耐火材料生产基本知识

上传人:lx****y 文档编号:176689812 上传时间:2022-12-23 格式:DOC 页数:70 大小:458.50KB
收藏 版权申诉 举报 下载
耐火材料生产基本知识_第1页
第1页 / 共70页
耐火材料生产基本知识_第2页
第2页 / 共70页
耐火材料生产基本知识_第3页
第3页 / 共70页
资源描述:

《耐火材料生产基本知识》由会员分享,可在线阅读,更多相关《耐火材料生产基本知识(70页珍藏版)》请在装配图网上搜索。

1、技 术工 人培 训 教材浙江圣奥耐火材料有限公司杭州博奥窑炉节能技术研究所200年10月目 录绪论一、耐火材料的定义(4)二、耐火材料的分类(4)三、耐火材料的地位和作用(5)四、耐火材料工业的发展概况(6)第一章耐火材料的性质第一节 化学矿物组成(7)一、化学组成(7)二、矿物组成与结构()第二节常温物理性质 ()一、密度(7)二、常温耐压强度(8)第三节 高温作业性质 (8)一、耐火度(9)二、荷重软化温度(9)三、其它高温性能(1)第四节 形状正确性和尺寸准确性(1)第二章 耐火材料生产过程第一节 原料加工 (1)一、原料煅烧(12)二、原料的检选(12)三、破粉碎(12)四、筛分(12

2、)第二节 砖料的制备 (13)一、颗粒配比(13)二、配料(13)三、混合(14)四、睏料(14)第三节成型(砖坯的压制) (1)一、成型方法(1)二、半干成型的压制过程(5)三、压制的不均匀性(层密度现象)(1)四、弹性后效与层裂(1)五、提高成型质量的三个问题(1)六、成型设备及模具尺寸的确定(16)第四节 砖坯的干燥(16)一、干燥过程(1)二、干燥方法及干燥设备(17)三、半成品检验(1)第五节烧成(17)一、装窑(7)二、焙烧(18)三、出窑(18)第六节成品检验及堆放方法(1)一、成品检验(18)二、成品堆放(1)第七节 防尘与除尘(9)一、防尘(20)二、除尘(0)第三章 粘土质

3、耐火材料第一节 粘土质制品的分类(21)第二节 粘土原料(2)一、粘土的分类(21)二、粘土的化学-矿物组成及其矿物影响(2)三、耐火粘土的工艺性质(22)第三节 粘土质制品的生产工艺(3)一、结合粘土及其他结合剂的制备(23)二、熟料制备(2)三、坯料的制备(5)四、成型工艺(26)五、干燥(27)六、烧成(27)第四节 粘土质制品的一般性质和用途(29)一、粘土制品的一般性质(29)二、粘土制品的用途(0)第四章 高铝质耐火材料第一节高铝质制品的基本特性和所用原料(1)一、按制品中的化学矿物组成分类(1)二、按用途分类(31)第二节 高铝质制品的生产工艺(3)一、高铝质品的基本特性(31)

4、二、高铝制品原料(32)第三节高铝质制品的基本特性(33)一、工艺流程及其特点(33)二、生产工艺要点(4)第四节 高铝质制品的用途(35)第五章硅质耐火材料第一节硅质制品生产的物理化学原理(36)一、氧化硅的各种变体及性质(36)二、石英转化的动力学及矿化剂的作用(3)第二节 硅砖生产用原料(38)一、硅质原料的种类(38)二、硅砖生产用硅石性质(38)三、矿化剂的选择和加入量的确定(39)四、结合剂的选择和加入量的确定(39)五、泥料颗粒组成的选择(40)第三节 硅砖的生产工艺()一、生产硅砖的工艺流程(0)二、生产工艺要求()第四节 硅质耐火材料的性质及使用(4)一、硅质耐火材料的性质(

5、43)二、硅质耐火材料的使用(44)第六章 轻质耐火材料第一节 概论(45)第二节轻质耐火材料的生产工艺(45)一、烧尽加入物法(45)二、泡沫法(46)三、化学法(4)第三节 轻质制品的主要性质要求及应用(4)一、主要性质要求()二、轻质耐火制品的使用(48)第七章 不定型耐火材料第一节 耐火混凝土(9)一、硅酸盐水泥耐火混凝土(9)二、磷酸盐耐火混凝土(52)三、硅酸盐耐火混凝土(53)四、水玻璃耐火混凝土的生产工艺(4)第二节 耐火泥(5)一、粘土质耐火泥(5)二、高铝质耐火泥(56)三、硅质耐火泥(5)四、镁质耐火泥(57)第八章 其它耐火材料第一节镁质耐火材料(5)一、镁质耐火材料的

6、原料(58)二、镁砖的生产工艺(58)第二节半硅质耐火材料(60)一、石英粘土制品(61)二、叶腊石制品(61)第三节 碳化硅质耐火材料(61)一、碳化硅(61)二、碳化硅制品的生产工艺(62)三、碳化硅质耐火材料的性能及应用(6)第四节 硅酸铝纤维及其制品(63)一、硅酸铝纤维的生产工艺(6)二、硅酸铝纤维制品生产工艺()三、硅酸铝纤维及其制品的性能(64) 第五节 磷酸盐结合高铝质耐火砖(64)绪 论一、耐火材料的定义耐火材料是指耐火度不低于150的无机非金属材料。耐火材料一般用硅酸铝系统的天然矿石和岩石作为主要原料,它的基本工艺和某些基本特点与硅酸盐系统的其它产品相类似,所以耐火材料列为

7、硅酸盐系统中的一种产品,是硅酸盐工业中的一个重要组成部分.它和水泥、陶瓷、玻璃等硅酸盐工业一样在国民经济中具有相当重要的地位和作用。耐火材料素有“钢铁之母之美称,因它具有在热工设备中有抵抗高温的特殊性能,而在现代工业的发展中占据十分重要的地位。随着科学技术的发现和需要,耐火材料的使用范围日益扩大,由冶金(包括钢铁及有色冶金等)、硅酸盐(水泥、陶瓷等)、化工、动力、机械制造等工业,扩展到一切有高温操作的工矿企业中,其窑炉(燃烧窑、熔池、火道、坩埚)等热工设备的受热部分,耐火材料都是不可缺少的重要建筑结构材料。在尖端科学领域里(如火箭、原子反应堆等)同样是不可缺少的耐高温材料或零件.由于耐火材料长

8、期使用于各种不同加热条件的高温设备中,它受着高温以及其它各种不同条件作用,受着复杂的物理化学反应而破坏。因此,耐火材料必须具有以下几个重要性能.、高温时不易熔化现代化工业窑炉的工作温度一般介于100800之间,因此,耐火材料首先要具有在此温度下不易熔化的性能。2、在高温受压的情况下不软化大多数耐火材料的熔化温度都超过16501700,但是它在达到熔化温度前就开始变形(软化),失去结构强度,因此耐火材料不仅要有高的溶化温度,而且还应具有在受高温荷重的条件下不发生变形的性能。、高温环境中体积稳定耐火材料在高温条件下使用时,由于材料内部起物理化学反应而使体积发生变化。大部分耐火材料的这种变化是体积收

9、缩,少数则发生膨胀。不论是体积收缩或膨胀,如超出一定范围均能引起炉体的损坏。因此要求耐火材料具有良好的高温体积稳定性.4、能抵抗温度骤变且受热不均匀而引起炉体损坏在间断作业的窑炉中,高温时,急剧变化或各部位砌体受热不均匀,砌砖体内部会产生应力而使材料开裂,造成炉体损坏。故耐火材料应具有能承受炉温的急剧变化和波动不致开裂的性能热稳定性。5、高温时能抵抗炉渣的侵蚀作用耐火材料在使用过程中,因变相接触的燃料灰,熔融炉渣及熔融金属等的作用而被侵蚀.因此,耐火材料应具备抵抗这种侵蚀的能力.在使用耐火材料时,要根据使用场合主要的要求以及各种耐火材料所具有的特性来合理选择。二、耐火材料的分类耐火材料的种类很

10、多,目前耐火材料的分类方法大致有如下几种。1、按耐火度可分为普通耐火材料:耐火度大于501770。高级耐火材料:耐火度大于170200。特级耐火材料:耐火度大于0030.超级耐火材料:耐火度大于00.2、按制造工艺分按制造工艺可分为天然岩石、泥浆烧注、可塑成型、半干成型、干压成型、捣打、熔铸等制品。、按化学-矿物组成可分为(1)硅质制品硅砖SO293的制品,石英玻璃SO99%的熔融制品。(2)硅酸铝质制品半硅酸SO65%,I2O3为15%之间。粘土砖A2O为3048%之间。高铝砖I38的制品。()镁质制品镁砖:MgO5,镁铬砖gO5580(Cr2O10%)的制品。铬镁砖:MgO555并合较多量

11、铬铁矿的制品; 镁铝砖:以镁铝尖晶石(MgO-AI2O3)结合的镁砖; 镁橄榄石(2 Mgi)砖,MgO5%。白云石制品:aO40,O3的制品。(4)铬砖CO330()炭质制品炭砖:含炭量709的制品石墨制品:含石墨量30%以上的制品.碳化硅制品:以SiC为原料,耐火粘土或其他无机物结合的制品。()特种耐火材料高温陶瓷材料:金属陶瓷材料。4、按形状和尺寸分按形状和尺寸可以分为:标、普、异、特型砖,另外,耐火材料按烧制分法,按用途、按施工特点等,还有别的一些分类.三、耐火材料的地位和作用耐火材料的进步是与工业发展分不开的.近三十多年来,各种工业部门的新技术和新工艺不断涌现,促进了工业窑炉的变革,

12、推动了耐火材料工业的发展.如今,耐火材料广泛应用于冶金、硅酸盐、化工、动力、机械制造等工业中,随着我国原子能,喷气飞机和火箭等尖端科学技术的发展,给耐火材料开辟了新的发展天地,使耐火材料在尖端技术的发展上占有重要地位.以上等等这些其重要标志是工业窑炉装备化,自动化和高效化;耐火材料的品种增加,质量提高和消耗降低。同时,施工技术水平显著提高。因此推动了耐火材料工业的发展。耐火材料作为工业性的辅助材料在冶金工业部门消耗最多约为总数的600,建材系统包括水泥、陶瓷等工业部门消耗为80,机械等其它工业部门消耗比例为总数的20左右。因此要强调的是耐火材料的消耗是与各国不同时期的工业结构和技术水平分不开的

13、,各国工业部门耐火材料的消耗比例详见表1表一 各国工业部门耐火材料的消耗比例(%)国 名日 本西 德美 国苏 联英 国法 国钢铁有色建材石油化工发电锅炉机械及其它69.71。910.314.116.65772。71。01.1。12.0507。1.82.70。8.60.4。08。7-2.13。7.1.31.4.56.0401454。0-12同时耐火材料的消耗也与耐火材料的品种质量和生产操作技术分不开,也推动着耐火材料工业的进步。四、耐火材料工业的发展概况我国是世界上发明和制造陶瓷最早的国家,是瓷器的故土,瓷器是我国人民的骄傲。从考古出来的陶瓷器表明,三千年前我国的祖先就掌握了陶器的制造法,对人类

14、文化作出了极为重要的贡献。耐火材料在那时就已经制造并首先应用于陶瓷业。当时烧制瓷器用的匣钵和窑炉衬砖就是一种粘土质耐火材料。然而由于长期的封建统治,特别是近百年来帝国主义的侵入和反动统治者的腐败无能,我国耐火材料工艺和其它工业部门一样,长期处于落后状态。因此,解放前我国有许多耐火材料甚至一般锅炉用砖也要靠从外国进口。新中国成产后,随着治金工业的发展,我国耐火材料工业也发展很快。根据使用需要和原料情况,合理布署遍及全国各地。同时成立了专业科研单位,不少大专院校里设有耐火材料专业。在我国工人阶级和科技人员的努力下,充分利用本国资源,积极发展耐火材料工业,掌握和生产了过去所不能生产的硅质耐火材料和高

15、铝质制品等。197年我国独创的镁铝砖在鞍山钢铁公司,大石桥镁矿等大规模的生产,并在我国炼钢工业中广泛采用,使炼钢平炉顶寿命比硅砖炉顶长2.5倍。比镁铬砖长0或一倍以上.在耐火材料生产技术和生产工艺方面,为进一步提高耐火材料质量不断改善生产条件,耐火材料的新工艺新技术得到了广泛应用。原料的破碎、配料、混合工序在一些工厂已实现全部自动化,有的厂已实现自动打砖,并采用了高吨位的自动油压机,在制品烧成上广泛采用各种类型的隧道窑,设计建造了底式倒焰窑,大型活顶倒焰窑,以及随着特殊耐火材料的发展而发展起来的各种不同类型的高温窑,广泛采用液体、气体燃料煅烧制品。我国耐火材料的生产技术已步入世界先进行列,正全

16、面实现全盘机械化,半自动化,自动化。近三十多年来,由于耐火材料工业的发展。各厂努力搞好文明生产管理,加强防尘设施,使粉尘浓度降低到毫米/米3以下,成绩十份显著。主要标志如下:采用优质原料、高压成型、高温烧成,如我国最大的摩撑压砖机为0吨。因此产品质量提高,品种增加;高级耐火材料,特别是不定形耐火材料和耐火纤维发展迅速,使用普遍;耐火材料生产技术和自动化水平,以及劳动生产率均得到了提高。第一章 耐火材料的性质耐火制品的性质,决定制品适合的使用条件,决定制品质量的好坏。而它本身则为制品的化学组成和矿物结构所决定,也就是为制造所用的原料和加工方法所决定。各类不同的耐火制品,都有其独特的性质.为了充份

17、掌握这些特性和制出新品种的制品,以及做到合理使用的制品,必须研究耐火制品的性质。作为高温结构材料的耐火材料在各种热工设备经受高温及各种的物理化学作用,因此,从使用上要求耐火材料应能抵搞作业条件下的高温作用和在作业时间内进行的一系列物理-化学作用.耐火材料低搞各种损毁因素的能力的性质不但是衡量耐火材料的质量,也是决定耐火材料使用条件的生要依据.第一节 化学-矿物组成一、化学组成耐火材料制品(或原料)的化学组成,又称化学成份,一般用化学分析方法进行测定。常用耐火材料一般测定Al23 、Si2、2O3、a、MgO、iO2、Na2O、K2O等,并测定烧灼减量.不同种类的耐火材料及制品具有不同的化学成份

18、。耐火材料的化学组成决定着耐火材料的基本化学特性,如以SiO2为主体成份的硅砖呈酸性,而以MgO为主体成份的镁砖则呈碱性,这对选用材料和判断在使用中它们之间的化学作用情况,具有特殊意义.但由于耐火材料是非均质体,全体与局部的化学组成不同;而且有时某一化学成份相同的制品,由于所用原料的不同,矿物组成与结构的不同,其性能可能有很大的差别,因些单纯从化学组成出发加以考虑则不够全面,应进一步观察其矿物组成和内部的组织结构情况加以全面判断.二、矿物组成与结构耐火材料制品(和原料)是矿物的组成体。因此,在影响制品性质的主要原因是制品的矿物组成,而不是化学组成。耐火材料制品的矿物组成取决于制品化学组成和形成

19、制品时的外界作用因素(如温度,压力)。为了获得满足各种不同使用要求的耐火材料,必须深入地进行耐火材料矿物组成的研究,摸清并掌握它们的生存条件和变化规律。对于使用过程中受炉渣侵蚀的砖块进行矿物鉴定,是进行使用研究的重要手段,更能提供改进质量的方向。目前,鉴定耐火材料的矿物组成与结构的方法,一般是通过显微镜观察,以及X射线分析,差热分析和衍射鉴定等。耐火材料的化学-矿物组成是分析原料及制品特性的一个重要方面,所以改变制品特性,提高制品质量,一般采用调整制品化学矿物组成的方法.第二节 常温物理性质检验耐火材料的组织结构,主要是检验其常温的物理性质,检验耐火材料宏观组织结构的测试项目,有气孔率(或称空

20、隙度),体积密度(或称容积比重),真比重,假比重,吸水率,透气率等,它们试验测定方法简单,快速方便,费用节省,是鉴定原料煅烧质量,控制工艺操作,以及成型质量的常规检测项目.对鉴定产品的使用性能也有一定意义;故通常与常温机械强度(耐压极限强度)等项检验,综合用作批量鉴定产品最必需和通用的试验项目.一、密度密度是致密程度的意思。从物理观点来看,耐火制品是固体和气体(以气孔形成存在)的组成体.表示致密程度用体积密度(单位体积物体的重量),即P/v。对耐火制品显得更为重要和更有实用意义的是气孔率(气孔体积占制品总体积的百分数).因为耐火制品中气孔体积量的多少对制品高温工作性质的影响是明显的,至关重要。

21、气孔率指标不仅表明耐火制品质量的好坏,同时它对生产工艺因素的反应是敏感的,所以也是检查和判断原料质量和工艺过程最常用的依据之一.耐火制品中存在的气孔,有三种形式:开口气孔(是存在于制品表面,与外界相通的气孔)、闭口气孔(是封闭在制品内部,与外界处于隔绝状态的气孔)、贯通气孔(是贯通制品两面与外界相通的气孔,在测定中是归于开品气孔计的)。其中对耐火制品使用过程影响最大的是开口气孔(包括贯气孔),因其在使用过程中直接与外物(如熔渣)相接触,它直接进入其中并侵入内部,加速制品的破坏。另外吸水率(表示充填制品中全部开口气孔体积所需水的重量占制品重量的百分数)又是表示制品开口气孔量的一个重要指标。开口气

22、孔体积试样的总体积(显气孔率)开口气孔率 10%开口气孔吸满水的重试样未吸水前的干重吸水率= 00GG0W吸= 100%W吸吸水率(%)G开口气孔吸水重量G0试样干燥重量,克。试样干重(克)试样总体积(厘米)3体积密度=W =试样总体积(厘米)真密度(克)V=试样干重(克)总体积与其中孔隙所占的体积之差真密度=GU2U真=试样干重(克)与材料同湿度、同体积水的重(克)真比重=真密度与材料同湿度下纯水的密度(克厘米3) =二、常温耐压强度耐火制品的常温耐压强度是耐火制品在常温下,单位面积上所能承受的最大压力.压碎制品的总压力(公斤)制品受压面积(厘米2)耐压强度=耐火制品常温耐压强度,取决于制品

23、中各个颗粒本身的强度,颗粒间相互连结的牢固性、气孔的数量和存在形式,以及加入结合剂所起的结合能力的大小等。因此,它受工艺条件影响很大。耐火材料在使用过程中,虽然很少发生在常温下受静荷重而招致破坏的现象,但因测定常温耐压强度的方法简便,可以及时了解生产工艺,如混练,成型,烧成的操作情况;同时也可以间接了解制品其他性能的好坏(如耐磨、抗冲击、抗冲刷等),并能与其它性能的检验结果综合判断制品的质量。因此常温耐压强度仍为目前常用的检验项目之一。第三节 高温作业性能耐火材料的高温作业性质,是在高温下测定的性质,这些性质,有的反应出耐火材料在该温度下的状态(如耐火度,荷重软化温度),有的反应出耐火材料在该

24、温度下对某种外来作用(如溶渣,气体,温度,温度急变等)的反应.总之,这些性质都在某种程度上反应出耐火材料在使用时的状态。因此,测定和了解耐火材料的高温作业性质,对提高产品质量和合理适用耐火材料都具有直接意义。一、耐火度耐火度是耐火材料抵抗高温作用而不熔化的性质指标。对于耐火材料而言,耐火度代表的意义与熔点不同,熔点是指纯物质熔融成液相的平衡温度,如氧化铝的熔点为050,氧化硅为13,莫来石为180等,但一般耐火材料并非纯物质,而由多种不同矿物组成,并有许多杂质,故无一定的熔点,只有其融熔温度范围。决定耐火材料的耐火度的根本因素是其化学矿物组成和它的分布情况,各种杂质成份是极其有害的.因此在生产

25、中注意提高原料的纯度,进行原料的检选,对于提高耐火材料的耐火性能是十分必要的。耐火材料的耐火度,只能表明其抵抗温度作用的能力,不能作为使用温度的上限,因为制品在实际使用过程中,在经受高温作用的同时,还伴随着荷重和外物的熔剂作用,所以制品的实际使用温度较耐火度低得多.耐火度可作为评定耐火原料纯度和制品质量的指标。耐火度的测定方法,是将材料按规定制成三角锥,在规定的加热条件下,与标准高温锥弯倒情况相比较,直至试锥的顶部弯倒接触低座,此时与试锥同时弯倒的标准高温锥所代表的温度即为该试锥的耐火度。常用火锥的锥号与其代表的温度见表(11)表1 标准火锥号与温度对照表锥号温度()锥号温度()锥号温度()2

26、3151810321351114123125128130013203184101430146148515254581613616546080150501540158161161651169711731751771791831769171173017501701791830标准火锥不但用于测定耐火材料的耐火度,而且在陶瓷,耐火材料烧成时,经常用以判断和控制窑温。通常耐火度按以下公试计算:(仅供参考)36A2O3(R2O+RO+2+TiO)0.2t=上式中,O和O分别代表碱金属和碱土金属氧化物。式中百分比应折算成,AI2O3Si=100%作为基准。二、荷重软化温度检验耐火材料的高温结构强度,是测定

27、耐火材料在实际应用中抵抗温度、压力双重作用而不变形的能力。通常的测定方法是固定试样所承受的压力(2公斤/厘米2)不断升高温度,测定试样在发生一定变形量(。6%,4%或40)和坍塌时的温度就是荷重软化温度。荷重软化温度是表示制品对高温和荷重的共同作用的抵抗性能。它是评定耐火材料质量的一个重要指标,更是选用确定耐火材料最高使用温度的重要数据。一般情况下,制品总是在高温荷重的条件下使用,往往会在远低于其耐火度(如镁砖)的温度下,由于砖体结合部分的熔化而发生明显的塑性变形,引起熔炉的变形甚至坍塌,所以测定荷重软化温度,对于耐火材料的实际使用具有重要意义。一般影响耐火材料的实际使用荷重软化温度的主要因素

28、是制品的矿物-化学组成和生产工艺条件.如提高原料纯度使杂质含量降低,提高液相形成温度可以提高荷重软化温度。几种常见耐火制品的荷重软化开始温度见表(1)表2 几种常见耐火材料的荷重软化开始温度砖种荷重软化开始温度(硅砖粘土砖高铝砖半硅砖镁砖镁铝砖6201030014014210125014000155015201580三、其它高温性能1、重烧线变化V2。1重烧线变化是耐火制品加热到高温后,长度的不可逆的减小或增大。其计算可以用下式表示。V1重烧体积变化百分率V= -LL1重烧线变化百分率 0式中,V。1、V2-分别表示重烧前后试样的体积L1、L2分别表示重烧前后试样的长度按上式计算的结果,可能为

29、正值,也可能为负值,前者代表膨胀,后者代表收缩。耐火制品在高温下使用时,如果产生过大的重烧收缩会使窑炉砌体的砖缝增大,影响砌体的整体性,甚至会造成炉体结构损坏。相反过大的重烧膨胀也会破坏砌体的几何形状,甚至崩塌。使耐火制品产生重烧线变化的基本原因,是制品在高温使用条件下继续烧结.为了降低耐火制品的重烧变化,在工艺上一般采取提高砖坯成型密度和适当提高制品烧成温度延长保温时间.2、热震稳定性(热稳定性)热震稳定性是耐火制品对于急冷急热温度变化的抵抗性能.热稳定性是鉴定耐火材料质量的重要指标之一,耐火材料在使用时常碰到温度波动的情况。由于耐火材料的导热性能较差,造成砖的表面和内部的温差很大,又由于材

30、料的受热膨胀或遇冷收缩的作用,均使砖内部产生应力,当这种应力超过砖本身的结构强度时,就产生开裂、剥落、甚至砖体崩裂。这种破坏作用也往往是耐火材料在使用过程中砌体遇到损坏的重要原因之一。因此,在生产中采取有效措施以提高制品的稳定性是很重要的.影响耐火制品热稳定性的因素是制品热膨胀性,导热性,弹性模量,制品的组织结构及形状、大小等.可以通过改变制品的矿物组成。提高瘠性物料的临界粒度,使泥料颗粒适当变粗,以及提高制品烧成质量来提高制品热稳定性.某些耐火材料的热稳定性指标如下表:名称重量损失0时热冷循环的次数(85水冷)硅砖普通粘土砖粗颗粒粘土砖镁砖镁铝砖101225102350503、抗渣性抗渣性是

31、耐火材料在高温下对于炉渣侵蚀作用的抵抗能力。炉渣的侵蚀作用是十分复杂的,不仅有化学反应,而且有机械磨损和物理化学作用,是耐火材料在使用过程中损毁的重要原因。同时由于炉内温度变化,机械磨损振动冲击等因素,互相恶化,加剧损坏作用过程,往往是因为化学反应产生低熔物质,不断往耐火材料内部扩散。使之软化和熔化,丧失强度,严重时甚至整块淌成流体,或被侵蚀掉而熔入炉渣,因此研究耐火材料的抗渣性能具有非常重要的意义.鉴别耐火制品抗渣性能的测定方法有:流渣法,坩埚法、浸渣法、熔锥法,喷渣法等五种。影响耐火材料抗渣性的主要因素是耐火材料、熔渣的组成和性质,耐火材料的使用温度以及制品的组织结构等。因此,在生产工艺上

32、要想有效地提高耐火材料的抗渣性,就应该保证和提高原料的纯度,改善制品的化学矿物组成。选择合适的生产方法以保证制品具有致密而均匀的组织结构。、热膨胀耐火材料在使用时也与一般物体一样,会发生热胀冷缩的可逆变化.热膨胀的重要性在于炉子结构内总是要留有适当的膨胀缝。一种耐火材料的热膨胀是组成它的各矿物相和玻璃相成份的膨胀的总和,用射线去测量加热时晶格的变化可以得到晶体膨胀的资料。它也可用公式表示如下:ItIotoo (tto)IoP= 10 a=公式中:P-试样线膨胀率,t室温,;t加热温度,L0试样在室温下长度,毫米;t试样加热至t时的长度毫米,-试样的平均线膨胀系数1/耐火材料的体膨胀系数约为线膨

33、胀系数的3倍。耐火材料的热膨胀性主要取决于制品的化学矿物组成。所以不同种类的耐火制品受热时的膨胀情况也不一样.如下是几种常用耐火材料的平均线膨胀系数(29100范围内)粘土砖46.106 高铝砖5.5。06 镁砖4110刚玉砖88106 硅砖11。513106第四节 形状正确性和尺寸准确性在工业窑炉和燃烧室的实际操作中,耐火制品的形状正确性和尺寸准确性对内部的使用寿命有很大的影响。生产外形尺寸符合设计图纸要求的制品,是耐火材料生产工作者的重要任务,制品外形正确与否,尺寸是否符合要求,直接影响筑炉施工质量和窑炉的使用寿命。外形尺寸的正确则是获得较小砌缝的首要条件。工程设计对于砖缝的宽度要求,根据

34、窑炉各部位作业条件不同而有不同的要求,通常最低的要求不大于3毫米。某些重要部位规定不大于.5毫米.显然如果制品扭曲变形较大,或尺寸超出了规定允许的范围是不能满足要求的。影响制品外形尺寸准确性的因素很多,在生产中,原料质量不稳定,砖模设计时的缩放尺寸率不合适,装窑方法不当,烧成温度变化较大等都会有影响,往往造成大批废品.制品的尺寸愈大;形状愈复杂,保证制品外形尺寸的准确性就愈困难.因此,在工程设计上,应尽量简化砖型,控制砖型设计过大,注意砖型统一工作,这对提高产品质量有很大的作用。另外,耐火材料制品的牌号和砖号等可根据国家标准和部颁标准执行.第二章 耐火材料的生产过程耐火材料的种类繁多,所用原料

35、以及对产品的质量要求各不一样。不同种类的耐火材料所采用的生产方法也各有特点,但它们的生产工序和加工方法基本是一致的,而且影响质量因素也大致相同,所以学习耐火材料生产过程中的共同性的工艺过程,有助于了解各种不同耐火材料的工艺特点。耐火材料生产技术的发展是以提高质量、增加品种和降低消耗为中心而进行的,下面按照几个主要工序的特点进行述叙.第一节 原料加工一、原料煅烧原料是耐火材料的基础,没有优质原料就不可能生产优质的产品。近几年来,国内外对耐火原料的选矿、提纯煅烧技术和合成原料工艺等方面做了大量的研究开发工作,使其纯度提高,熟料密度增大,成份结构均匀和性能稳定。绝大部分耐火材料所用骨料,在制砖前首先

36、要经过煅烧,这是因为原生矿石在高温下将会发生分解,而使直接制成的砖坯在加工热过程中变得松散和剥裂以至成为废品.也就是说,它们在高温下要进行一系列的物理化学反应,让这些变化在原料煅烧时完成,保证获得具有良好物理-化学性能和外观质量。二、原料的检选原料检选通常在破碎前进行,检选目的主要是:(指熟料)1、选出原料中的杂质或生料,未燃尽的燃料块以及熔瘤块(熟料)。、根据原料的外观进行分级堆放。检选工作目前我国都是用人工检选,这种方法劳动强度大,检选效率低,不能满足现代化大生产的需要。三、破碎与粉磨 进入工厂的原料(矿石)的块度通常具有各种形状及尺寸,其大小不异.小的为粉末状,大的有35毫米左右块状。因

37、此必须经过破碎以达到制备坯料用的颗粒度要求.另外,单一尺寸颗粒组成的泥料不能获得致密堆积,必须按大、中、小颗粒级配才能获得致密的坯体。耐火原料的粉碎主要是用机械方法,将块状物料变成粒状或粉状物料的加工过程。即由350毫米大块料破碎至5070毫米中块,由500毫米粉碎成毫米左右的粗粒,再粉磨成小于0。088毫米的细粉.粉碎的目的在于将块状原料制成有一定颗粒组成的碎粒及细粉,才能将不同组成的粉料配制混合均匀,增加原料的比表面积,提高其物理化学反应的速度。影响耐火原料粉碎的因素,主要是原料本身的强度、硬度、塑性和水份等,同时也与破粉碎设备的特性有关。粉碎工艺流程通常有开路流程和闭路流程两种.开路流程

38、的特点是流程简单,但是经过一次粉碎即完成任务,势必造成细粉过多,动力消耗大,产量低。闭路流程是粉碎后的物料要经过筛选,筛下料作为成品,筛上料回到粉碎机重新粉碎。该流程生产能力大,颗粒容易控制;但流程复杂,需要更多的附属设备。中小型企业粉碎工艺应优选闭路流程为宜,因为其生产灵活性大,有利于组织生产。其常用的粉碎机械设备有颚式破碎机,它的结构简单,牢固,工作可靠,操作维修方便,能处理块度变化范围很大的物料,圆锥式破碎机是在耐火材料工业中广泛用作物料的中碎和细碎设备。干碾机是粉碎各种硬质原料和熟料的主要设备,同时也用它来粉碎粘土等软质和半软质原料。四、筛分耐火原料经粉碎后,一般是大中小颗粒连续混在一

39、起。为了获得符合规定尺寸的组分就需要进行筛分.筛分是指粉碎后的物料,通过一定尺寸的筛孔,使不同粒度的物料进行分离的工艺过程。筛分设备主要有转筒筛、振动筛和固定斜筛,后两种应用较广泛;振动筛的筛分效率达90以上,固定筛一般在0 %左右。筛分关键在于筛子层数和合理筛网孔径,它取决于颗粒组成和粒度配合的要求。如果粒度配合要求不高,可采用单层筛;要求严,则采用双层筛和多层筛.在生产中常用筛的筛孔的表示方法(网目、孔号和筛孔尺寸等)见表(21)纺织筛网简明规格美国筛制英国筛制德国筛制网目号筛孔尺寸(mm)网目号筛孔尺寸(mm)筛号每平方厘米的孔数 筛孔尺寸(m)463060101704。76。362。3

40、81.190.580。0。140.088863060101020012.0713.551052120.0724630607014569060090061.0.03850.20。20.088第二节 砖料的制备耐火材料的砖料是按一定比例配合的各种原料的料粉,在混练过程中加入水或其它结合剂而制成的混合料。整个砖料制备过程包括颗粒级配、配料、混合和睏料等几个工序。一、颗粒配比砖料的颗粒配比对坯体的致密程度有着重大的影响,只有符合紧密堆积颗粒配比,才有可能获得最致密的成型坯体.从试验的结果来看,两种颗粒的级配比例为6:47:3。三种颗粒的级配比例为7:1:2时其堆积密度较高。 我国多年来耐火材料生产的实

41、践经验表明,制造耐火制品,用的砖料颗粒组成应采取“两头大,中间小”的粒度配比为好,即在砖料中粗,细颗粒多,中间颗粒少。因此在实际生产中,无论是原料的粉碎或泥料的制备,在生产操作和工艺检查上,对大多数制品的粉料或泥料,只控制粗颗粒筛分(如13毫米)和细颗粒筛分(如小于0。 毫米)两部分的数量.另外,为改善制品的某些性能需调整泥料颗粒组成时,也经常是从粗、细两种颗粒的大小和数量上进行调整.为了简化生产工艺过程和操作,有时对粉碎后的粉料不进行颗粒分级,而是在连续颗粒组成中,规定粗颗粒的临界粒度及数量;以及规定小于0.5毫米的颗粒的含量。如粉料内细颗粒不足,在配料时加入一定量小于0.088毫米的细粉,

42、以补充粉料中细颗粒不足。但在生产一些质量要求较高或有特殊用途的制品时,一般不直接取用筛分后只满足临界粒度要求的全部筛下料;而必须将粉料进行颗粒分级,然后以一定的比例进行配合。二、配料根据不同耐火制品的要求和工艺特点,将不同材质和不同粒度的物料按一定比例进行配合的工艺称为配料。配料规定的配合比例就是配方。 配料方法一般有二种:容积配料法和重量配料法,前者误差较大。后者较精确,一般误差不超过2,目前大多数耐火材料生产均采用重量配料法. 配料内容包括不同原料的配比和颗粒组成的配合.对于颗粒组成配合问题,各厂都有各自的做法。一般是将多层筛分的不同粒级的粉料分别贮存,在混合时按比例重量法进行配合,既可防

43、止颗粒偏析,且使砖料的粒度组成波动少,保证成型后坯体密度和制品密度。另外,在确定砖料材质配方时,主要考虑制品的质量要求,保证制品达到规定的性能指标,经混练后砖料具有必要的成型性能,同时还要注意合理利用原料资源,降低成本.三、混合 混合是使不同组分和粒度的物料与适量的结合剂、经混合和挤压作用达到分布均匀和充分湿润的砖料制备过程,达到各组份均匀分布,颗粒均匀分布和水分含量均匀分布. 目前,在耐火材料生产中常用的混练设备有:单轴和双轴搅拌机,混砂机以及湿碾机等.前两者主要起搅拌混合作用,而后者除混合搅拌作用外还有挤压作用。因此,用湿碾机混练的砖料较致密均匀.影响砖料混合均匀的因素很多,如设备性能、加

44、料量、混合时间、加料顺序、配料中所选用的结合剂、粉料的颗粒形状等.不同性质泥料的混练时间要求不同,粘土砖为50分钟,高铝砖01分钟,硅砖15分钟左右,镁砖025分钟.加料顺序目前普遍采用(1)颗粒和细粉料干混12分钟结合剂;(2)部分颗粒料结合剂细粉剩余颗粒料;混合后的砖料质量对成型和制品性能影响很大,通常以检查泥料的颗粒组成和水份来衡量合格与否。质量好的砖料中,细粉均匀包附在颗粒表面,泥料密实成型性能好,水份分布均匀,水份不但存在颗粒表面,而且还渗入颗粒料的孔隙中.如果混合不好用手抓料有松散感.因此,要定时检查泥料的质量,注意颗粒组成、水份含量和各种物料组成的变化.四、睏料睏料就是把初混后的

45、泥料在适当的温度和湿度下贮放一定的时间。砖料需要经过睏料过程,然后供成型使用.睏料时间的长短主要取决于工艺要求和泥料的性质,但一般都控制在在84小时之内.睏料的作用各不相同,粘土砖料是为了使结合粘土更进一步分解、水份均匀分布,以提高结合粘土可塑性能和结合性能,改善泥料成型性能。磷酸或硫酸铝作胶结剂的耐火混泥土散装结合料,是为了除去砖料内因化学原因产生的气体。如今,随着耐火材料的生产技术发展和原料质量的提高,多数厂已省去了睏料工序(个别品种除外),从而简化了生产工艺.第三节 成型成型是将泥料加工成具有一定形状的坯体或制品的过程。成型的目的在于使松散的砖料获得一定形状,尺寸及尽可能致密的坯体.成型

46、时,砖坯的外形尺寸非常重要,所制砖坯的尺寸和质量决定着烧成制品的尺寸和致密度。坯体的密度程度主要取决于泥料的性质、压机压力、压制程序、增压速度和加压时间等几个条件。当泥料性质保持基本稳定的条件下,坯体的密实程度取决于压制过程的几个条件。这几个条件又取决于压砖机械的特性和操作方法.一、成型方法耐火材料生产中的成型方法常用以下几种:(1)注浆成型将水份为3545的泥浆注入石膏模中,根据制品所需壁厚放置一定时间,然后将多佘泥浆倒出。等坯体具有一定强度时脱模,凉干修坯,这种方法适用于生产薄壁中制品,如生产热电偶套管,高温炉管及坩埚和熔融石英质浸入或长水口制品等均用此法。此法多为手工操作,劳动强度大,生

47、产周期长,石膏模消耗大。(2)可塑性成型一般是指用含水量在161%的呈塑性状态的泥料制造坯体的方法.它可制成各种复杂形状的制品,但因生产周期长,收缩大,燃料消耗大,成品不够致密等缺点,已逐步被淘汰。(3)半干成型(或干压成型)指用含水量在37%左右的泥料制备坯体的方法.它具有坯体密度高,强度大,干燥和烧成收缩小,制品尺寸容易控制等优点.现在工厂所用的机压成型及空气捶捣打法等均属于此种生产方法。(4)手工成型手工成型是借助于简单的生产工具用手工制坯的方法。它的泥料含水量较半干成型法要高些,可达101这种方法适合于形状复杂和批量小的制品生产。(5)熔铸成型指将物料在高温下熔融后铸造成型,此方法用于

48、高级耐火材料生产,如电熔刚玉、电熔莫来石和电熔镁石等。耐火材料的其它成型方法还有热压成型,热压注法成型和等静压成型等多种方法。目前,常用耐火材料的生产,主要是采用半干法成型。二、半干成型的压制过程半干成型砖坯的过程是一个在外力作用下颗粒密集和空气排出形成致密坯体的过程。可用“压力收缩曲线表示。“压力收缩曲线”将压制过程分为三个阶段。第一阶段:在压力作用下,坯体颗粒发生移动,形成坯体.第二阶段:坯体被压缩到一定密度后,当压力增加时,物料开始发生脆性及弹性变形,颗粒的棱角被压掉及颗粒受压而变形,使坯体继续被压缩.第三阶段:压力超过临界压力,即使压力再升高,坯体的致密程度也不再增加。在实际生产中,我

49、们要求成型时,颗粒不被粉碎,只进行颗粒移动密集,而它只有在第一阶段进行才行,所以希望不要三个阶段都进行。生产中的压力主要用来克服泥料颗粒间的内摩擦力、泥料与外壁间的外摩擦力及克服压力不均匀分布时所需的过剩压力。砖坯的上述压制特性说明:坯体自然堆积密度愈大,愈易压致密。坯料颗粒间的摩擦力愈小,受单位压力作用时压缩量就愈大。因此,近年来在坯料中加入一些有机活化剂,增大坯料内部的滑动性能,降低坯料与模壁间的摩擦阻力,在同样压制压力下,可以改善其致密程度。三、压制的不均匀性(层密度现象)层密度现象指的是成型后砖坯的密度沿加压主向递变的现象。在压制时,发现沿加压方向颜色深浅不同,上部颜色深,下部则较浅。这是由于其层密度不同所造成的。为什么会造成由上方单向加压的砖坯上密下疏,同一水平面上中密外疏的密度不同现象呢?这是因为料内颗粒间存在摩擦力,料壁间存在外摩擦力。在成型砖坯时,所施加的压力在传递过程中损失于内外摩擦及被压物料的变形,因而在加压方向上压力的分布是不均匀的.随着远离受压面压力逐渐减少,同时在垂直于加压方向的受压面上,由于泥料颗粒与模型间的外磨擦力较颗粒间的内磨擦力大,因而同一平面上各点的压强也各不相同。正因为压制时

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!