外文翻译--工业机器人中文版

上传人:红** 文档编号:171429836 上传时间:2022-11-26 格式:DOC 页数:10 大小:54KB
收藏 版权申诉 举报 下载
外文翻译--工业机器人中文版_第1页
第1页 / 共10页
外文翻译--工业机器人中文版_第2页
第2页 / 共10页
外文翻译--工业机器人中文版_第3页
第3页 / 共10页
资源描述:

《外文翻译--工业机器人中文版》由会员分享,可在线阅读,更多相关《外文翻译--工业机器人中文版(10页珍藏版)》请在装配图网上搜索。

1、 外文资料名称: Industrial Robots 外文资料出处: Journal Of Applied Sciences 附 件: 1.外文资料翻译译文 2.外文原文 指导教师评语: 签名: 年 月 日 工 业 机 器 人章 跃 著周均 译摘要:在不同的时期,关于机器人的定义也有所不同。在全世界虽然定义不同,但是他们的装置却大相径庭。在制造工厂中使用的许多单用途机器可能看起来像机器人。这些机器人功能单一,不能通过重新编程的方式去完成不同的工作。这种单用途的机器不能满足被人们日益广泛接受的关于工业机器人的定义。这个定义是由美国机器人协会提出的。关键字:机器人;微处理器;NC系统机器人是一个可

2、以改变程序的多功能操作器,被设计用来按照预先编制的、能够完成多种作业的运动程序运送材料、零件、工具或者专用设备。 注意在这个定义中包含有“可以改变程序”和“多功能”这两词。正式这两个词将真正的机器人与现代制造工厂中使用的单一用途的机器区分开来。“可以改变程序”这个术语意味着两件事:机器人根据编写的程序工作,以及可以通过重新编写程序来适应不同种类的制造工作的需要。 “多功能”这个词意味着机器人能通过编程和使用不同的末端执行机构,来完成不同的制造工作。围绕着这两个关键特征所撰写的定义正在变成制造业的专业人员所接受的定义。第一个带有活动关节的手臂于1951年被研制出来,由美国原子能委员会使用。在19

3、54年,第一个可以编程的机器人由乔治.狄弗设计出来。它基于下面两项重要技术:(1)数字控制(CNC)技术。(2)远程操作技术。数字控制技术提供了一种非常适合于机器人的机器控制技术。它可以通过储存的程序对运动进行控制。这些程序包含机器人进行顺序运动的数据,开始运动和停止运动的时间控制信号,以及做出决定所需要的逻辑语句。远程操作器技术使得一台机器的性能超出一台数控机器。它可以使这种机器能够在不容易进入和不安全的环境中完成各种制造任务。通过融合了上述两项技术,狄弗研制出第一个机器人,它是一个不复杂的,可以编程的物料运送机器人。第一台商业化生产的机器人在1959年研制成功。通用汽车公司在1962年安装

4、了第一台用于生产线上的工业机器人,它是尤尼梅森公司生产的。在1973年,辛辛那提.米兰克朗公司研制出T-3工业机器人,在机器人的控制方面取得了较大的进展。T-3机器人是第一台商业化生产采用计算机控制的机器人。数字控制技术和远程操作器技术推动了大范围的机器人研制和应用。但主要的技术进步并不仅仅是由于这些新的应用能力而产生的,而是必须由利用这些能力所得到的效益来提供动力。就工业机器人而言,这个动力是经济性。在20世纪70年代中,工资的快速增长大大增加了制造业的企业中的人工费用。与此同时,来自国外的竞争成为美国制造业所面临的一个严峻的考验。诸如日本等外国的制造厂家在广泛地应用了自动化技术之后,其工业

5、产品,特别是汽车,在美国和世界市场中占据了日益增大的份额。通过采用包括机器人在内的各种自动化技术,从70年代开始,日本的制造厂家能够比没有采用自动化技术的美国制造厂家生产更好的和更便宜的汽车。随后,为了生存,美国制造厂家被迫考虑采用任何能够提高生产率的技术。为了与国外制造厂家进行竞争,必须以比较低的成本,生产出更好的产品。其它的因素,诸如寻找能够更好地完成带有危险性的制造工作的方式也促进了工业机器人的发展。但是,主要的理由一直是,而且现在仍然是提高生产率。机器人的一个主要优点是它们可以在对于人类来说是危险的位置上工作。采用机器人进行焊接和切断工作是比由人工来完成这些工作更安全的例子。尽管机器人

6、与工作地点的安全密切相关,它们本身也可能是危险的。应该仔细地设计和配置机器人和机器人单元,使它们不会伤害人类和其他机器。应该精确地计算出机器人的工作范围,并且在这个范围的四周清楚地标出危险区域。可以采用在地面上画出红颜色的线和设置障碍物以阻止工人进入机器人的工作范围。即使有了这些预防措施,在使用机器人的场地中设置一个自动停止工作的系统仍然不失为一个好注意。机器人的这个系统应该具有能够检测出是否有需要自动停止工作的要求的能力。为了保证能有一个安全的环境,应当安装容错计算机和冗余系统来保证在适当的时候停止机器人的工作。如下叙述的是机器人系统基本术语:1机器人是一个可编程、多功能的机械手,通过给要完

7、成的不同任务编程各种动作,它可以移动零件、材料、工具以及特殊装置。这个基本定义引导出后续段落的其他定义,从而描绘出一个完整的机器人系统。2预编程位置点是机器人为完成工作而必须跟踪的轨迹。在某些位置点上机器人将停下来做某些操作,如装配零件、喷涂油漆或焊接。这些预编程点贮存在机器人的贮存器中,并为后续的连续操作所调用,而且这些预编程点像其他程序数据一样,可在日后随工作需要而变化。因而,正是这种可编程的特征,一个工业机器人很像一台计算机,数据可在这里储存、后续调用与编辑。3机械手是机器人的手臂,它使机器人能弯屈、延伸和旋转,提供这些运动的是机械手的轴,亦是所谓机器人的自由度。一个机械手能有316轴,

8、自由度一词总是与机器人轴数相关。4工具和手爪不是机器人自身组成部分,但它们是安装在机器人手臂末端的附件。这些连在机器人手臂末端的附件可使机器人抬起工件、点焊、刷漆、电弧焊、钻孔、打毛刺以及根据机器人的要求去做各种各样的工作。 5机器人系统还可以控制机器人的工作单元,工作单元是机器人执行任务所处的整体环境,该单元包括控制器、机械手、工作平台、安全保护装置或者传输装置。所有这些为保证机器人完成自己任务而必需的装置都包括在这一工作单元中。另外,来自外设的信号与机器人通讯,通知机器人何时装配工件、取工件或放工件到传输装置上。机器人系统有三个基本部件:机械手、控制器和动力源。A机械手机械手做机器人系统中

9、粗重工作,它包括两个部分:机构和附件,机械手也有联接附件基座。机械手基座通常固定在工作区域的地基上,有时基座也可以移动,在这种情况下基座安装在导轨或轨道上,允许机械手从一个位置移到另外一个位置。正如前面所提到的那样,附件从机器人基座上延伸出来,附件就是机器人的手臂,它可以是直动型,也可以是轴节型的手臂,轴节型手臂也是大家所知的关节型手臂。机械臂使机械手产生各轴的运动。这些轴连在一个安装基座上,然后再连到托架上,托架确保机械手停留在某一位置。在手臂的末端上,连接着手腕,手腕由辅助轴和手腕凸缘组成,手腕是让机器人用户在手腕凸缘上安装不同工具来做不同种工作。机械手的轴使机械手在某一区域内执行任务,我

10、们将在这个区域为机器人的工作单元,该区域的大小与机械手的尺寸相对应。列举了一个典型机器人的工作单元。随着机器人机械结构尺寸的增加,工作单元的范围也必须相应增加。机械手的运动由执行元件或驱动系统来控制。执行单元或驱动系统允许各轴在工作单元内运动。驱动系统可用电气、液压和气压动力,驱动系统所产生的动力经机构转变为机械能,驱动系统与机械传动链相匹配。由链、齿轮和滚珠丝杠组成的机械传动链驱动着机器人的各轴。B控制器机器人控制器是工作单元的核心。控制器储存着预编程序供后续调用、控制外设,与厂内计算机进行通讯以满足产品经常更新的需要。控制器用于控制机械手运动和在工作单元内控制机器人外设。用户可通过手持的示

11、教盒将机械手运动的程序编入控制器。这些信息储存在控制器的存储器中以备后续调用,控制器储存了机器人系统的所有编程数据,它能储存几个不同的程序,并且所有这些程序均能编辑。控制器要求能够在工作单元内与外设进行通信。例如控制器有一个输入端,它能标识某个机加工操作何时完成。当该加工循环完成后,输入端接通,告诉控制器定位机械手以便能抓取已加工工件,随后,机械手抓取一未加工工件,将其放置在机床上。接着,控制器给机床发出开始加工的信号。控制器可以由根据时间顺序而步进的机械式轮鼓组成,这种类型的控制器可用在非常简单的机械系统中。用于大多数机器人系统中的控制器代表现代电子学的水平,是更复杂的装置,即它们是由微处理

12、器操纵的,这些微处理器可以是8位,16位或32位处理器。它们可以似的控制器在操作过程中显得非常柔性。控制器能通过通信线发送电信号,使它能与机械手各轴交流信息,在机器人的机械手和控制器之间的双向交流信息可以保持系统操作和位置经常更新,控制器亦能控制安装在机器人手腕上的任何工具。控制器也有与厂内各计算机进行通信的任务,这种通信联系使机器人成为计算机辅助制造(CAM)系统的一个组成部分。存储器。基于微处理器的系统运行时要与固态的存储装置相连,这些存储装置可以是磁泡,随机存储器、软盘、磁带等。每种记忆存储装置均能贮存、编辑信息以备后续调用和编辑。C动力源头动力源是给机器人和机械手提供动力的单元。传给机

13、器人系统的动力源有两种,一种是用于控制器的交流电,另一种是用于驱动机械手各轴的动力源,例如,如果机器人的机械手是由液压和气压驱动的,控制信号便传送到这些装置中,驱动机器人运动。对于每一个机器人系统,动力是用来操纵机械手的。这些动力可来源于液压动力源、气压动力源或电源,这些能源是机器人工作单元整体的一部分。Industrial RobotsZHANG YUESummary:There is a variety of definitions of the term robot. Depending on the definition used, the number of robot instal

14、lations worldwide varies widely. Numerous single-purpose machines are used in manufacturing plants that might appear to be robots. These machines are hardwired to perform a single function and cannot be reprogrammed to perform a different function. Such single-purpose machines do not fit the definit

15、ion for industrial robots that is becoming widely accepted. This definition was developed by the Robot Institute of America.Key words:robot;microprocessor;NC systemA robot is a reprogrammable multifunctional manipulator designed to move material, parts, tool, or specialized devices through variable

16、programmed motions for the performance of a variety of tasks.Note that this definition contains the words reprogrammable and multifunctional. It is these two characteristics that separate the true industrial robot from the various single-purpose machine used in modern manufacturing firms. The term “

17、reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to accommodate a variety of manufacturing tasks.The term “multifunctional” means that the robot can, through reprogramming and the use of different end-effectors, perform a number

18、 of different manufacturing tasks. Definitions written around these two critical characteristics are becoming accepted definitions among manufacturing professionals.The first articulated arm came about in 1951 and was used by the U.S.Atomic Energy Commission. In 1951, the first programmable robot wa

19、s designed by George Devol. It was based on two important technologies:(1)Numerical control (NC) technology.(2)Remote manipulator technology.Numerical control technology provides a form of machine control ideally suited to robots. It allowed for the control of motion by stored programs. These progra

20、ms contain data points to which the robot sequentially moves, timing signals to initiate action and to stop movement, and logic statements to allow for decision making.Remote manipulator technology allowed a machine to be more than just another NC machine. It allowed such machines to become robots t

21、hat can perform a variety of manufacturing tasks in both inaccessible and unsafe environments. By merging these two technologies, Devol developed the first industrial robot, an unsophisticated programmable materials handling machine.The first commercially produced robot was developed in 1959. In 196

22、2, the first industrial robot to be used on a production line was installed by General Motors Corporation. This robot was produced by Unimation. A major step forward in robot control occurred in 1973 with the development of the T-3 industrial robot by Cincinnati Milacron. The T-3 robot was the first

23、 commercially produced industrial robot controlled by a minicomputer.Numerical control and remote manipulator technology prompted the wide-scale development and use of industrial robots. But major technological developments do not take place simply because of such new capabilities. Something must pr

24、ovide the impetus for taking advantage of these capabilities. In the case of industrial robots, the impetus was economic.The rapid inflation of wages experience in the 1970s tremendously increased the personnel costs of manufacturing firms. At the same time, foreign competition became a serious prob

25、lem for U.S.manufacturers. Foreign manufacturers who had undertaken automation on a wide-scale basis, such as those in Japan, began to gain an increasingly large share of the U.S. and world market for manufactured goods, particularly automobile.Through a variety of automation techniques, including r

26、obots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles more cheaply than nonautomated U.S. manufacturers. Consequently, in order to survive, U.S. manufacturers were forced to consider any technological developments that could help improve productivity.It becam

27、e imperative to produce better products at lower costs in order to be competitive with foreign manufacturers. Other factors such as the need to find better ways of performing dangerous manufacturing tasks contributed to the development of industrial robots. However, the principal rationale has alway

28、s been, and is still, improved productivity.One of the principal advantages of robots is that they can be used in settings that are dangerous to humans. Welding and parting are examples of applications where robots can be used more safely than humans. Even though robots are closely associated with s

29、afely in the workplace, they can, in themselves, be dangerous.Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines. Robot work envelopes should be accurately and a danger zone surrounding the envelope clearly marked off. Red f

30、looring strips and barriers can be used to keep human workers out of a robots work envelope.Even with such precautions it is still a good idea to have an automatic shutdown system in situations where robots are used. Such a system should have the capacity to sense the need for an automatic shutdown

31、of operations. Fault-tolerant computers and redundant systems can be installed to ensure proper shutdown of robotics systems to ensure a safe environment.The basic terminology of robotic systems is introduced in the following:1.A robot is a reprogrammable, multifunctional manipulator designed to mov

32、e parts, materials, tools, or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions, presented in the following paragraphs, that give a complete picture of a robotic system.2.Preprogrammed locations ar

33、e paths that the robot must follow to accomplish work. At some of these locations, the robot will stop and perform some operations, such as assembly of parts, spray painting, or welding. These preprogrammed locations are stored in the robots memory and are recalled later for continuous operation. Fu

34、rthermore, these preprogrammed locations, as well as other program data, can be changed later as the work requirements change. Thus, with regard to this programming feature, an industrial robot is very much like a computer, where data can be store and later recalled and edited.3. The manipulator is

35、the arm of the robot. It allows the robot to bend, reach and twist. This movement is provided by the manipulators axes, also called the degrees of freedom of the robot. A robot can have from 3 to 16 axes. The term degrees of freedom will always relate to the number of axes found on a robot.4. The to

36、oling and grippers are not part of the robotic system itself; rather, they are attachments that fit on the end of the robots arm. These attachments connected to the end of the robots arm allow the robot to lift parts, spot-weld, drill, deburr, and do a variety of tasks, depending on what is required

37、 of the robot.5. The robotic system can also control the work cell of the operating robot. The work cell of the robot is the total environment in which the robot must perform its task. Included within this cell may be the controller, the robot manipulator, a work table, safety features, or a conveyo

38、r. All the equipment that is required in order to the robot to do its job is included in the work cell. In addition, signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.The robotic system h

39、as three basic components: the manipulator, and the power source.A. ManipulatorThe manipulator, which does the physical work of the robotic system, consists of two sections: the mechanical section and the attached appendage. The manipulator also has a base to which the appendages are attached.The ba

40、se of the manipulator is usually fixed to the floor of the work area. Sometimes, though, the base may be movable. In this case, the base is attached to either a rail or a track, allowing the manipulator to be moved from one location to another.As mentioned previously, the appendage extends from the

41、base of the robot. The appendage is the arm of the robot. It can be either a straight, movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base, w

42、hich, in turn, is secured to a mounting. This mounting ensures that the manipulator will remain in one location.At the end of the arm, a wrist is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist fo

43、r different jobs.The manipulators axes allow it to perform work within a certain area. This area is called the work cell of the robot, and its size corresponds to the size of the manipulator.The movement of the manipulator is controlled by actuators, or drive system. The actuator, or drive system, a

44、llows the various axes to move within the work cell. The drive system can use electric, hydraulic, or pneumatic power. The energy developed by the drive system is converted to mechanical drive systems. The drive systems are coupled through mechanical linkages may be composed of chains, gears, and ba

45、ll screws.BController The controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, controls peripheral devices, and communicates with computers within the plant for constant updates in production. The controller is used to cont

46、rol the robot manipulators movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendant. This information is stored in the memory of the controller for later recall.

47、The controller stores all program data for the robotic system. It can store several different programs, and any of these programs can be edited. The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifie

48、s when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller sig

49、nals the machine to start operation. The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system. The controllers found on the majority of robotic systems are more complex devices and represent

50、 state-of-the-art electronics. That is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to be very flexible in its operation. The controller can send electric signals over communication lines that allow it to ta

51、lk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system. The controlled also controls any tooling placed on the end of the robots wrist. The controller also ha

52、s the job of communicating with the different plant computers. The communication link establishes the robot as part of a computer-assisted manufacturing (CAM) system. As the basic definition stated, the robot is a reprogrammable, multifunctional manipulator. Therefore, the controller must contain so

53、me type of memory storage. The microprocessor-based systems operate in conjunction with solid-state memory devices. These memory devices may be magnetic bubbles, random-access memory, floppy disks, or magnetic type. Each memory storage device stores program information for later recall or for editin

54、g.C. Power supply The power supply is the unit that supplies power to the controller and the manipulator. Two types of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power is used for driving the various axes of the man

55、ipulator. For example, if the robot manipulator is controlled by hydraulic or pneumatic drives, control signals are sent to these devices, causing motion of robot. For each robotic system, power is required to operation the manipulator. This power can be developed from either a hydraulic power source, a pneumatic power source, or an electric power source. These power sources are part of the total components of the robotic work cell.9

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!