预应力混凝土Prestressed-Concrete大学毕业论文外文文献翻译及原文

上传人:紫** 文档编号:171089172 上传时间:2022-11-24 格式:DOCX 页数:12 大小:238.13KB
收藏 版权申诉 举报 下载
预应力混凝土Prestressed-Concrete大学毕业论文外文文献翻译及原文_第1页
第1页 / 共12页
预应力混凝土Prestressed-Concrete大学毕业论文外文文献翻译及原文_第2页
第2页 / 共12页
预应力混凝土Prestressed-Concrete大学毕业论文外文文献翻译及原文_第3页
第3页 / 共12页
资源描述:

《预应力混凝土Prestressed-Concrete大学毕业论文外文文献翻译及原文》由会员分享,可在线阅读,更多相关《预应力混凝土Prestressed-Concrete大学毕业论文外文文献翻译及原文(12页珍藏版)》请在装配图网上搜索。

1、1毕 业 设 计(论文) 外 文 文 献 翻 译文献、资料中文题目:预应力混凝土文献、资料英文题目:Prestressed Concrete 文献、资料来源:文献、资料发表(出版)日期:院 (部):专班姓学业:级:名:号:指导教师:翻译日期: 2017.02.142毕业设计(论文)外文资料翻译外文出处: The Concrete structure附件:1、外文原文;2、外文资料翻译译文。指导教师评语:签字:年月日1、外文资料原文Prestressed ConcreteConcrete is strong in compression, but weak in tension: Its ten

2、sile strength varies from 8 to 14 percent of its compressive strength. Due tosuch a Iow tensile capacity, fiexural cracks develop at early stages ofloading. In order to reduce or prevent such cracks from developing, aconcentric or eccentric force is imposed in the longitudinal direction of the struc

3、tural element. This force prevents the cracks from developing by eliminating or considerably reducing the tensile stresses at thecritical midspan and support sections at service load, thereby raising the bending, shear, and torsional capacities of the sections. The sections are then able to behave e

4、lastically, and almost the full capacity of the concrete in compression can be efficiently utilized across the entire depth of the concrete sections when all loads act on the structure.Such an imposed longitudinal force is called a prestressing force,i.e., a compressive force that prestresses the se

5、ctions along the span ofthe structural element3prior to the application of the transverse gravitydead and live loads or transient horizontal live loads. The type ofprestressing force involved, together with its magnitude, are determined mainly on the basis of the type of system to be constructed and

6、 the span length and slenderness desired. Since the prestressing force is applied longitudinally along or parallel to the axis of the member, the prestressing principle involved is commonly known as linear prestressing.Circular prestressing, used in liquid containment tanks, pipes,and pressure react

7、or vessels, essentially follows the same basic principles as does linear prestressing. The circumferential hoop, or hugging stress on the cylindrical or spherical structure, neutralizes the tensile stresses at the outer fibers of the curvilinear surface caused by the internal contained pressure.Figu

8、re 1.2.1 illustrates, in a basic fashion, the prestressing action in both types of structural systems and the resulting stress response. In(a), the individual concrete blocks act together as a beam due to the large compressive prestressing force P. Although it might appear that the blocks will slip

9、and vertically simulate shear slip failure, in fact they will not because of the longitudinal force P. Similarly, the wooden staves in (c) might appear to be capable of separating as a result of the high internal radial pressure exerted on them. But again, because of the compressive prestress impose

10、d by the metal bands as a form of circular prestressing, they will remain in place.From the preceding discussion, it is plain that permanent stresses in the prestressed structural member are created before the full dead and live loads are applied in order to eliminate or considerably reduce the net

11、tensile stresses caused by these loads. With reinforced concrete,it is assumed that the tensile strength of the concrete is negligible and disregarded. This is because the tensile forces resulting from the bending moments are resisted by4the bond created in the reinforcement process. Cracking and de

12、flection are therefore essentially irrecoverable in reinforced concrete once the member has reached its limit state at service load.The reinforcement in the reinforced concrete member does not exert any force of its own on the member, contrary to the action of prestressing steel. The steel required

13、to produce the prestressing force in the prestressed member actively preloads the member, permitting a relatively high controlled recovery of cracking and deflection. Once the flexural tensile strength of the concrete is exceeded, the prestressed member starts to act like a reinforced concrete eleme

14、nt.Prestressed members are shallower in depth than their reinforced concrete counterparts for the same span and loading conditions. In general, the depth of a prestressed concrete member is usually about 65 to 80 percent of the depth of the equivalent reinforced concrete member. Hence, the prestress

15、ed member requires less concrete, and,about 20 to 35 percent of the amount of reinforcement. Unfortunately, this saving in material weight is balanced by the higher cost of the higher quality materials needed in prestressing. Also, regardless of the system used, prestressing operations themselves re

16、sult in an added cost: Formwork is more complex, since the geometry of prestressed sections is usually composed of. flanged sections with thin-webs.In spite of these additional costs, if a large enough number of precast units are manufactured, the difference between at least the initial costs of pre

17、stressed and reinforced concrete systems is usually not very large. And the indirect long-term savings are quite substantial, because less maintenance is needed; a longer working life is possible due to better quality control of the concrete, and lighter foundations are achieved due to the smaller c

18、umulative weight of the superstructure.O nce the beam span of reinforced concrete exceeds 70 to 90 feet (21.3 to 27.4m), the dead weight of the beam becomes excessive, resulting in heavier members and, consequently, greater long-term deflection and cracking. Thus, for larger spans, prestressed concr

19、ete becomes mandatory since arches are expensive to construct and do not perform as well due to the severe long-term shrinkage and creep they undergo. Very large spans such as segmental bridges or cable-stayed bridges can only be constructed through the use of prestressing.P restressd concrete is no

20、t a new concept, dating back to 1872, when P. H. Jackson, an engineer from California, patented a prestressing system that used a tie rod to construct beams or arches from individual blocks see Figure 1.2.1 (a). After a long lapse of time during which little progress was made because of the unavaila

21、bility of high-strength steel to overcome prestress losses, R. E. Dill of Alexandria, Nebraska, recognized the effect of the shrinkage and creep (transverse material flow) of concrete on the loss of prestress. He subsequently developed the idea that successive post-tensioning of unbonded rods would

22、compensate for the time-dependent loss of stress in the rods due to the decrease in the length of the member because of creep and shrinkage. In the early 1920s,W. H. Hewett of Minneapolis developed the principles of circular prestressing. He hoop-stressed horizontal reinforcement around walls of con

23、crete tanks through the use of turnbuckles to prevent cracking due to internal5liquid pressure, thereby achieving watertightness. Thereafter, prestressing of tanks and pipes developed at an accelerated pace in the United States, with thousands of tanks for water, liquid, and gas storage built and mu

24、ch mileage of prestressed pressure pipe laid in the two to three decades that followed.Linear prestressing continued to develop in Europe and in France, in particular through the ingenuity of Eugene Freyssinet, who proposed in 1926-1928 methods to overcome prestress losses through the use of high-st

25、rength and high-ductility steels. In 1940, he introduced thenow well-known and well-accepted Freyssinet system.P. W. Abeles of England introduced and developed the concept of partial prestressing between the 1930s and 1960s. F. Leonhardt of Germany, V. Mikhailov of Russia, and T. Y. Lin of the Unite

26、d States also contributed a great deal to the art and science of the design of prestressed concrete. Lins load-balancing method deserves particular mention in this regard, as it considerably simplified the design process, particularly in continuous structures. These twentieth-century developments ha

27、ve led to the extensive use of prestressing throughoutthe world, and in the United States in particular.Today, prestressed concrete is used in buildings, underground structures, TV towers, floating storage and offshore structures, power stations, nuclear reactor vessels, and numerous types of bridge

28、 systems including segnental and cable-stayed bridges, they demonstrate the versatility of the prestressing concept and its all-encompassing application. The success in the development and construction of all these structures has been due in no small measures to the advances in the technology of mat

29、erials, particularly prestressing steel, and the accumulated knowledge in estimating the short-and long-term losses in the prestressing forces.2、外文资料翻译译文预应力混凝土混凝土的力学特性是抗压不抗拉:它的抗拉强度是抗压强度的 8一 14。 混凝土的抗拉强度如此低, 因此在加荷的初期阶段就产生弯曲裂缝。为了减少 或防止这种裂缝的发展,所以在结构单元纵向施加了一个中心或偏心的轴向力。 这个力的施加消除或大大减少了工作荷载下结构中最危险的跨中和支柱截面处

30、 的拉应力,阻止了裂缝的发展。也因此提高了截面的抗弯、抗剪和抗扭能力。这6样,构件能表现出弹性性质,当全部荷载作用于结构时,混凝土构件的全部断面 的抗压能力都能够被充分有效的发挥出来。这个强加于构件的纵向力就叫做预应力,就是在构件承受横向的重力恒载和 活载或水平向的瞬时活载之前,沿着结构单元跨度方向预先给截面施加一个压 力。预应力的类型及大小主要是根据要建造的系统类型、跨长和构件细长度的需 要来决定。由于预应力是沿着或平行于构件的轴向纵向施加的,因此这种施加预 应力的原理一般被称做直线预应力法。环形预应力法应用于建造盛放流体的构筑物中,如储水池、管道和压力反应 堆容器等,它本质上和直线预应力法

31、的基本原理相同。这种柱形或球形结构的环 向箍力或围压就抵消了由内部压力在结构外表面引起的环向拉应力。如图 121 用基本模型描述了在两种结构系统类型上的预应力作用及应力 反应结果。图(a)是在大的预压应力 P 下单个的混凝土块组成的梁模型。虽然它 可能出现混凝土块间的滑动或在竖向剪切力下滑动破坏,但实际上由于纵向压力 P 的存在这种情况是不会发生的。同样,图 (c)所示木制木桶的木板似乎会由于 施加在它上面的内部的径向高压力而分裂开,但是同上面情况一样,由于金属箍 预先施加的力在木桶外周形成一种环向的预压应力,使木板纹丝不动。从前面的讨论中可以清楚地看出,为了消除或大大减少荷载在预应力结构单

32、元上引起的纯拉应力,在它们承受整个的恒载和活载前,就预先给它们施加一个 永久的预压应力。在一般的钢筋混凝土结构中,通常认为混凝土的抗拉强度是可 以不加考虑、忽略不计的,这是因为弯矩产生的拉应力由加筋处理后的黏合层来 抵抗。也因此,钢筋混凝土结构在工作荷载下达到极限状态后产生的裂纹和挠曲7变形不可恢复。和预应力钢筋的作用相反,普通钢筋混凝土构件中的钢筋不给构件施加任何 力。在预应力构件中,钢筋要通过预应力作用给构件主动施加预载,使构件对裂 缝和变形有相对较高的恢复控制能力,一旦预应力构件受力使混凝土超过了其弯 曲抗拉强度,则构件开始表现出钢筋混凝土构件的性质。在同等跨度和相同荷载条件下,预应力构

33、件要比一般钓钢筋混凝土构件要 薄。一般来说,预应力混凝土构件的厚度通常约是同等钢筋混凝土构件厚度的 65一 80。因此,预应力构件需用的混凝土量要少,约占钢筋混凝土构件需 用量的 20一 35。不幸的是,在材料重量方面节省的花费与在预应力措施中 使用的高质量材料的较高费用抵消掉了。同时,不管什么样的结构体系,预应力 混凝土的模板都比较复杂,因为预加应力的截面的几何形状通常由带薄腹板的翼 形面组成,这样就会造成大量附加费用。尽管有这些附加的费用,通常情况下,如果生产的顿制构件在数量上足够 多的话,预应力构件和钢筋混凝土构件相比,至少最初直接成本的差异不是太大。 但因为预应力构件不需要太多的维护:

34、一是因为混凝土质量好,它的使用寿命长, 而且由于上部结构的累积荷重较小,基础重量也相应轻得多,所以从长期来看, 间接费用的节约还是巨大的。一旦钢筋混凝土梁跨超过 70 到 90 尺(213 到 274 米),这样大的梁自重 就变得过大,造成长期比较大的变形和裂缝。这样一来,对大跨度结构,预应力 混凝土就显得格外必要了,因为大跨度结构用拱形建造的成本很高,而且也不能 消除钢筋混凝土拱长期使用下严重的收缩和蠕变。像分段拼装式桥或斜拉桥这 些跨度很大的建筑物只能利用预应力构件建造。预应力混凝土不是一个新事物?可追溯到 1872 年,当时来自加州的一个工 程师 PH杰克森申请了一项预应力系统的专利,他

35、用拉杆把单个的块体建造 成了梁或拱图 121(a)。由于在克服预应力损失方面高强度钢筋没有效果, 在很长一段时间预应力研究进展很小,亚历山大的 R,EDill 和 Nebraska 揭示 了混凝土的收缩和徐变(材料横向流变)对预应力损失的影响。他后来提出了连续 的自由拉杆后张法,这一方法弥补了由混凝土随时间发展的徐变和收缩导致构件 长度减小而引起的拉杆中的预应力损失。在 20 世纪 20 年代早期,美国明尼阿8波利斯州的 WHHewer 发展了环向预应力原理。他在混凝土容器壁的周围通过 螺丝扣给水平向钢筋施加环向应力,防止其在内部压力下产生裂缝,也借此达到 了不渗水。从那以后,液体容器和管道中

36、预应力的使用在美国飞速发展,成千上 万的储水、液体或气体的容器被建成,紧接着在二三十年内建造了无数英里的预 应力管道。直线预应力法在欧洲和法国继续得到进一步发展,值得一提的是尤金布 雷西奈的创新成果,他于 19261928 年间提出了高强度和高延性钢的使用,能 克服预应力损失。在 1940 年,他提出了现在众所周知并被普遍认可的弗雷西奈 预应力法。英国的 P W Abeles 在 20 世纪 30 年代和 60 年代之间提出并发展了局部预 应力法的观点德国的 FLeonhardt、前苏联的 VMikhailov 和美国的丁YLln 也对预应力混凝土的设计艺术和科学做了大量贡献。Lin 的负载平衡方法在这里 应该特别值得一提。因为它使设计过程大大简化,尤其是对连续结构而言,这些 20 世纪的发展成果已经使得预应力法在全世界广泛使用,尤以美国为甚。今天,预应力混凝土被用于建筑物、地下结构、电视塔、浮动储藏器和海 上结构、电站、核反应堆容器和包括拱形桥和斜拉桥在内的各种桥梁系统中,这 些说明了预应力概念的多方面适应性以及对它的广泛应用。所有这些结构的发展 和建造的成功,都是由于材料技术进步所得的收获,特别是对在预应力中使用的 钢材的研究和在估计预应力长期和短期损失方面累积的知识。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!