微积分微分方程总结及练习题ppt课件

上传人:29 文档编号:175596986 上传时间:2022-12-19 格式:PPT 页数:33 大小:900KB
收藏 版权申诉 举报 下载
微积分微分方程总结及练习题ppt课件_第1页
第1页 / 共33页
微积分微分方程总结及练习题ppt课件_第2页
第2页 / 共33页
微积分微分方程总结及练习题ppt课件_第3页
第3页 / 共33页
资源描述:

《微积分微分方程总结及练习题ppt课件》由会员分享,可在线阅读,更多相关《微积分微分方程总结及练习题ppt课件(33页珍藏版)》请在装配图网上搜索。

1、通解通解如果如果微分方程的解中含有任意常数,并且微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解解叫做微分方程的通解特解特解确定了通解中的任意常数以后得到的解,确定了通解中的任意常数以后得到的解,叫做微分方程的特解叫做微分方程的特解初始条件初始条件用来确定任意常数的条件用来确定任意常数的条件.初值问题初值问题求微分方程满足初始条件的解的问题,求微分方程满足初始条件的解的问题,叫初值问题叫初值问题dxxfdyyg)()(形如形如(1)可分离变量的微分方程可分离变量的微分方程解法解法 dxxfdyyg)()(分

2、离变量法分离变量法2 2、一阶微分方程的解法、一阶微分方程的解法)(xyfdxdy 形如形如(2)齐次方程齐次方程解法解法xyu 作变量代换作变量代换)(111cybxacbyaxfdxdy 形如形如齐次方程齐次方程,01时时当当 cc,令令kYyhXx ,(其中(其中h和和k是待定的常数)是待定的常数)否则为非齐次方程否则为非齐次方程(3)可化为齐次的方程可化为齐次的方程解法解法化为齐次方程化为齐次方程)()(xQyxPdxdy 形如形如(4)一阶线性微分方程一阶线性微分方程,0)(xQ当当上方程称为齐次的上方程称为齐次的上方程称为非齐次的上方程称为非齐次的.,0)(xQ当当齐次方程的通解为

3、齐次方程的通解为.)(dxxPCey(使用分离变量法)(使用分离变量法)解法解法非齐次微分方程的通解为非齐次微分方程的通解为 dxxPdxxPeCdxexQy)()()((常数变易法)(常数变易法)(5)伯努利伯努利(Bernoulli)方程方程nyxQyxPdxdy)()(形如形如)1,0(n方程为线性微分方程方程为线性微分方程.时时,当当1,0 n 方程为非线性微分方程方程为非线性微分方程.时时,当当1,0 n解法解法 需经过变量代换化为线性微分方程需经过变量代换化为线性微分方程,1 nyz 令令.)1)()()1()()1(1 CdxenxQezydxxPndxxPnn利用全微分表达式求

4、解微分方程利用全微分表达式求解微分方程常见的全微分表达式常见的全微分表达式 222yxdydyxdx xydxydxxdy2 xydyxydxxdyarctan22 xydxyydxxdyln )ln(212222yxdyxydyxdx yxyxdyxydxxdyln21223 3、可降阶的高阶微分方程的解法、可降阶的高阶微分方程的解法解法解法),(xPy 令令特点特点.y不显含未知函数不显含未知函数),()2(yxfy 型型)()1()(xfyn 接连积分接连积分n次,得通解次,得通解 型型解法解法代入原方程代入原方程,得得).(,(xPxfP ,Py ),(xPy 令令特点特点.x不不显显

5、含含自自变变量量),()3(yyfy 型型解法解法代入原方程代入原方程,得得).,(PyfdydpP,dydpPy 、线性微分方程解的结构、线性微分方程解的结构(1 1)二阶齐次方程解的结构)二阶齐次方程解的结构:)1(0)()(yxQyxPy形形如如定定理理 1 1 如如果果函函数数)(1xy与与)(2xy是是方方程程(1 1)的的两两个个解解,那那末末2211yCyCy 也也是是(1 1)的的解解.(21,CC是是常常数数)定定理理 2 2:如如果果)(1xy与与)(2xy是是方方程程(1 1)的的两两个个线线性性无无关关的的特特解解,那那么么2211yCyCy 就就是是方方程程(1 1)

6、的的通通解解.(2 2)二阶非齐次线性方程的解的结构)二阶非齐次线性方程的解的结构:)2()()()(xfyxQyxPy 形形如如定理定理 3 3 设设*y是是)2(的一个特解的一个特解,Y是与是与(2)(2)对应对应的齐次方程的齐次方程(1)(1)的通解的通解,那么那么*yYy 是二阶是二阶非齐次线性微分方程非齐次线性微分方程(2)(2)的通解的通解.定理定理 4 4 设非齐次方程设非齐次方程(2)(2)的右端的右端)(xf是几个函是几个函数之和数之和,如如)()()()(21xfxfyxQyxPy 而而*1y与与*2y分别是方程分别是方程,)()()(1xfyxQyxPy )()()(2x

7、fyxQyxPy 的特解的特解,那么那么*2*1yy 就是原方程的特解就是原方程的特解.、二阶常系数齐次线性方程解法、二阶常系数齐次线性方程解法)(1)1(1)(xfyPyPyPynnnn 形如形如n阶常系数线性微分方程阶常系数线性微分方程0 qyypy二阶常系数齐次线性方程二阶常系数齐次线性方程)(xfqyypy 二阶常系数非齐次线性方程二阶常系数非齐次线性方程解法解法由常系数齐次线性方程的特征方程的根确由常系数齐次线性方程的特征方程的根确定其通解的方法称为定其通解的方法称为特征方程法特征方程法.02 qprr0 qyypy 特征根的情况特征根的情况 通解的表达式通解的表达式实根实根21rr

8、 实根实根21rr 复根复根 ir 2,1xrxreCeCy2121 xrexCCy2)(21 )sincos(21xCxCeyx 特征方程为特征方程为01)1(1)(yPyPyPynnnn特征方程为特征方程为0111 nnnnPrPrPr特征方程的根特征方程的根通解中的对应项通解中的对应项rk重重根根若若是是rxkkexCxCC)(1110 ik 复复根根重重共共轭轭若若是是xkkkkexxDxDDxxCxCC sin)(cos)(11101110 推广:推广:阶常系数齐次线性方程解法阶常系数齐次线性方程解法n、二阶常系数非齐次线性微分方程解法、二阶常系数非齐次线性微分方程解法)(xfqyy

9、py 二阶常系数非齐次线性方程二阶常系数非齐次线性方程型型)()()1(xPexfmx 解法解法待定系数法待定系数法.,)(xQexymxk 设设 是重根是重根是单根是单根不是根不是根 2,10k型型sin)(cos)()()2(xxPxxPexfnlx ,sin)(cos)()2()1(xxRxxRexymmxk 设设次次多多项项式式,是是其其中中mxRxRmm)(),()2()1(nlm,max .1;0是特征方程的单根时是特征方程的单根时不是特征方程的根时不是特征方程的根时 iik7 7、欧拉方程、欧拉方程 欧拉方程是特殊的变系数方程,通过变量代换欧拉方程是特殊的变系数方程,通过变量代换

10、 可化为常系数微分方程可化为常系数微分方程.xtextln 或或)(1)1(11)(xfypyxpyxpyxnnnnnn 的方程的方程(其中其中nppp21,形如形如叫叫欧拉方程欧拉方程.为常数为常数),二、典型例题二、典型例题.)cossin()sincos(dyxyxxyyxdxxyyxyxy 求通解求通解例例1 1解解原方程可化为原方程可化为),cossinsincos(xyxyxyxyxyxyxydxdy ,xyu 令令.,uxuyuxy 代入原方程得代入原方程得),cossinsincos(uuuuuuuuxu ,cos2cossinxdxduuuuuu 分离变量分离变量两边积分两边

11、积分,lnln)cosln(2Cxuu ,cos2xCuu,cos2xCxyxy 所求通解为所求通解为.cosCxyxy.32343yxyyx 求通解求通解例例2 2解解原式可化为原式可化为,32342yxyxy ,3223134xyxyy 即即,31 yz令令原式变为原式变为,3232xzxz ,322xzxz 即即对应齐方通解为对应齐方通解为,32Cxz 一阶线性非齐方程一阶线性非齐方程伯努利方程伯努利方程,)(32xxCz 设设代入非齐方程得代入非齐方程得,)(232xxxC ,73)(37CxxC 原方程的通解为原方程的通解为.73323731xCxy 利用常数变易法利用常数变易法.2

12、12yyy 求通解求通解例例3 3解解.x方程不显含方程不显含,dydPPyPy 令令代入方程,得代入方程,得,212yPdydPP ,112yCP 解解得得,,11 yCP,11 yCdxdy即即故方程的通解为故方程的通解为.12211CxyCC .1)1()1(,2 yyexeyyyxx求特解求特解例例4 4解解特征方程特征方程,0122 rr特征根特征根,121 rr对应的齐次方程的通解为对应的齐次方程的通解为.)(21xexCCY 设原方程的特解为设原方程的特解为,)(2*xebaxxy ,2)3()(23*xebxxbaaxy 则则,2)46()6()(23*xebxbaxbaaxy

13、 代代入入原原方方程程比比较较系系数数得得将将)(,)(,*yyy,21,61 ba原方程的一个特解为原方程的一个特解为,2623*xxexexy 故原方程的通解为故原方程的通解为.26)(2321xxxexexexCCy ,1)1(y,1)31(21 eCC,6)1()(3221xexxCCCy ,1)1(y,1)652(21 eCC,31121 eCC,651221 eCC由由解得解得 ,121,61221eCeC所以原方程满足初始条件的特解为所以原方程满足初始条件的特解为.26)121(61223xxxexexexeey ).2cos(214xxyy 求解方程求解方程例例5 5解解特征方

14、程特征方程,042 r特征根特征根,22,1ir 对应的齐方的通解为对应的齐方的通解为.2sin2cos21xCxCY 设原方程的特解为设原方程的特解为.*2*1*yyy ,)1(*1baxy 设设,)(*1ay 则则,0)(*1 y,得,得代入代入xyy214 ,xbax2144 由由,04 b,214 a解得解得,0 b,81 a;81*1xy ),2sin2cos()2(*2xdxcxy 设设,2sin)2(2cos)2()(*2xcxdxdxcy 则则,2sin)44(2cos)44()(*2xdxcxcxdy ,得,得代入代入xyy2cos214 故原方程的通解为故原方程的通解为.2

15、sin81812sin2cos21xxxxCxCy ,2cos212sin42cos4xxcxd 由由,04 c,214 d即即,81 d,0 c;2sin81*2xxy .)(),(1)()(2此方程的通解此方程的通解()()的表达式;的表达式;()(),试求:,试求:的齐次方程有一特解为的齐次方程有一特解为,对应,对应有一特解为有一特解为设设xfxpxxxfyxpy 例例6 6解解()由题设可得:()由题设可得:),()1)(2,02)(223xfxxpxxxp解此方程组,得解此方程组,得.3)(,1)(3xxfxxp ()原方程为()原方程为.313xyxy ,的两个线性无关的特解的两个

16、线性无关的特解程程是原方程对应的齐次方是原方程对应的齐次方显见显见221,1xyy 是原方程的一个特解,是原方程的一个特解,又又xy1*由解的结构定理得方程的通解为由解的结构定理得方程的通解为.1221xxCCy .ln5322xxyyxyx 求求解解方方程程解解例例7 7这是一个欧拉方程这是一个欧拉方程,ln xt 令令dxdtdtdyy 则则,1tyx dxdtyxyxytt 112),(12ttyyx 代入原方程得代入原方程得,542tttteyyy (1),tex 和和(1)对应的齐次方程为对应的齐次方程为,054 yyytt(2)(2)的特征方程为的特征方程为,0542 rr特征根为特征根为,1,521 rr(2)的通解为的通解为.251tteCeCY 设设(1)的特解为的特解为,)(2*tebaty ),22()(2*1baateyt 则则),444()(2*baateyt 代代入入原原方方程程比比较较系系数数得得将将)(,)(,*yyy,99tbat ,0,91 ba,912*ttey 得得(1)的通解为的通解为.912251tttteeCeCy 故原方程的通解为故原方程的通解为.ln912251xxxCxCy

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!