光刻技术是SCALPEL,由于SCALPEL的原理非常类似于光学光刻技术,使用散射式掩模版(又称鼓膜)和缩小分步扫描投影工作方式,具有分辨率高(纳米级)、聚焦深度长、掩模版制作容易和产能高等优势,很多专家认为SCALPEL是光学光刻技术退出历史舞台后,半导体大生产进入纳米阶段的主流光刻技术,因此,有人称之为后光学光刻技术。粒子束光刻发展较快的有聚焦粒子束光刻(FI

13、B)和投影粒子束光刻,由于光学光刻的不断进步和不断满足工业生产的需要,使离子束光刻的应用已经有所扩展,如FIB技术目前主要的应用是将FIB与FE-SEM连用,扩展SEM的功能和使得SEM观察方便;另外,通过方便的注射含金属、介电质的气体进入FTB室,聚焦离子分解吸附在晶圆表面的气体,可完成金属淀积、强化金属刻蚀、介电质淀积和强化介电质刻蚀等作用。投影粒子束光刻的优点很明显,但缺点也很明显,如无背向散射效应和邻近效应,聚焦深度长,大于l0um,单次照射面积大,故产能高,目前可达200mm硅片60片/h,可控制粒子对抗蚀剂的渗透深度,较容易制造宽高比较大的三维图形等等;但也有很多缺点,如因为空间电

14、荷效应,使得分辨率不好,目前只达到8065nm,较厚的掩模版散热差,易受热变形,有些时候还需要添加冷却装置等等。近几年由于电子束光刻应用的迅速扩展,粒子束光刻除了在FIB领域的应用被人们接受外,在MEMS的纳米器件制作领域也落后于电子束和光学光刻,同时,人们对其在未来半导体产业中的应用也没有给予厚望2.3物理接触式光刻技术通过物理接触方式进行图像转印和图形加工的方法有多年的开发,但和光刻技术相提并论,并纳入光刻领域是产业对光刻技术的要求步入纳米阶段和纳米压印技术取得了技术突破以后。物理接触式光刻主要包括Printing、Molding和Embossing,其核心是纳米级模版的制作,图4所示的是

15、Printing(a)和Embossing(b)工艺流程原理。物理接触式光刻技术中,以目前纳米压印技术最为成熟和受人们关注,它的分辨率已经达到了10nm,而且图形的均一性完全符合大生产的要求,目前的主要应用领域是MEMS、MOEMS、微应用流体学器件和生物器件,预测也将是未来半导体厂商实现32nm技术节点生产的主流技术。由于目前实际的半导体规模生产技术还处在使用光学光刻技术苦苦探索和解决65nm工艺中的一些技术问题,而纳米压印技术近期在一些公司的研究中心工艺上取得的突破以及验证的技术优势,特别是EVGroup和MII(MolecularImprintingInc)为一些半导体设计和工艺研究中心

16、提供的成套光刻系统(包括涂胶机、纳米压印光刻机和等离子蚀刻系统)取得的满意数据,使得人们觉得似乎真正找到了纳米制造技术的突破口。因此,一些专家预测,到2015年,市场对纳米成像工具、模版、光刻胶以及其他耗材的需求将达到约15亿美元,最大的客户仍然是半导体产业和微电子产品制造业,约占52左右。另外,值得一提的是,纳米压印技术中最具被半导体工业化所首选的是软光刻技术。技术优点是结合了纳米压印的思想和紫外光刻良好的对准特性,即可灵活的选择多层软模型,进行精确对位,也可在室温下工作,使用低于100kPa的压力压印。2.4其它光刻技术光刻技术常见的技术方案如上所述的紫外光刻、电子束光刻、纳米压印光刻等,

17、以广为业界的人们所熟悉。但近年来,在人们为纳米级光刻技术探索出路的同时,也出现了许多新的技术应用于光刻工艺中,主要有干涉光刻技术(CIL)、激光聚焦中性原子束光刻、立体光刻技术、全息光刻技术和扫描电化学光刻技术等等。其中成像干涉光刻技术(IIL)发展最快,主要是利用通过掩模版光束的空间频率降低,可使透镜系统收集,然后再还原为原来的空间频率,照射衬底材料上的抗蚀剂,传递掩模版图形,可以解决传统光学光刻受限于投影透镜的传递质量和品质,无法收集光束的较高频率部分,使图形失真的问题。其他的光刻技术因为在技术上取得的突破甚微,距离应用相当遥远,此处不再赘述。3光刻技术的技术性和经济性比较光刻技术作为产业

18、发展的技术手段,那种技术为产业界所普遍接受和采纳,是一个集技术性和经济性综合比较的产物。一方面,就狭义光刻技术(包括光刻机技术、涂胶现像机技术等)本身而言,有技术和经济的权衡;另一方面,光刻技术的进步还会受到广义上光刻技术(还包括掩模版及其制造技术、光刻胶及其制造技术、蚀刻和粒子注入技术等)的影响。因此,本文就对光刻技术在技术性和经济性方面发表点拙见。3.1技术性比较一方面,从目前几种光刻技术本身的发展和开发使用状况来看,深紫外光刻、极紫外光刻、限角度散射投影电子束光刻、扫描探针电子束光刻技术、纳米压印光刻等,在能力上都有可能解决90nm以下的半导体产业和微电子产品规模化生产问题,但真正产业化

19、都有问题;另一方面,从技术的标准和如何与已经形成的现有光刻的庞大体系相互融合,顺利过渡,这些技术所处的状态各不相同。就像半导体产业在20世纪8090年代的发展过程中,工艺技术形成了23个大的IP体系,也就是以IBM和TI等为核心的体系、以Siement和Toshiba为核心的体系一样,光刻技术目前逐渐也在形成23大体系,特别是光学光刻技术和纳米压印技术,这就意味着那个体系发展快,产业化进程迅速,良好解决了技术的衔接和过渡,谁就是技术标准,谁就是产业标准。因此,技术性的比较也有战略的竞争,就像ASML体系与NIKON和CANON体系的竞争,EVGroup体系和MII体系的竞争。专家预测,半导体产

20、业在本世纪初将会有大的并购和重组,我们可以清楚的看到,已经发生和正在发生的并购和重组实际上是体系的并购和重组,新的标准的产生过程。3.2经济性比较相比较于技术性,经济性的比较尽管包含了系统本身的成本、系统的运行成本、掩模版制造成本、光刻胶的制造及消耗成本、配套检测和工艺监控设备的投入成本等,但我们可以量化它,固定制约的因素,只要确定了技术路径和标准,经济性的比较非常清楚。4未来光刻技术的发展随着电子产业的技术进步和发展,光刻技术及其应用已经远远超出了传统意义上的范畴,如上所述,它几乎包括和覆盖了所有微细图形的传递、微细图形的加工和微细图形的形成过程。因此,未来光刻技术的发展也是多元化的,应用领

21、域的不同会有所不同,但就占有率最大的半导体和微电子产品领域而言,实现其纳米水平产业化的光刻技术将分成两个阶段,即9032nm阶段将仍然由深紫外和极紫外光刻结合一些新的技术手段去完成,同时纳米压印和扫描探针光刻技术在45nm技术节点将会介入进行过渡;32nm以下的规模生产光刻技术将在纳米压印和扫描探针光刻技术之间选择。正如一位专家,为实现32nm节点以下的纳米成像技术的规模化生产,在接下来的5年内,纳米成像技术的发展将会加快,平均每年增长44.6,其中发展最快的将会是纳米压印光刻和扫描探针光刻技术,到2015年,32nm的大生产技术节点将得以实现。另外,FPD产业作为光刻技术应用的另外一个分支,

22、在未来的占有率将会上升,除了已经形成的对光刻技术需求的共识外(大面积、低分辨率和1:1折反射投影式等),一些新的技术也在开发中,如电子束光刻技术和激光直写光刻技术等。总之,未来光刻技术的发展将会更快,技术上将会更加集中,一些没有市场前景和应用的技术将会淘汰。参考文献1HassanJK,SarkaryHG.LithographyforVLSI:AnOverviewJ.SolidStateTechnology,1982.5.2RizviSA.NTRScritical-levellithographJ.SolidStateTechnology,1998.7.3BirnieIIIDP.CoatingQ

23、ualityandSpinCoatinghttp:/www.mse.arizona.edu/faculty/birnie/Coatings/0L更新时间2000.7查找时间2001.12.4 K.A.杰克逊美主编屠海令等译校.材料科学与技术丛书(第16卷)半导体工艺M.科学出版社,1999.5 童志义.国外光刻设备市场概况及发展趋势J.半导体技术,1991.6.6 宋登元等.光学光刻技术的研究进展J.半导体技术,1998.4.7 BachurJ.DeepUVExposureTechnologyJ.SolidstateTechnology,1982.2.8 HawrylukNM,CeglioNM

24、,MarkleDA.EUVLithographyJ.SolidstateTechnology,1997.8.9 冯伯儒等微光刻技术的发展J.微细加工技术,2000.1.10 谢常青等.193nm与X射线光刻技术比较J.半导体技术,1998.&崔铮.VLSI曝光技术的现状与未来J.微细加工技术,1995.3.11 冯伯儒.光学光刻和射线光刻技术的发展J.微细加工技术,1997.1.12 金春水等.软X射线光刻原理装置的设计J.光学精密工程,2000.2.13 伊福廷等.同步辐射X射线深度光刻实验J.微细加工技术,1997.2.14 卢维美.电子束纳米加工技术研究现状J.微细加工技术,1998.2,KingHNG.ElectronLithographyJ.SolidStateTechnology,1982.2.15 郑国强.电子束直接曝光机简介J.微细加工技术,1995.3.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!