阶电路和二阶电路的时域分析

上传人:仙*** 文档编号:172037496 上传时间:2022-11-30 格式:PPT 页数:170 大小:4.37MB
收藏 版权申诉 举报 下载
阶电路和二阶电路的时域分析_第1页
第1页 / 共170页
阶电路和二阶电路的时域分析_第2页
第2页 / 共170页
阶电路和二阶电路的时域分析_第3页
第3页 / 共170页
资源描述:

《阶电路和二阶电路的时域分析》由会员分享,可在线阅读,更多相关《阶电路和二阶电路的时域分析(170页珍藏版)》请在装配图网上搜索。

1、动态电路的方程及其初始条件动态电路的方程及其初始条件7.1一阶电路和二阶电路的阶跃响应一阶电路和二阶电路的阶跃响应7.7一阶电路的零输入响应一阶电路的零输入响应7.2一阶电路和二阶电路的冲激响应一阶电路和二阶电路的冲激响应7.8*一阶电路的零状态响应一阶电路的零状态响应7.3卷积积分卷积积分7.9*一阶电路的全响应一阶电路的全响应7.4状态方程状态方程7.10*二阶电路的零输入响应二阶电路的零输入响应7.5二阶电路的零状态响应和全响应二阶电路的零状态响应和全响应7.6动态电路时域分析中的几个问题动态电路时域分析中的几个问题7.11*首首 页页本章重点本章重点第第7 7章章 一阶电路和二阶电路一

2、阶电路和二阶电路的时域分析的时域分析2.2.一阶和二阶电路的零输入响应、零状态响一阶和二阶电路的零输入响应、零状态响应和全响应的概念及求解;应和全响应的概念及求解;l 重点重点3.3.一阶和二阶电路的阶跃响应概念及求一阶和二阶电路的阶跃响应概念及求解。解。1.1.动态电路方程的建立及初始条件的确定;动态电路方程的建立及初始条件的确定;返 回含有动态元件电容和电感的电路称动态电路。含有动态元件电容和电感的电路称动态电路。1 1.动态电路动态电路 7.1 7.1 动态电路的方程及其初始条件动态电路的方程及其初始条件 当动态电路状态发生改变时(换路)需要当动态电路状态发生改变时(换路)需要经历一个变

3、化过程才能达到新的稳定状态。这经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。个变化过程称为电路的过渡过程。下 页上 页特点返 回例例0ti2/RUiS)(21RRUiS过渡期为零过渡期为零电阻电路电阻电路下 页上 页+-usR1R2(t=0)i返 回i=0 ,uC=Usi=0 ,uC=0 k接通电源后很长时间接通电源后很长时间,电容充电完毕,电路,电容充电完毕,电路达到新的稳定状态:达到新的稳定状态:k未动作前未动作前,电路处于稳定状态:,电路处于稳定状态:电容电路电容电路下 页上 页k+uCUsRCi(t=0)+-(t)+uCUsRCi+-前一个稳定状态前一个稳定状态

4、过渡状态过渡状态新的稳定状态新的稳定状态t1USuct0?iRUS有一过渡期有一过渡期返 回uL=0,i=Us/Ri=0 ,uL=0 k接通电源后很长时间接通电源后很长时间,电路达到新的稳定,电路达到新的稳定状态,电感视为短路:状态,电感视为短路:k未动作前未动作前,电路处于稳定状态:,电路处于稳定状态:电感电路电感电路下 页上 页k+uLUsRi(t=0)+-L(t)+uLUsRi+-前一个稳定状态前一个稳定状态过渡状态过渡状态新的稳定状态新的稳定状态t1US/Rit0?uLSU有一过渡期有一过渡期返 回下 页上 页(t)+uLUsRi+-k未动作前未动作前,电路处于稳定状态:,电路处于稳定

5、状态:uL=0,i=Us/Rk断开瞬间断开瞬间i=0 ,uL=工程实际中在切断电容或电感电路时工程实际中在切断电容或电感电路时会出现过电压和过电流现象。会出现过电压和过电流现象。注意k(t)+uLUsRi+-返 回过渡过程产生的原因过渡过程产生的原因 电路内部含有储能元件电路内部含有储能元件 L、C,电路在换路时,电路在换路时能量发生变化,而能量发生变化,而能量的储存和释放都需要一定的能量的储存和释放都需要一定的时间来完成。时间来完成。twp电路结构、状态发生变化电路结构、状态发生变化换路换路支路接入或断开支路接入或断开电路参数变化电路参数变化p0 t下 页上 页返 回)(ddSCCtuutu

6、RC应用应用KVL和电容的和电容的VCR得:得:若以电流为变量:若以电流为变量:)(d1StutiCRittuCitiRd)(dddS2 2.动态电路的方程动态电路的方程下 页上 页(t 0)+uCUsRCi+-)(SCtuuRituCiddC例例RC电路电路返 回)(SLtuuRi)(ddStutiLRi应用应用KVL和电感的和电感的VCR得得:tiLuddL若以电感电压为变量:若以电感电压为变量:)(dSLLtuutuLRttutuuLRd)(dddSLL下 页上 页(t 0)+uLUsRi+-RL电路电路返 回有源有源 电阻电阻 电路电路 一个动一个动态元件态元件一阶一阶电路电路下 页上

7、 页结论 含有一个动态元件电容或电感的线性电含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称路,其电路方程为一阶线性常微分方程,称一阶电路。一阶电路。返 回)(ddddSCC2C2tuutuRCtuLC)(SCtuuuRiL二阶电路二阶电路tuCiddC2C2ddddtuLCtiLuL下 页上 页(t 0)+uLUsRi+-CuCRLC电路电路应用应用KVL和元件的和元件的VCR得得:含有二个动态元件的线性电路,其电路方程含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称二阶电路。为二阶线性常微分方程,称二阶电路。返 回一阶电路一阶电路一阶电路中只有一个动态

8、元件一阶电路中只有一个动态元件,描述描述电路的方程是一阶线性微分方程。电路的方程是一阶线性微分方程。描述动态电路的电路方程为微分方程;描述动态电路的电路方程为微分方程;动态电路方程的阶数通常等于电路中动动态电路方程的阶数通常等于电路中动态元件的个数。态元件的个数。0)(dd01ttexatxa0)(dddd01222ttexatxatxa二阶电路二阶电路二阶电路中有二个动态元件二阶电路中有二个动态元件,描述描述电路的方程是二阶线性微分方程。电路的方程是二阶线性微分方程。下 页上 页结论返 回高阶电路高阶电路电路中有多个动态元件,描述电路中有多个动态元件,描述电路的方程是高阶微分方程。电路的方程

9、是高阶微分方程。0)(dddddd01111ttexatxatxatxannnnnn动态电路的分析方法动态电路的分析方法根据根据KVL、KCL和和VCR建立微分方程;建立微分方程;下 页上 页返 回复频域分析法复频域分析法时域分析法时域分析法求解微分方程求解微分方程经典法经典法状态变量法状态变量法数值法数值法卷积积分卷积积分拉普拉斯变换法拉普拉斯变换法状态变量法状态变量法付氏变换付氏变换本章本章采用采用 工程中高阶微分方程应用计算机辅助分析求解。工程中高阶微分方程应用计算机辅助分析求解。下 页上 页返 回稳态分析和动态分析的区别稳态分析和动态分析的区别稳态稳态动态动态换路发生很长时间后状态换路

10、发生很长时间后状态微分方程的特解微分方程的特解恒定或周期性激励恒定或周期性激励换路发生后的整个过程换路发生后的整个过程微分方程的通解微分方程的通解任意激励任意激励SUxatxa01dd0 dtdx tSUxa 0下 页上 页直流时直流时返 回 t=0与与t=0的概念的概念认为换路在认为换路在t=0时刻进行时刻进行0 换路前一瞬间换路前一瞬间 0 换路后一瞬间换路后一瞬间3.3.电路的初始条件电路的初始条件)(lim)0(00tfftt)(lim)0(00tfftt初始条件为初始条件为 t=0时时u,i 及其各阶导数及其各阶导数的值。的值。下 页上 页注意0f(t)0()0(ff00)0()0(

11、fft返 回图示为电容放电电路,电容原先带有电压图示为电容放电电路,电容原先带有电压Uo,求求开关闭合后电容电压随时间的变化。开关闭合后电容电压随时间的变化。例例解解0ddccutuRC)0(0tuRic特征根方程:特征根方程:01RCpRCp1通解:通解:oUk RCtptckeketu)(代入初始条件得:代入初始条件得:RCtoceUtu )(在动态电路分析中,初始条件是得在动态电路分析中,初始条件是得到确定解答的必需条件。到确定解答的必需条件。下 页上 页明确R+CiuC(t=0)返 回d)(1)(tCiCtud)(1d)(100tiCiCd)(1)0(0tCiCut=0+时刻时刻d)(

12、1)0()0(00iCuuCCiucC+-电容的初始条件电容的初始条件0下 页上 页当当i()为有限值时为有限值时返 回q(0+)=q(0)uC(0+)=uC(0)换路瞬间,若电容电流保持为有限值,换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。则电容电压(电荷)换路前后保持不变。q=C uC电荷电荷守恒守恒下 页上 页结论返 回d)(1)(tLuLtid)(1d)(100tuLuLd)(1)0()0(00uLiiLL电感的初始条件电感的初始条件t=0+时刻时刻0d)(1)0(0tLuLi下 页上 页当当u为有限值时为有限值时iLuL+-返 回L(0)=L(0)iL(0)

13、=iL(0)LLi 磁链磁链守恒守恒 换路瞬间,若电感电压保持为有限值,换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前后保持不变。则电感电流(磁链)换路前后保持不变。下 页上 页结论返 回L(0+)=L(0)iL(0+)=iL(0)qc(0+)=qc(0)uC(0+)=uC(0)换路定律换路定律电容电流和电感电压为有限值是换路定电容电流和电感电压为有限值是换路定律成立的条件。律成立的条件。换路瞬间,若电感电压保持换路瞬间,若电感电压保持为有限值,则电感电流(磁链)为有限值,则电感电流(磁链)换路前后保持不变。换路前后保持不变。换路瞬间,若电容电流保持换路瞬间,若电容电流保持为有限值

14、,则电容电压(电荷)为有限值,则电容电压(电荷)换路前后保持不变。换路前后保持不变。换路定律反映了能量不能跃变。换路定律反映了能量不能跃变。下 页上 页注意返 回电路初始值的确定电路初始值的确定(2)由换路定律由换路定律 uC(0+)=uC(0)=8VmA2.010810)0(Ci(1)由由0电路求电路求 uC(0)uC(0)=8V(3)由由0+等效电路求等效电路求 iC(0+)iC(0)=0 iC(0+)例例1求求 iC(0+)电电容容开开路路下 页上 页+-10ViiC+uC-S10k40k+-10V+uC-10k40k+8V-0+等效电路等效电路+-10ViiC10k电电容容用用电电压压

15、源源替替代代注意返 回)0()0(LLuuiL(0+)=iL(0)=2AV842)0(Lu例例 2t=0时闭合开关时闭合开关k,求求 uL(0+)先求先求A24110)0(Li应用换路定律应用换路定律:电电感感用用电电流流源源替替代代)0(Li解解电感电感短路短路下 页上 页iL+uL-L10VS14+-iL10V14+-由由0+等效电路求等效电路求 uL(0+)2A+uL-10V14+-注意返 回求初始值的步骤求初始值的步骤:1.1.由换路前电路(稳定状态)求由换路前电路(稳定状态)求uC(0)和和iL(0);2.2.由换路定律得由换路定律得 uC(0+)和和 iL(0+)。3.3.画画0+

16、等效电路。等效电路。4.4.由由0+电路求所需各变量的电路求所需各变量的0+值。值。b.b.电容(电感)用电压源(电流源)替代。电容(电感)用电压源(电流源)替代。a.a.换路后的电路换路后的电路(取(取0+时刻值,方向与原假定的电容电压、电时刻值,方向与原假定的电容电压、电感电流方向相同)。感电流方向相同)。下 页上 页小结返 回iL(0+)=iL(0)=iSuC(0+)=uC(0)=RiSuL(0+)=-RiS求求 iC(0+),uL(0+)0)0(RRiiiSsC例例3解解由由0电路得电路得:下 页上 页由由0+电路得电路得:S(t=0)+uLiLC+uCLRiSiCRiS0电路电路uL

17、+iCRiSRiS+返 回V24122)0()0(CCuuA124/48)0()0(LLii例例4求求k闭合瞬间各支路电流和电感电压闭合瞬间各支路电流和电感电压解解A83/)2448()0(CiA20812)0(iV2412248)0(Lu下 页上 页由由0电路得电路得:由由0+电路得电路得:iL+uL-LS2+-48V32CiL2+-48V32+uC返 回12A24V+-48V32+-iiC+-uL求求k闭合瞬间流过它的电流值闭合瞬间流过它的电流值解解 确定确定0值值A12020)0()0(LLiiV10)0()0(CCuu给出给出0等效电路等效电路A2110101020)0(kiV1010

18、)0()0(LLiuA110/)0()0(CCui下 页上 页例例5iL+20V-10+uC1010iL+20V-LS10+uC1010C返 回1A10Vki+uLiC+20V-10+10107.2 7.2 一阶电路的零输入响应一阶电路的零输入响应换路后外加激励为零,仅由换路后外加激励为零,仅由动态元件初始储能产生的电动态元件初始储能产生的电压和电流。压和电流。1.1.RC电路的零输入响应电路的零输入响应已知已知 uC(0)=U00CRuutuCiCdd uR=Ri零输入响应零输入响应下 页上 页iS(t=0)+uRC+uCR返 回0)0(0ddUuutuRCCCCRCp1 特征根特征根特征方

19、程特征方程RCp+1=0tRC eA1 ptCeAu 则则下 页上 页代入初始值代入初始值 uC(0+)=uC(0)=U0A=U0iS(t=0)+uRC+uCR返 回000teIeRURuiRCtRCtC0 0teUuRCtcRCtRCtCeRURCeCUtuCi00)1(dd 下 页上 页或或返 回tU0uC0I0ti0令令 =RC ,称称为一阶电路的时间常数为一阶电路的时间常数 秒伏安秒欧伏库欧法欧 RC电压、电流是随时间按同一指数规律衰减的函数;电压、电流是随时间按同一指数规律衰减的函数;连续连续函数函数跃变跃变响应与初始状态成线性关系,其衰减快慢与响应与初始状态成线性关系,其衰减快慢与

20、RC有关有关;下 页上 页表明返 回时间常数时间常数 的大小反映了电路过渡过程时间的长短的大小反映了电路过渡过程时间的长短 =RC 大大过渡过程时间长过渡过程时间长 小小过渡过程时间短过渡过程时间短电压初值一定:电压初值一定:R 大大(C一定一定)i=u/R 放电电流小放电电流小放电时间长放电时间长U0tuc0 小 大C 大大(R一定一定)W=Cu2/2 储能大储能大11 RCp物理含义物理含义下 页上 页返 回a.:电容电压衰减到原来电压电容电压衰减到原来电压36.8%所需的时间。所需的时间。工程上认为工程上认为,经过经过 35,过渡过程结束。过渡过程结束。U0 0.368U0 0.135U

21、0 0.05U0 0.007U0 t0 2 3 5t ceUu 0U0 U0 e-1 U0 e-2 U0 e-3 U0 e-5 下 页上 页注意返 回 t2 t1 t1时刻曲线的斜率等于时刻曲线的斜率等于211C1C0C0)()(1dd11tttutueUtutttU0tuc0t1t2)(368.0)(1C2Ctutu次切距的长度次切距的长度下 页上 页RCteUu 0C返 回b.时间常数时间常数 的几何意义:的几何意义:能量关系能量关系tRiWRd02电容不断释放能量被电阻吸收电容不断释放能量被电阻吸收,直到全部消耗完毕直到全部消耗完毕.设设 uC(0+)=U0电容放出能量:电容放出能量:2

22、021CU电阻吸收(消耗)能量:电阻吸收(消耗)能量:tReRURCtd)(2 002021CUteRURCtd2 02002 20|)2(RCteRCRU下 页上 页uCR+C返 回例例1图示电路中的电容原充有图示电路中的电容原充有24V电压,求电压,求k闭合后,闭合后,电容电压和各支路电流随时间变化的规律。电容电压和各支路电流随时间变化的规律。解解这是一个求一阶这是一个求一阶RC 零输入响应问题,有:零输入响应问题,有:+uC45Fi1t 0等效电路等效电路0 0CteUuRCt下 页上 页i3S3+uC265Fi2i1s 2045 V 240RCU返 回+uC45Fi10 V2420 t

23、eutc分流得:分流得:A6420 1tCeuiA43220 12teiiA23120 13teii下 页上 页i3S3+uC265Fi2i1返 回下 页上 页例例2求求:(1)图示电路图示电路k闭合后各元件的电压和电流随闭合后各元件的电压和电流随时间变化的规律,时间变化的规律,(2)电容的初始储能和最终时电容的初始储能和最终时刻的储能及电阻的耗能。刻的储能及电阻的耗能。解解这是一个求一阶这是一个求一阶RC 零输入响应问题,有:零输入响应问题,有:F42112CCCCCu(0+)=u(0)=20V返 回u1(0-)=4VuSC1=5F+-iC2=20Fu2(0-)=24V250k+下 页上 页

24、uk4F+-i20V250k020 teuts 1104052 3RCA80102503teuiV)2016(d80514)(1(0)00111ttttetediCuuV)204(d8020124d)(1(0)00222tttteteiCuu返 回下 页上 页J40)16105(216-1wJ50005800 初始储能初始储能J5760)241020(2126-2w最终储能最终储能J5000201020)5(2126-11www电阻耗能电阻耗能J800d)80(10250d02302RtttetRiw返 回2.2.RL电路的零输入响应电路的零输入响应特征方程特征方程 Lp+R=0LRp特征根特

25、征根 代入初始值代入初始值A=iL(0+)=I001)0()0(IRRUiiSLL00ddLLtRitiLptAeti)(L0)(00LteIeItitLRptt 0下 页上 页iLS(t=0)USL+uLRR1+-iL+uLR返 回RLt LLeRItiLtu/0)(dd0)(/0teItiRLtLtI0iL0连续连续函数函数跃变跃变电压、电流是随时间按同一指数规律衰减的函数;电压、电流是随时间按同一指数规律衰减的函数;下 页上 页表明-RI0uLt0iL+uLR返 回响应与初始状态成线性关系,其衰减快慢与响应与初始状态成线性关系,其衰减快慢与L/R有关有关;下 页上 页秒欧安秒伏欧安韦欧亨

26、 RL 令令 称为一阶称为一阶RL电路时间常数电路时间常数 =L/R时间常数时间常数 的大小反映了电路过渡过程时间的长短的大小反映了电路过渡过程时间的长短L大大 W=LiL2/2 起始能量大起始能量大R小小 P=Ri2 放电过程消耗能量小放电过程消耗能量小放电慢,放电慢,大大 大大过渡过程时间长过渡过程时间长 小小过渡过程时间短过渡过程时间短物理含义物理含义电流初值电流初值iL(0)一定:一定:返 回能量关系能量关系tRiWRd 02电感不断释放能量被电阻吸收电感不断释放能量被电阻吸收,直到全部消耗完毕。直到全部消耗完毕。设设 iL(0+)=I0电感放出能量:电感放出能量:2021LI电阻吸收

27、(消耗)能量:电阻吸收(消耗)能量:tReIRLt d2/00)(2021LI teRIRLt d/2020 0220|)2/(RCt eRLRI下 页上 页iL+uLR返 回iL(0+)=iL(0)=1 AuV(0+)=10000V 造成造成V损坏。损坏。例例1t=0时时,打开开关打开开关S,求求uv0/t eit L。电压表量程:。电压表量程:50VsRRLV4104100004 0100002500 teiRutLVV解解下 页上 页iLS(t=0)+uVL=4HR=10VRV10k10ViLLR10V+-返 回例例2t=0时时,开关开关S由由12,求求电感电压和电流及电感电压和电流及开

28、关两端电压开关两端电压u12。s 166RL解解A26366/32424)0()0(LLii66/)42(3 R下 页上 页i+uL66Ht 0iLS(t=0)+24V6H3446+uL212返 回0 V12A 2 tetiLueitLLtLddV424242412tLeiu下 页上 页i+uL66Ht 0iLS(t=0)+24V6H3446+uL212返 回一阶电路的零输入响应是由储能元件的初值引一阶电路的零输入响应是由储能元件的初值引起的响应起的响应,都是由初始值衰减为零的指数衰减都是由初始值衰减为零的指数衰减函数。函数。teyty )0()(iL(0+)=iL(0)uC(0+)=uC(0

29、)RC电路电路RL电路电路下 页上 页小结返 回一阶电路的零输入响应和初始值成正比,一阶电路的零输入响应和初始值成正比,称为零输入线性。称为零输入线性。衰减快慢取决于时间常数衰减快慢取决于时间常数 同一电路中所有响应具有相同的时间常数。同一电路中所有响应具有相同的时间常数。下 页上 页小结 =R C =L/RR为与动态元件相连的一端口电路的等效电阻。为与动态元件相连的一端口电路的等效电阻。RC电路电路RL电路电路返 回动态元件初始能量为零,由动态元件初始能量为零,由t 0电电路中外加激励作用所产生的响应。路中外加激励作用所产生的响应。SCCddUutuRC方程:方程:7.3 7.3 一阶电路的

30、零状态响应一阶电路的零状态响应 解答形式为:解答形式为:CCCuuu 1.1.RC电路的零状态响应电路的零状态响应零状态响应零状态响应非齐次方程特解非齐次方程特解齐次齐次方程方程通解通解下 页上 页iS(t=0)US+uRC+uCRuC(0)=0+非齐次线性常微分方程非齐次线性常微分方程返 回与输入激励的变化规律有关,为电路的稳态解与输入激励的变化规律有关,为电路的稳态解RCtAeu C变化规律由电路参数和结构决定变化规律由电路参数和结构决定的通解的通解0ddCCutuRCSCUu 通解(自由分量,暂态分量)通解(自由分量,暂态分量)Cu 特解(强制分量)特解(强制分量)CuSCCddUutu

31、RC的特解的特解下 页上 页返 回全解全解uC(0+)=A+US=0 A=US由初始条件由初始条件 uC(0+)=0 定积分常数定积分常数 ARCtAeUuutu SCCC)(下 页上 页)0()1(S SSCteUeUUuRCtRCt从以上式子可以得出:从以上式子可以得出:RCteRUtuCiSCdd返 回-USuCuC“UStiRUS0tuC0电压、电流是随时间按同一指数规律变化的函电压、电流是随时间按同一指数规律变化的函数;电容电压由两部分构成:数;电容电压由两部分构成:连续连续函数函数跃变跃变稳态分量(强制分量)稳态分量(强制分量)暂态分量(自由分量)暂态分量(自由分量)下 页上 页表

32、明+返 回响应变化的快慢,由时间常数响应变化的快慢,由时间常数 RC决定;决定;大,大,充电慢,充电慢,小充电就快。小充电就快。响应与外加激励成线性关系;响应与外加激励成线性关系;能量关系能量关系2S21CU电容储存能量:电容储存能量:电源提供能量:电源提供能量:2SS0SdCUqUtiU2S21CU电阻消耗能量:电阻消耗能量:tRRUtRiRCted)(d20S02 电源提供的能量一半消耗在电阻上,一半电源提供的能量一半消耗在电阻上,一半转换成电场能量储存在电容中。转换成电场能量储存在电容中。下 页上 页表明RC+-US返 回例例t=0时时,开关开关S闭合,已知闭合,已知 uC(0)=0,求

33、求(1)电容电容电压和电流电压和电流,(2)uC80V时的充电时间时的充电时间t。解解(1)(1)这是一个这是一个RC电路零电路零状态响应问题,有:状态响应问题,有:)0(V)1(100)1(200 SCt-eeUut-RCts1051050035RCA2.0d200SCtRCteeRUtuCid(2)(2)设经过设经过t1秒秒,uC80V .t-et-s0458)1(1008012001m下 页上 页50010F+-100VS+uCi返 回2.2.RL电路的零状态响应电路的零状态响应SLLUiRtiLdd)1(SLtLReRUi已知已知iL(0)=0,电路方程为:,电路方程为:LLLiii

34、tiLRUS0RUiSLA0)0(tLRAeRUS下 页上 页iLS(t=0)US+uRL+uLR+返 回)1(SLtLReRUitLReUtiLuSLLdduLUSt0下 页上 页iLS(t=0)US+uRL+uLR+返 回例例1t=0时时,开关开关S打开,求打开,求t 0后后iL、uL的变化规律。的变化规律。解解这是这是RL电路零状态响应问题,先化简电路,有:电路零状态响应问题,先化简电路,有:200300/20080eqRs01.0200/2/eqRLt 0下 页上 页A10)(LiA)1(10)(100LtetiV200010)(100100eqLtteeRtu返 回iLS+uL2HR

35、8010A200300iL+uL2H10AReq例例2t=0开关开关k打开,求打开,求t 0后后iL、uL及电流源的电压。及电流源的电压。解解 这是这是RL电路零状态响应问题,先化简电路,有:电路零状态响应问题,先化简电路,有:201010eqRV201020Us1.020/2/eqRL下 页上 页iL+uL2HUoReq+t 0A1/)(eq0RUiLA)1()(10tLetiV20)(10100ttLeeUtu)V1020(10510StLLeuiIu返 回iLK+uL2H102A105+u7.4 7.4 一阶电路的全响应一阶电路的全响应电路的初始状态不为零,同时又有外电路的初始状态不为零

36、,同时又有外加激励源作用时电路中产生的响应。加激励源作用时电路中产生的响应。SddUutuRCCC以以RC电路为例,电路微分方程:电路为例,电路微分方程:1.1.全响应全响应全响应全响应下 页上 页iS(t=0)US+uRC+uCR解答为:解答为:uC(t)=uC+uC特解特解 uC =US通解通解tCAeu =RC返 回uC(0)=U0uC(0+)=A+US=U0 A=U0-US由初始值定由初始值定A下 页上 页0)(0 teUUUAeUutSStSC强制分量强制分量(稳态解稳态解)自由分量自由分量(暂态解暂态解)返 回2.2.全响应的两种分解方式全响应的两种分解方式uC-USU0暂态解暂态

37、解uCUS稳态解稳态解U0uc全解全解tuc0全响应全响应 =强制分量强制分量(稳态解稳态解)+自由分量自由分量(暂态解暂态解)着眼于电路的两种工作状态着眼于电路的两种工作状态物理概念清晰物理概念清晰下 页上 页返 回全响应全响应 =零状态响应零状态响应 +零输入响应零输入响应)0()1(0 teUeUuttSC着眼于因果关系着眼于因果关系便于叠加计算便于叠加计算下 页上 页零输入响应零输入响应零状态响应零状态响应S(t=0)USC+RuC(0)=U0+S(t=0)USC+RuC(0)=U0S(t=0)USC+RuC(0)=0返 回)0()1(0 teUeUuttSC零状态响应零状态响应零输入

38、响应零输入响应tuc0US零状态响应零状态响应全响应全响应零输入响应零输入响应U0下 页上 页返 回例例1 t=0 时时 ,开关开关k打开,求打开,求t 0后的后的iL、uL。解解 这是这是RL电路全响应问题,电路全响应问题,有:有:s20/112/6.0/RLA64/24)0()0(LLiiA6)(20tLeti零输入响应:零输入响应:A)1(1224)(20tLeti零状态响应:零状态响应:A42)1(26)(202020tttLeeeti全响应:全响应:下 页上 页iLS(t=0)+24V0.6H4+uL8返 回或求出稳态分量:或求出稳态分量:A212/24)(Li全响应:全响应:A2)

39、(20 tLAeti代入初值有:代入初值有:62AA=4例例2 t=0时时 ,开关开关K闭合闭合,求求t 0后的后的iC、uC及电及电流源两端的电压。流源两端的电压。解解这是这是RC电路全响电路全响应问题,有:应问题,有:)1,V1)0(FCuC下 页上 页稳态分量:稳态分量:V11110)(Cu返 回+10V1A1+uC1+u1V1011)(5.0tCetuA5)(5.0tCCetutiddV512111)(5.0tCCeuitu下 页上 页s21)11(RC全响应:全响应:V11)(5.0tCAetu返 回+10V1A1+uC1+u13.3.三要素法分析一阶电路三要素法分析一阶电路一阶电路

40、的数学模型是一阶线性微分方程:一阶电路的数学模型是一阶线性微分方程:teAtftf )()(令令 t=0+Atff 0)()0(0)()0(tffAcbftfadd其解答一般形式为:其解答一般形式为:下 页上 页特特解解返 回tefftftf )0()0()()(时间常数时间常数初始值初始值稳态解稳态解三要素三要素 f f)0()(分析一阶电路问题转为求解电路的三分析一阶电路问题转为求解电路的三个要素的问题。个要素的问题。用用0+等效电路求解等效电路求解用用t的稳态的稳态电路求解电路求解下 页上 页直流激励时:直流激励时:)()0()(fftfteffftf )()0()()(A注意返 回V2

41、)0()0(CCuuV667.01)1/2()(Cus2332eqCR033.1667.0)667.02(667.05.05.0 t eeuttC例例1已知:已知:t=0 时合开关,求换路后的时合开关,求换路后的uC(t)解解tuc2(V)0.6670tCeuuutu)()0()()(CCC下 页上 页1A213F+-uC返 回例例2t=0时时 ,开关闭合,求开关闭合,求t 0后的后的iL、i1、i2解解三要素为:三要素为:s5/1)5/5/(6.0/RLA25/10)0()0(LLiiA65/205/10)(Li下 页上 页iL+20V0.5H55+10Vi2i1tLLLLeiiiti )(

42、)0()()(三要素公式三要素公式046)62(6)(55 t eetittLV10)5()4(5.0)(55ttLLeetiLtuddA225/)10()(51tLeutiA245/)20()(52tLeuti返 回三要素为:三要素为:s5/1)5/5/(6.0/RLA25/10)0()0(LLiiA65/205/10)(Li046)62(6)(55 t eetittLA22)20(2)(551tteetiA24)42(4)(552tteetiA0110)2010()0(1iA2110)1020()0(2iA25/10)(1iA45/20)(2i下 页上 页0等效电路等效电路返 回+20V2

43、A55+10Vi2i1例例3已知:已知:t=0时开关由时开关由12,求换路后的求换路后的uC(t)解解三要素为:三要素为:V12624)(111iiiuCV8)0()0(CCuu下 页上 页4+4i12i1u+10/1011 iuRiueq2A410.1F+uC+4i12i18V+12返 回teuuutu)()0()()(CCCCV201212812)(Ctteetu下 页上 页s11.010eqCR例例4已知:已知:t=0时开关闭合,求换路后的电流时开关闭合,求换路后的电流i(t)。+1H0.25F52S10Vi解解三要素为:三要素为:V10)0()0(CCuu0)(Cus5.025.02e

44、q1CR返 回V10)()0()()(2CCCCtteeuuutu0)0()0(LLiiA25/10)(Lis2.05/1/2eqRLA)1(2)()0()()(5ttLLLLeeiiiti)A5)1(2(2)()()(25ttCLeetutiti下 页上 页+1H0.25F52S10Vi返 回已知:电感无初始储能已知:电感无初始储能t=0 时合时合S1,t=0.2s时合时合S2,求两次换路后的电感电流,求两次换路后的电感电流i(t)。0 t 0.2sA52/10)(5.02/1/A26.1)2.0(2iRLi26.122)2.0(2.05 eiA74.35)()2.0(2teti下 页上 页

45、i10V+S1(t=0)S2(t=0.2s)32-返 回tei522(0|P1|下 页上 页0电容电压电容电压返 回)()(21120CttcppeePPLUtuCiddt=0+ic=0 ,t=ic=0ic0 t=tm 时时ic 最大最大tmic)(2112120CttPPePePPPUu下 页上 页tU0uc0电容和电感电流电容和电感电流返 回U0uctm2tmuLic)()(2121120ttLppePePPPUtiLudd)(2112120CttPPePePPPUu0 t 0,t tm i 减小减小,uL 0t=2 tm时时 uL 最大最大0 ,00LLutUut下 页上 页RLC+-t

46、0电感电压电感电压返 回iC=i 为极值时,即为极值时,即 uL=0 时的时的 tm 计算如下计算如下:0)(2121ttppePeP 2112ppppntm由由 duL/dt 可确定可确定 uL 为极小时的为极小时的 t.0)(212221ttppePePmtt2)()(2121120ttLppePePPPUtiLudd21122ppppntmmtPtPeePP2112下 页上 页返 回能量转换关系能量转换关系0 t tm uC减小减小,i 减小减小.下 页上 页RLC+-RLC+-tU0uCtm2tmuLiC0返 回 2 )2(CLR LCLRLRP1)2(222,1 jP(谐振角频率)(

47、谐振角频率)(衰减系数),(衰减系数),令令 1 20LCLR:220(固有振荡角频率)(固有振荡角频率)uc 的解答形式:的解答形式:)(21)(2121tjtjttptpCeAeAeeAeAu经常写为:经常写为:)sin(tAeutC下 页上 页共轭复根共轭复根返 回0cossin)(0)0(sin)0(00AAdtduUAUuCC由初始条件由初始条件arctgUA,sin00下 页上 页)sin(tAeutc0sin00UA,的的关系关系 )sin(00teUutC返 回)sin(00teUutC弦函数。弦函数。为包线依指数衰减的正为包线依指数衰减的正是振幅以是振幅以00UuCt=0 时

48、时 uc=U0uC=0:t=-,2-.n-t-2-20U0uCteU00teU00下 页上 页返 回t-2-20U0uC iCteLUtuCitCCsin 0dd )sin(00teUtiLutLdduL=0:t=,+,2+.n+ic=0:t=0,2 .n,为为 uc极值点,极值点,ic 的极值点为的极值点为 uL 零点零点。下 页上 页返 回能量转换关系:能量转换关系:0 t t -t 0+电路的微分方程电路的微分方程(b)求通解求通解(c)求特解求特解(d)全响应全响应=强制分量强制分量+自由分量自由分量定定常常数数由由初初值值)0()0()(dtdffe上 页返 回上 页7.7 7.7

49、一阶电路和二阶电路的阶跃响应一阶电路和二阶电路的阶跃响应1.1.单位阶跃函数单位阶跃函数l 定义定义 )0(1)0(0)(t t tt (t)01l 单位阶跃函数的延迟单位阶跃函数的延迟 )(1)(0)(000tt tt ttt(t-t0)t001下 页上 页返 回t=0 合闸合闸 i(t)=Is)(t在电路中模拟开关的动作在电路中模拟开关的动作t=0 合闸合闸 u(t)=E)(tl 单位阶跃函数的作用单位阶跃函数的作用下 页上 页SUSu(t)(StUu(t)返 回Is)(tik)(tISu(t)起始一个函数起始一个函数tf(t)0)()sin(00tttt t0延迟一个函数延迟一个函数下

50、页上 页tf(t)0t0)()sin(tt)()sin(0ttt 返 回l 用单位阶跃函数表示复杂的信号用单位阶跃函数表示复杂的信号例例 1)()()(0ttttf (t)tf(t)101t0tf(t)0t0-(t-t0)4()3()1(2)(ttttf例例 21t1 f(t)0243下 页上 页返 回)1()1()()(tttttf例例 41t1 f(t)0)1()1()(tttt)1()1(tt)(tt)4()3()1()()(tt tttf例例 31t1 f(t)0243下 页上 页返 回)()()1(tt u 例例 5t1 02已知电压已知电压u(t)的波形如图,的波形如图,试画出下列

51、电压的波形。试画出下列电压的波形。)1()2()4(tt u )1()1()3(tt u )()1()2(tt u t1 u(t)022t1 011t 1 01 t1021下 页上 页返 回)()1()(tetuRCtC)(1)(teRtiRCt)(teiRCt和和0 teiRCt的区别的区别2.2.一阶电路的阶跃响应一阶电路的阶跃响应激励为单位阶跃函数时,电路激励为单位阶跃函数时,电路中产生的零状态响应。中产生的零状态响应。阶跃响应阶跃响应下 页上 页iC +uCRuC(0)=0)(t注意返 回)(teiRCt0 teiRCtt01it01i下 页上 页tuC10返 回tiC0激励在激励在

52、t=t0 时加入,时加入,则响应从则响应从t=t0开始。开始。t-t0RCCeRi 1(t-t0)(10 tteRRC-t不要写为:不要写为:下 页上 页iC(t-t0)C +uCRR1t0注意返 回)5.0(10)(10ttuS求图示电路中电流求图示电路中电流 iC(t)例例下 页上 页10k10kus+-ic100FuC(0)=00.510t(s)us(V)05k0.5us+-ic100FuC(0)=0等效等效返 回)5.0(10)(10ttuS应用叠加定理应用叠加定理下 页上 页)(5t5k+-ic100F)5.0(5t5k+-ic100F)(t5k+-ic100Fs5.01051010

53、036RCmA )(51dd2CtetuCitC)()1()(2t tetuC阶跃响应为:阶跃响应为:返 回由齐次性和叠加性得实际响应为:由齐次性和叠加性得实际响应为:)5.0(51)(51 5)5.0(22teteittCmA)5.0()()5.0(22tetett下 页上 页)(5t5k+-ic100F)5.0(5t5k+-ic100F返 回)5.0()()5.0(22teteittC0)5.0(1)(5.00ttttei2C)5.0(21)5.0(2)5.0(22C632.0 )1(tttteeeeei下 页上 页1)5.0(1)(0.5sttt分段表示为:分段表示为:返 回分段表示为:

54、分段表示为:s)0.5(mA 0.632-s)5.0(0 mA )(5)0.-2(-2C tetetittt(s)iC(mA)01-0.6320.5波形波形0.368下 页上 页)5.0(632.0 )5.0()()5.0(22tetteittC返 回2.2.二阶电路的阶跃响应二阶电路的阶跃响应下 页上 页S0.5RCLCiiiii)(5.0tiiiLCR对电路应用对电路应用KCL列结点电流方程有列结点电流方程有已知图示电路中已知图示电路中uC(0-)=0,iL(0-)=0,求单位阶跃求单位阶跃响应响应 iL(t)例例解解返 回iS0.25H0.22FA)(tiRiLiC0.5iC下 页上 页

55、ddRLRuiLiRRt22ddddtiLCtuCiLCC)(44dd5dd22tititiLLLiiiL tptpAAi21ee21 0452pp11p42p代入已知参数并整理得:代入已知参数并整理得:这是一个关于这是一个关于的二阶线性非齐次方程,其解为的二阶线性非齐次方程,其解为特解特解特征方程特征方程通解通解解得特征根解得特征根1 i返 回下 页上 页4121eettLiAA(0)(0)0LLii(0)(0)0CCuu04012121AAAA 4A41()()1ee33ttLi ts tt代代初始条件初始条件阶跃响应阶跃响应电路的动态过程是过阻尼性质的。电路的动态过程是过阻尼性质的。34

56、1A312A返 回7.87.8*一阶电路和二阶电路的冲激响应一阶电路和二阶电路的冲激响应1.1.单位冲激函数单位冲激函数l 定义定义)0(0)(tt1d)(ttt(t)10单位脉冲函单位脉冲函数的极限数的极限/21/tp(t)-/21 0)()(lim0ttp)2()2(1)(tttp下 页上 页返 回l 单位冲激函数的延迟单位冲激函数的延迟1d)()(0)(000tttttttt(t-t0)t00(1)l 单位冲激函数的性质单位冲激函数的性质冲激函数对时间的积分等于阶跃函数冲激函数对时间的积分等于阶跃函数)(0 10 0d)(tttttt)(d)(d ttt下 页上 页返 回冲激函数的冲激函

57、数的筛分筛分性性)0(d)()0(d)()(fttftttf)(d)()(00tfttttf同理同理 d)6()(sin tttt02.162166sin 例例t(t)10f(t)f(0)f(t)在在 t0 处连续处连续f(0)(t)注意下 页上 页返 回)(ddtRutuCccuc不是冲激函数不是冲激函数 ,否则否则KCL不成立不成立分二个时间段考虑冲激响应分二个时间段考虑冲激响应电容充电,方程为电容充电,方程为(1)t 在在 0 0+间间例例12.2.一阶电路的冲激响应一阶电路的冲激响应激励为单位冲激函数时,电路中激励为单位冲激函数时,电路中产生的零状态响应。产生的零状态响应。冲激响应冲激

58、响应求单位冲激电流求单位冲激电流激励下的激励下的RC电路的零状态响应。电路的零状态响应。解解注意下 页上 页返 回uC(0)=0iCR(t)C+-uC)0(1)0(CCuCu电容中的冲激电流使电容电压发生跃变。电容中的冲激电流使电容电压发生跃变。1d)(dddd0000C00CtttRuttuC01)0()0(CCuuC结论(2)t 0+为零输入响应(为零输入响应(RC放电)放电)iCRC+uCCu1)0(C01 CteCuRCt01 CCteRCRuiRCt下 页上 页返 回uCt0C1)(1)()(1 C CteRCtiteCuRCtRCtiCt1RC10下 页上 页返 回)(ddttiL

59、RiLL例例2求单位冲激电压求单位冲激电压激励下的激励下的RL电路的零状态响应。电路的零状态响应。分二个时间段考虑冲激响应分二个时间段考虑冲激响应解解L+-iLR)(t+-uL0)0(LiiL不是冲激函数不是冲激函数 ,否则否则KVL不成立。不成立。注意1d)(dd000000tttdtdiLtRiLL0(0)-(0)=1-+LLL ii)0(1)0(LLiLi下 页上 页返 回(1)t 在在 0 0+间间方程为方程为电感上的冲激电压使电感电流发生跃变。电感上的冲激电压使电感电流发生跃变。)0(1)0(LLiLi结论(2)t 0+RL放电放电LiLR+-uLRLLiL1)0(01 teLitL

60、0 teLRRiutLL下 页上 页返 回)(1 teLitL)()(teLRtutLiLt0L1uLt1RL0下 页上 页返 回零状态零状态R(t)(te3.3.单位阶跃响应和单位冲激响应关系单位阶跃响应和单位冲激响应关系单位阶跃响应单位阶跃响应单位冲激响应单位冲激响应h(t)s(t)单位冲激单位冲激(t)单位阶跃单位阶跃(t)tttd)(d)()(dd)(tstth激励激励响应响应下 页上 页返 回)()(ttiS先求单位阶跃响应:先求单位阶跃响应:求求:is(t)为单位冲激时电路响应为单位冲激时电路响应uC(t)和和iC(t).例例解解)()1()(teRtuRCtCuC(0+)=0 u

61、C()=R =RC iC(0+)=1 iC()=0 )(CteiRCt再求单位冲激响应再求单位冲激响应,令:令:)()(Stti下 页上 页返 回令令uC(0)=0iCRiS(t)C+-uC)()1(dd teRtuRCtC)()1(teRRCt)(1teCRCt)(1teCRCt)()0()()(tfttf0)(dd CtetiRCt)(1)(teRCteRCtRCt)(1)(teRCtRCt下 页上 页返 回uCRt0iC1t0uCt0C1冲激响应冲激响应阶跃响应阶跃响应iCt1RC10下 页上 页返 回有限值有限值有限值有限值KVL方程为方程为)(ddddCC2C2tutuRCtuLC0

62、000C00C002C2d)(dddddddtttuttuRCttuLC例例4.4.二阶电路的冲激响应二阶电路的冲激响应RLC+-+-uCiR(t)求单位冲激电压求单位冲激电压激励下的激励下的RLC电路的零状态响应。电路的零状态响应。解解t 在在0至至0间间1ddd002C2ttuLC下 页上 页返 回1)0(dd)0(ddCCtuLCtuLC下 页上 页1ddd002C2ttuLCLiiCL1)0()0(t0+为零输入响应为零输入响应0ddddCC2C2utuRCtuLC 2 CLR ttppeAeAu2121CLCPAPAAA1022112112121PPLCAA0)0()0(CCuu返

63、回 2CLR)()sin(1 CtteLCut )sin(CtAeut)j(21、P)()()(12112CteePPLCuttpp下 页上 页返 回7.97.9*卷积积分卷积积分1.1.卷积积分卷积积分l定义定义设函数设函数 f1(t),f2(t)t t0后电路的全部性状后电路的全部性状(响应响应)。状态变量状态变量 X(t0)激激 励励 e(t)(tt0)Y(t)(tt0)响应响应注意这里讲的为数最少的变量必须是互相独立的。这里讲的为数最少的变量必须是互相独立的。返 回已知已知:0)0(V3)0()sin(20)(30iuLCotte 求:求:).0(),0(),0(),0(uiuiRRL

64、C解解V7)0(uLV3)0(RuA1)0(A1)0(CRiie(0)=10V0)0(V3)0(CiuL例例下 页上 页3LCe(t)+iLiC+-uC-uo返 回同理可推广至任一时刻同理可推广至任一时刻t1由由)()()(11C1titutLe)()()()(1C111tititutuRLR (1)状态变量和储能元件有关状态变量和储能元件有关 (2)有几个独立的储能元件,就有几个状态变量有几个独立的储能元件,就有几个状态变量 (3)状态变量的选择不唯一。状态变量的选择不唯一。求出求出下 页上 页表明返 回设设 uc、iL 为状态变量为状态变量RuituCiCLCCddRCuituCLCCdd

65、LuLtetiCL)(dd整理得整理得 每一个状态方程中只含有一个状态变量的一每一个状态方程中只含有一个状态变量的一阶导数。对简单电路采用阶导数。对简单电路采用直观编写法。直观编写法。状态方程状态方程下 页上 页2.2.状态方程的列写状态方程的列写3LCe(t)+iLiC+-uC-uoCLL)(ddutetiLu返 回矩阵形式矩阵形式)(100111ddddteLLCRCttiuiuLCLC03)0(X 联立的一阶微分方程组联立的一阶微分方程组 左端为状态变量的一阶导数左端为状态变量的一阶导数 右端含状态变量和输入量右端含状态变量和输入量下 页上 页特点返 回 AXBVX一般形式一般形式下 页

66、上 页返 回12ddddddTnxxxXttt 12,TnXx xx电路的输出方程电路的输出方程)(000100101111teRRuiuiuiLCRRCL代数方程代数方程 用状态变量和输入量表示输出量用状态变量和输入量表示输出量一般形式一般形式Y=CX+DV下 页上 页3LCe(t)+iLiC+-uC-uC特点电路中某些感兴趣的量与状态电路中某些感兴趣的量与状态变量和输入量之间的关系变量和输入量之间的关系 返 回下 页上 页例例列出电路的状态方程列出电路的状态方程L1CuS+iL1iS+-uC-R1R2iL2L21212解解对结点对结点列出列出KCL方程方程21ddLLCiituC返 回下 页上 页112211S22Sddd()dLCLLCLiLuRiutiLuR iit121S1S111222222d11000dd1100dd100dCCLLutCCuiRuiitLLLiiRRtLLL 对回路对回路1和回路和回路2列出列出KVL方程方程把以上方程整理成矩阵形式有把以上方程整理成矩阵形式有返 回下 页上 页n1Cuu2n2S2()Luii R2Sn122n2S100000CLuuui

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!