Gleeble 3500热模拟试验机

上传人:z****2 文档编号:179015240 上传时间:2022-12-30 格式:DOCX 页数:9 大小:315.85KB
收藏 版权申诉 举报 下载
Gleeble 3500热模拟试验机_第1页
第1页 / 共9页
Gleeble 3500热模拟试验机_第2页
第2页 / 共9页
Gleeble 3500热模拟试验机_第3页
第3页 / 共9页
资源描述:

《Gleeble 3500热模拟试验机》由会员分享,可在线阅读,更多相关《Gleeble 3500热模拟试验机(9页珍藏版)》请在装配图网上搜索。

1、Gleeble 3500热模拟试验机在本科生教学实验中的应用特色与创新热模拟试验机是一个材料热机械加工性能分析系统,具有急(慢)速升温降温、急(慢)速拉压变形、同时记 录温度、力、应力、应变等参数变化曲线,可对金属材料的冶炼、铸造、锻压、成形、热处理及焊接工艺 等各个制备阶段的工艺与材料性能的变化之间的关系进行精确的模拟。利用该设备既可进行单一性能测试, 又可进行多种综合性、设计性、创新性实验。据了解,目前国内在本科生中利用热模拟试验机开设实验的高校只有清华大学,采用的设备型号为Gleeblel500,本实验采用的型号为Gleeble 3500,功能更丰富。由于本实验室在为各科题组研究服务工

2、作中已积累了大量经验,结合科研项目能设计出具有交大特色的实验方案,可为学生进行综合性、设计性、 创新性实验提供技术支持。特色实验一金属材料高温强度的测定特色实验二钢连续冷却转变图(CCT曲线)的测定特色实验一金属材料高温强度的测定一实验目的(1)了解典型金属材料的高温强度与塑性及其随温度的变化规律。(2)掌握用材料加工物理模拟设备即动态热-力学模拟试验机Gleeble3500测定材料抗拉强度、屈服强度和 塑性的原理。(3)掌握Gleeble 3500试验机的简单操作与编程并了解其一般应用。测定不同钢种如20、45、40Cr和lCrl8Ni9不锈钢的拉伸强度及其塑性随温度的变化井进行比较;测定

3、并分析变形速度对强度的影响规律。二概述材料的力学性能在科学研究和工程应用中具有非常重要的作用。例如,数值模拟研究必须以力学性能为依 据;负载结构的设计和材料加工艺方案(如焊接、锻压、热处理、表面改性等工艺)的制定必须以力学性能 为基础等等。温度对材料的力学性能功能影响很大。高温强度和塑性是材料高温使用和热加工时需要考虑 的重要力学性能指标,了解其测试方法及其随温度的变化规律,是对高温结构材料进行科学研究和应用的 基础。本次实验主要研究金属材料高温短时拉伸的力学性能。金属材料如钢材的强度和塑性由基体组织类型(如马氏体M,铁素体F,珠光体P,贝氏体B,奥氏体A)、 晶粒大小、基体强化类型(固溶强化

4、和弥散强化),以及与此有关的加工变形程度、热处理条件等决定,因 此,不同类型的金属及其合金的强度和姻性及其随温度变化的规律存在明显区别,一般来讲,材料按高温 强度由低到高的排列顺序为:碳素钢,低合金钢,高合金钢,不锈钢,镍基高温合金。金属力学性能指标一般按金属材料室温拉伸试验方法(GB/T228-2002)和金属材料室温拉伸试验方法 (GB/T4338-1995)进行测试。测试数据全面,但较繁琐。本实验用动态热-力学模拟试验机Gleeble快速测 定金属材料的高温强度。动态热-力学模拟试验机Gleeble3500测定材料高温性能的原理如下:用主机中的变压器对被测定试样通电 流,通过试样本身的电

5、阻热加热试样,使其按设定的加热速度加热到测试温度。保温一定时间后,通过主 机中的液压系统按一定的加载速率给试样施加载荷使其变形,直至试样断裂。由于试样两端由通水的冷却 块夹持,冷却快,所以整个试样在加热和保温过程中存在一定的温度梯度,中间段温度高,但当试样足够 长(90120mm)时,热电偶检测的中间部位约有818mm)长度的均温区,这样就能保证试样断裂发生在 试样的中间部位,且测试所有强度能与检测温度对应。断面收缩率可以通过测定室温时的断面面积,并与 原始截面面积进行比较而获得。在材料种类和热处理状态一定的情况下,高温强度除受温度影响外,还与加载速度有直接关系。一般情况 下,加载速率即变形速

6、度越快,强度越高。动态热-力学模拟试验机Gleeble3500的简介见附件。三.实验仪器和材料1. 动态热-力学模拟试验机Gleeble35002. 热电偶电阻焊设备1套3. 热电偶丝若干4. 20钢等试样四实验内容和步骤1. 实验前了解了解Gleeble 3500动态热-力学模拟试验机的基本结构与功能,学习Gleeble 3500试验机的 简单操作步骤。实验时未经实验指导教师的同意,不得擅自启动任何设备开关。2. 在试样上焊接热电偶。3. 制定实验步骤,并经实验指导老师审核。4. 启动主机和控制电脑后,进入界面,按具体实验要求的要求(加热温度,加热速率,变形速率等)编程 4.装好试样,进行实

7、验。五思考题从变形机理说明温度和加载速度对材料强度的影响。参考文献:1. 邹贵生编. 材料加工系列实验. 北京:清华大学出版社,20052. 牛济泰编. 材料和热加工领域的物理模拟技术.北京:国防工业出版社,1999附:动态热模拟试验机Gleeble 3500介绍近几十年来,热-力学物理模拟技术飞速发展。在热模拟试验装置、试验方法、测试技术以及应用等方面进 行了大量的研究工作,研究范围涉及到材料科学与工程和材料加工工程等领域中的组织研究、性能研究、 应力应变研究等各个方面,受到各国科技界欢迎的Gleeble动态热一力学模拟试验机是一种应用最广泛的 热-力学模拟机。它自1946年在美国伦塞勒工学

8、院(RPI)第一台样机诞生并成立DSI(Dynamicystems lnc.) 至今,经过近60年的不断修改与完善,已经发展为计算机控制的电液伺服闭环系统。其主要部分有主机、 液压源、控制柜、计算机系统、真空系统、急冷系统等。它既可用手控进行试验,也可以实现全部试验过 程的计算机控制。根据该设备的功能,可将它分为三个系统:计算机控制系统、热控制系统、力学控制系统。因此,可用汁 算机实现两个闭环控制。其加热速度可以从0.002C/ s到10000C/ s。它能模拟各种热-力学过程,是一 种理想的动态试验机,有人也称它为热-力学材料试验机。上海交通大学热模拟试验机Gleeble 3500的实物整体

9、形貌、结构方框图、主机、高温拉伸实验分别见图Al图A3。试验编程示例如图A4所列。1. 加热系统:该机采用电阻加热系统,即通过低频电流加热试样,加热速度可以高达10000C/S。由于集肤效应较小, 故整个加热区中间部位温度均匀,径向温度梯度很小。冷却速度由沿试样轴向的热传导来控制,直径为6mm的普通碳钢试件在10000C时的冷却速度可控制到140C/ S。它用闭环控制实现温度的实时监测与控制, 是动态热模拟的理想系统。图A1 Gleeble 3500的实物整体形貌图A2 Gleeble 3500结构方框图图A3高温拉伸实验GiccMir TTiblE Proiirurri. HlGHToi T

10、ASLTirnflAxis TMXAx-i 31Slysd归 msiress-SirilrAkIuI ai ra in n ing S(nQk#B 1=1ck f&.OQDTTimAcq-UilreForce Strest rok& TC f严A7Sian1 Mshsriial园 Hrflli也 Therms 1(mm)Wedge- pm JTC1冊目fl.OHz|a.Dflft.aoi0J躺p犠Ji I 1.00 oea.oon.D411,讹030口b.o&0.000SOD-1 -Said p laDliQO.MDOiz.ai)0.0001-l Maqh冃帀亡种 Hi一 _ Th-arma

11、|图A4表格式编程示例(高温拉伸)2. 力学系统与性能指标Gleeble 3500的机械系统是一个具有10吨静态拉伸/压缩力的全集成液压伺服控制系统。最快可以达到 1000mm/s的移动速度。3. 数据显示与记录、G1eeble 3500配置了实现全面数字控制的软硬件。控制柜中的微机处理器与编程用的计算机通过网络线互 通信息,一方面,可通过在台式计算机中配置的Quiksim软件采用简单的表格式编程方法实现试验的基本 工艺过程,另一方面,可同时显示和控制温度、载荷、应力、应变、位移等参数;试验过程中,上述数据 能在计算机中实时显示,随时检测。试验结束后,试验的原始数据自动装入Origin软件中,

12、实验人员可对 数据进行各种适当的处理。Gleeble 3500动态热模拟试验机一般操作步骤:(1) 开总电源。(2) 按下主机上的电源按钮,之后控制柜中的嵌入式计算机显示器显示各种运行资料,直至结束。(3) 观察控制柜上的“安全显示”按钮。当显示灯为绿色时,说明控制系统件工作正常。(4) 启动台式计算机,并按提示逐一操作。(5) 进入Quiksim编程状态。期间按提示密码,回车即可。(6) 按某具体实验要求的工艺(如高温拉伸实验、高温快速压缩实验、冷却速度对材料组织和性能的影响实 验等)编程。表格式编程示例如图A4所列。其中:一般情况下,“system行实验人员会事先设定好, 不必改动;Str

13、essStrain行根据试样大小设定其相应的直径d和被测试长度L (注:当试样为非圆 柱形时,可根据试样的测定部位的面积折合成当量圆面积);“Acquire” 一行即为在实验过程中需要检 测的数据项名称,如表中的Force,Stress,stroke,TCl。该行的数据项名称可根据需要进行增和减;“Start” 一行中根据实验过程中是否要施加载荷和加热,可分别单击Mechanical”和Thermal启动模块 即左侧显示“丿”符号;Mode” 一行目的是选择实验过程中的力的控制模式,其中有Stroke、Stress、 Strain 上一 gauge(轴向位移)、C一gauge(径向位移)、Fo

14、rce等模式可供选择,其中的“Wedge”和TCl(c)” 一般不改动;“Sample行是设定实验过程中各参数的数据采集频率;Time列中的“: 的表示分、秒、0. xx秒;其余各行分别按工艺要求在规定的时间内加载、保持载荷、卸载和加热、保 温、冷却等。(7) 对事先制备好的试样进行装卡,期间要使用空气锤或手动液压系统(操作:启动Mechanical,启动Run, 旋转嵌入式显示器“ stroke ”符号右侧的旋钮或“ Force符号左侧的旋钮使液压系统的活塞向前或先后移 动)。试样装卡完后,按按Stop ”按钮关闭液压系统。(8) 当实验需要在真空环境中进行时,须开启真空系统,且实验完后须仔

15、细关闭真空系统:(9) 仔细检查实验程序和试样的装卡。无问题后,单击程序表上部的“启动符号”,手动控制柜上的Run。 实验开始进行。(10) 关真空系统;对真空系统充大气,取出试样。(12) 实验结束后对数据进行处理或存储到相应的目录下。(13) 所有实验结束后,检查实验数据是否保存好。关台式计算机一关主机上的电源闸一关总闸。 注:本科生做实验时,实验指导教师必须在场返回特色实验二钢连续冷却转变图(CCT曲线)的测定一. 实验目的1. 了解钢的连续冷却转变图的概念及其应用;2. 了解钢的连续冷却转变图的测量方法特别是热膨胀法的原理与步骤;3. 利用热模拟仪观察钢在加热及冷却中的相变并测量临界点

16、;4. 建立钢的连续冷却转变图(CCT曲线)。二. 实验原理当材料在加热或冷却过程中发生相变时,若高温组织及其转变产物具有不同的比容和膨胀系数,则由于相 变引起的体积效应叠加在膨胀曲线上,破坏了膨胀量与温度间的线性关系,从而可以根据热膨胀曲线上所 显示的变化点来确定相变温度。这种根据试样长度的变化研究材料内部组织的变化规律的称为热膨胀法(膨 胀分析)。长期以来,热膨胀法已成为材料研究中常用的方法之一。通过膨胀曲线分析,可以测定相变温 度和相变动力学曲线。钢的密度与热处理所得到的显微组织有关。钢中膨胀系数由大到小的顺序为:奥氏体铁素体珠光体上、下贝氏体马氏体;比容则相反,其顺 序是:马氏体铁素体

17、珠光体奥氏体碳化物(但铬和钒的碳化物比容大于奥氏体。从钢的热膨胀特 性可知,当碳钢加热或冷却过程中发生一级相变时,钢的体积将发生突变。过冷奥氏体转变为铁素体、珠 光体或马氏体时,钢的体积将膨胀;反之,钢的体积将收缩。冷却速度不同,相变温度不同。图1T为40CrMoA 钢冷却时的膨胀曲线。不同的钢有不同的热膨胀曲线。图1-1 40CrMoA钢冷却时的膨胀曲线连续钢连续冷却转变(Continuous Cooling Transformation)曲线图,简称CCT曲线,系统地表示冷却速度 对钢的相变开始点、相变进行速度和组织的影响情况。钢的一般热处理、形变热处理、热轧以及焊接等生 产工艺,均是在连

18、续冷却的状态下发生相变的。因此CCT曲线与实际生产条件相当近似,所以它是制定工 艺时的有用参考资料。根据连续冷却转变曲线,可以选择最适当的工艺规范,从而得到恰好的组织,达到 提高强度和塑性以及防止焊接裂纹的产生等。连续冷却转变曲线测定方法有多种,有金相法、膨胀法、磁 性法、热分析法、末端淬火法等。除了最基本的金相法外,其他方法均需要用金相法进行验证。用热模拟机可以测出不同冷速下试样的膨胀曲线。发生组织转变时,冷却曲线偏离纯冷线性收缩,曲线出 现拐折,拐折的起点和终点所对应转变的温度分别是相变开始点及终止点。将各个冷速下的开始温度、结 束温度和相转变量等数据综合绘在“温度-时间对数”的坐标中,即

19、得到钢的连续冷却曲线图(如图2)。动态热-力学模拟试验机Gleeble3500测定材料高温性能的原理如下:用主机中的变压器对被测定试样通电 流,通过试样本身的电阻热加热试样,使其按设定的加热速度加热到测试温度。保温一定时间后,以一定 的冷却速度进行冷却。在加热、保温和冷却过程中用径向膨胀仪测量均温区的径向位移量(即膨胀量), 绘制膨胀量-温度曲线如图1 -1所示,测试不同冷却速度下试样的膨胀量-温度曲线。根据膨胀量-温度曲线确定不同冷却速度下的相转变开始点和结束点,即可绘制CCT曲线。10L”EO1壬 LU4*J7U-总亘 卯L匚-匚-一1 !靑J_.-想U1归I u-rImE图 1-2 40

20、CrMoA 钢 CCT 曲线三. 实验设备及材料1. Gleeble3500 热模拟机2. 20#钢四. 实验过程1. 将热电偶焊到试样上;2. 将试样装至仪器上,安装膨胀仪;3. 关闭样品室,关闭真空释放阀门,启动真空阀4. 按试验要求选择升温速率、最高温度、保温时间、冷却速率等参数进行编程。;5. 按下开始按钮,开始实验;6. 试验结束后,打开真空释放阀门。五. 实验结果与分析7. 根据实验曲线确定不同冷却速度下的相变开始温度、结束温度8. 绘在“温度-时间对数”的坐标中,得到钢的连续冷却曲线图六思考题:试分析碳元素含量对碳钢CCT图中曲线位置的影响。参考书目:1林慧国,傅代直 钢的奥氏体转变曲线机械工业出版社北京,19882. GB 5057-85钢的连续冷却转变图的测定(膨胀法)附录:各典型钢种CCT曲线图1-3共析钢CCT曲线图图1-4亚共析钢(含碳0.19%) CCT曲线图图1-5过共析钢(含碳1.03%) CCT曲线图图中符号的规定:A奥氏体;B贝氏体;C碳化物;F铁素体;G石墨;M马氏体;P珠光体;Acl钢加热时,珠光体转变为奥氏体的温度。开始温度用Acls表示,结束温度用Aclf表示Ari钢经奥氏体化冷却时,奥氏体向珠光体转变的温度。Ac3亚共析钢加热时,所有铁素体转变为奥氏体的温度。Accm过共析钢加热时,所有渗碳体和碳化物完全溶入奥氏体的温度。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!