外文翻译--免耕播种机锯切防堵装置设计及其切割机理的研究

上传人:红** 文档编号:167703697 上传时间:2022-11-04 格式:DOC 页数:15 大小:293KB
收藏 版权申诉 举报 下载
外文翻译--免耕播种机锯切防堵装置设计及其切割机理的研究_第1页
第1页 / 共15页
外文翻译--免耕播种机锯切防堵装置设计及其切割机理的研究_第2页
第2页 / 共15页
外文翻译--免耕播种机锯切防堵装置设计及其切割机理的研究_第3页
第3页 / 共15页
资源描述:

《外文翻译--免耕播种机锯切防堵装置设计及其切割机理的研究》由会员分享,可在线阅读,更多相关《外文翻译--免耕播种机锯切防堵装置设计及其切割机理的研究(15页珍藏版)》请在装配图网上搜索。

1、附录Design of sawing anti-blocking mechanism forno-tillage planter and its cutting mechanismLiao Qingxi1,Gao Huanwen2,Shu Caixia1Abstract: Based on blocking issues of no-tillage planter for dry-land farming in two-crop-a-year region in North of China and shortcomings of anti-blocking mechanism develop

2、ed, such as higher rotation speed (above 1500 r/min) and bigger power consumption (width power consumption per unit up to 1641.74 kW/m, including traction power), a new sawing anti-blocking mechanism was developed and its cutting mechanism was investigated in this paper. Meanwhile stress distributio

3、n of the saw-tooth blade calculated by the ANSYS finity element software showed that the saw-tooth blade would be feasible to cut corn straws. Experimental results in the soil bin showed that: 1)The sawing anti-blocking mechanism with two cutting modes of sustaining and no-sustaining cut could reali

4、ze an integrated function of cutting and directly throwing by reverse rotation, namely, it could throw straws directly to the rear of the opener by former angle of saw-tooth and thrower; 2)The cutting rate of straws would increase along with the rising of straw moisture and rotation speed, and highe

5、r moisture of straws would be of benefit to improving cutting quality; 3)The cutting rate of straws would decrease along with the rising of velocity of vehicle while interval of the moved and fixed blade was determined. And the sawing anti-blocking mechanism had higher cutting quality and lower powe

6、r consumption without leaky cutting and tearing out with small interval of the moved and fixed blade. Compared with other driving anti-blocking mechanisms, theoretical analysis and experimental results showed that the sawing anti-blocking mechanism had fine cut capability and lower rotation speed (6

7、50 r/min) and lower power consumption (power consumption per unit width up to 2.95 kW/m) as well as stronger suitability to different stubbles mulch. Additionally, a new way was found out to improve anti-blocking performance of no-tillage planter.Key words: no-tillage planter; sawing anti-blocking m

8、echanism; cutting mechanism; cutting rate1IntroductionAnti-blocking issue of no-tillage planter had become one of the key factors affecting production efficiency and seeding quality of two-crop-a-year region in North of China. It was because there was a great deal of crop stubbles and crop seeding w

9、as started shortly after crop had been harvested, leaving no time for crop stubbles to decay. At present, there are two methods to solve anti-blocking issue of no-tillage: 1) Straws were chopped by the straw chopper before seeding, it would lead to adding working procedure and increase costs of prod

10、uction as well as delaying seeding time; 2) Stubbles were cleared out by driving chopping mechanism fixed on no-tillage planter, such as Strip Wheat Spinning and Furrow Planter made in Hebei Nonghaha Machinery Ltd Corporation and 2BMDF-Corn Strip Chopper made in China Agricultural University1and so

11、on. In practice the driving chopping mechanism had significant effect on antiblocking, but also bigger vibration and noise as well as lower security because straws were chopped at high rotation speed.It was reported that the blade base linear velocity of several main straw chopping mechanisms was be

12、tween 3756 m/s2, mostly chopping mechanism combined with cutting and striking had higher striking velocity and higher power consumption3, e.g. the blade base linear velocity up to 34 m/s could obtain fine cutting effect for corn straws4, and 24 m/s on rice and wheat straws by supporting pole, respec

13、tively5. Even if corn straws were cut by sliding cut with vertical blade, its velocity of cutting one straw, two straws and three straws must be up to 10.3 m/s, 13.6 m/s, 15.8 m/s6, respectively, and had higher power consumption. In a word, because the driving chopping mechanism developed presently

14、had high rotation speed ( above 1500 r/min ) and higher power consumption (width power consumption per unit up to 1641.74 kW/m, including traction power), to decrease rotation speed and power consumption would be urgent in practice.Based on practical problems, the objective in this paper is to find

15、a way to solve the shortcoming that it 64 is difficult for common smooth blade to seize straws and it must run at higher rotation speed, decrease power consumption and improve cutting effect as well as anti-blocking performance of no-tillage planter. Additionally some experiments were done by select

16、ing saw-tooth as cutting blade of no-tillage planter and cutting mechanism of the sawing anti-blocking mechanism was investigated.2Structure and cutting rule of the sawing anti-blocking mechanism2.1Structure and characteristicsThe sawing anti-blocking mechanism was made up of saw-tooth blade, throwi

17、ng ban device, principal shaft, moved and fixed blade combination, covering shell, opener and working frame as well as transmission system. Sketch of the sawing anti-blocking mechanism is shown in Fig. 1. The main parts included saw-tooth blade, throwing ban device as well as fixed blade combination

18、s. Diameter of saw-tooth with 60 teeth was 350 mm; throwing ban device with max 270 mm turning diameter was fixed on between adjacent saw-teeth; fixed blade combinations consisted of fixed blade with tooth and vertical type blade, and tooth type blade same to saw-tooth, Moreover, the vertical type b

19、lade would be used to obstruct straws without cutting from throwing area and participated in cutting straws. The sawing anti-blocking mechanism was fixed on the soil bin device, its width was 600 mm, the interval of adjacent openers was 200 mm. The sawing anti-blocking mechanism had many characteris

20、tics such as straws would be chopped by saw-tooth blade and fixed blade combinations, and had two cutting modes with susta-ining and no-sustaining cutting, the blade base line velocity of saw-tooth was lower to tossing blade type, namely, the sawing anti-blocking mechanism could change higher speed

21、hewing into lower speed sawing.2.2Cutting principleThe sawing anti-blocking mechanism was driven to reverse rotation by power. First, straws were cut in no-sustaining mode by saw-tooth blades while saw-tooth blades touched straws, then after straws were completely cut down, they would be free and be

22、 thrown to the rear of opener by throwing ban device and inertial force. Second, straws not being completely cut down would be thrown to former upward and be cut in sustaining mode by fixed blade combinations until any of straws would be cut down, straws having been cut down were thrown to the rear

23、of opener by throwing ban device and saw-tooth. In turn, time after time, straws would be carried out continuously to cut and throw by the sawing anti-blocking mechanism. The lowest point of the saw-tooth blades kept 1530 mm interval from the soil. In terms of spreading status of straws in field exi

24、sted perpendicularity or certain angle with marching direction, saw principal in landscape orientation had been determined for the sawing anti-blocking mechanism in order to decrease repeated cutting, leaky cutting and tearing out.Working procedures of the sawing anti-blocking mechanism were as foll

25、ows: 1) no-sustaining cut phase: static straws relative to ground were cut firstly atNpoint by saw-tooth blades, then, straws would be cut down completely or embedded in saw-tooth. Straws being cut down completely would be free and 65Liao Qingxi et al: Design of anti-blocking mechanism for no-tillag

26、e planter dropped into adjacent saw-tooth; 2) dragging and delivering phase: after straws dropped into adjacent saw-tooth, they would be thrown to former upward by the throwing ban device, moreover, straws embedded in the saw-tooth would be thrown to former upward by the saw-tooth at higher speed ro

27、tation; 3) sustaining cut phase: straws not being cut down completely in no-sustaining cut phase would be cut in sustaining mode by fixed blade combinations atK point until any of straws would be cut down completely; 4)throwing phase: straws being cut down were thrown directly to the rear of opener

28、by tooth former slanting angle of the saw-tooth and throwing ban device, time and again, straws would be carried out continuously to cut and throw. The working principle of the sawing anti-blocking mechanism is shown in Fig.2.2.3Analysis of mechanics characteristics of saw-tooth blade Cutting proper

29、ties of saw-tooth to cut straws belong to wriggly cut of no-metal materials, its ultimate objective is not only to improve surface cutting quality, but also to raise cutting efficiency, so it can decrease sawing force and power consumption9. Because the ratio of its diameter 350 mm to its thickness

30、1.8 mm is over 150, the saw-tooth blade belongs to exceed thin disc. It is as plane stress and no-axis symmetry problem according to elasticity theory. And because the saw-tooth blade was tighten by flange tray, six freedoms of its center hole were restricted, so its center parts could be regarded a

31、s restricted status completely not to bring any displacement and rotation. Saw-tooth blade belongs to excessive blade tools, it would bring to alternative sawing forces in cutting straws, The reasons lied in: 1) structure of straws with inner empty and outside hardness had determined micro-hardness

32、un-uniformity distribution, so the single tooth force would be uncertain in cutting straws; 2) the total sawing forces of saw-tooth in horizontal direction would be uncertain because the tooth of saw-tooth blade is not continuous. These alternative characteristics would bring to transfiguration of t

33、he saw-tooth, moreover, the transfigured properties an size was relative to the stress properties and size of the saw-tooth in supporting outside loading. So, it was very essential to make clear stress distribution of the saw-tooth in order to ensure smooth cutting.The stress distribution of the saw

34、-tooth blade was calculated by the ANASYS finity element software. Number of the tooth participating in cutting straws was determined to 23 teeth while diameter of straws was in 2045 mm11. The saw-tooth made in 65Mn ofEequal to 210 GPa12andto 0.28 was separated into 1200 cells and 1260 nodes by trap

35、ezia gridding. Thus the stress distributions ofX,YandXYplane had been obtained by the ANASYS software according to the most average wring value 26.8 Nm13of the saw-tooth to cut straws by the wring sensor. The stress distributions are shown in Fig.3. Calculated results showed: 1 ) the saw-tooth blade

36、 had acted as alternative stress from the whole stress distribution of sawtooth, tooth and around center hole of the saw-tooth had been distributed primary stress, the biggest pressing stress was up to 70776 Pa, moreover, the biggest pulling stress up to 19945 Pa. Compared with yield fatigue intensi

37、on 735 MPa12of the saw-tooth, the saw-tooth blade was difficult to be destroyed, so it would be feasible to cut corn straws; 2)Fig.3 showed, around stress distribution of the saw-tooth blade was in symmetry distribution, the area of relative bigger stress only occupied 3.33% of the saw-tooth whole a

38、rea, the other 96.67%; 3)the former tooth of saw-tooth supported the biggest forces among the whole saw-tooth while the former tooth of the saw-tooth touched firstly straws, and its stress value was the smallest before cutting straws, but when saw-tooth started to cut straws, the stress value would

39、increase 66 Vol.19, No.5 Transactions of the CSAE Sept.2003 sharply, its values would be over 105times comparing with the stress values before saw-tooth started to cut straws. However the stress would be down to the lowest point while saw-tooth had finished cutting straws. Thus, the saw-tooth was ac

40、ted as alternative stress.3Results and discussion3.1Experiments and analysis of rotation direction of the saw-tooth blade for cutting qualitySome experiments were done by clockwise and counter-clockwise rotation of the saw-tooth blade in the soil bin device. The results are listed in Table 1. Table

41、1Experimental results of rotation direction of the saw-tooth bladeTable 1 showed that the way of cutting straws at counter-clockwise rotation would be of benefit to improve cutting quality and throwing effect, and boost up adaptability of weight of different stubble mulch. Therefore, counter-clockwi

42、se rotation direction of the saw-tooth blade had been determined.3.2Effect of the rotation speed on cutting qualityThe experiments were done by selecting velocity 0.3 m/s of vehicle and interval 5 mm of the moved and fixed blade, and spacing 20 mm between the saw-tooth and ground as well as weight 1

43、1250 kg/hm2of the straws mulch, experimental results are shown in Fig.4. The results indicated that the power consump-tion and cutting rate would increase with rising of rotation speed of the saw-tooth blade. Because the wring values of cutting straws were equal basically on the same working conditi

44、on, the cutting rate could be up to 100% while the rotation speed of the saw-tooth blade was above 650 r/min. It was because the probability rate of the saw-tooth blade to cut straws 67Liao Qingxi et al: Design of anti-blocking mechanism for no-tillage planter would increase with rising of rotation

45、speed whenweight of straws was fixed. Fig.4Relationships among rotation speed, cutting rate and power consumption3.3Effect of the straw moisture on cutting qualityThe straw moisture of the same crops is different for different autumn and reaping time. The moisture were 20%, 40.5%, 64.4% and 80.16% r

46、espectively, after corn straws had been placed in field for different periods. Experiments were done by selecting velocity 0.3 m/s of vehicle and interval 5 mm between the moved and fixed blade and spacing 20 mm between sawtooth and ground, and rotation speed 650 r/min as well as mass 11250 kg/hm2of

47、 straws mulch, the results were shown in Fig.5. Fig.5Results of straws moisture for cutting rate and power consumptionExperimental results show that power consumption decreased with increasing of straw moisture and cutting rate of straws increased with increasing of straws moisture on the same worki

48、ng condition, which had connected importantly with different moisture of straws. Straws would take on bigger hardness and best firmness and fine brittleness when straws moisture was in higher, which demonstrated that it had been easy to finish to cut straws. But straws would take on tired and soft s

49、tatus for fine flexible and toughness when straw moisture was lower, so it would be easy to bring to tearing and wrapping. The saw-tooth blade had fine cutting quality and higher cutting rate while straws moisture was up to 80.16% (Fig.6). However the saw-tooth blade had taken ontearing while straw

50、moisture was up to 20%(Fig.7). 4Conclusions1) A new type of sawing anti-blocking mechanism, which could get rid of some shortcoming that common smooth blade is difficult to seize straws as well as high rotation speed, was designed according to the anti-blocking requirements of no-tillage planter and

51、 need in practice. The sawing anti-blocking mechanism had strong capability to seize straws and lower rotation (650 r/min) speed and lower consumption (power consumption per unit width up to 2.95 kW/m) and higher cutting rate of straws, a new approach was provided for design and development of the a

52、nti-blocking mechanism of no-tillage planter.2) The stress distribution of the saw-tooth blade was calculated by the ANASYS finity element software. The results showed that its intension would be difficult to be destroyed and the sawtooth blade was feasible to cut corn straws.3) The sawing anti-bloc

53、king mechanism realized an integrated function of directly throwing and cutting straws by counter-clockwise. The straws could be cut down completely by two cutting modes of sustaining and no-sustaining cut. Meanwhile, the straws being cut down completely could be directly thrown to the rear of opene

54、r by the former tooth horn of sawtooth blade and throwing ban device.4) Experimental results showed in the soil bin device that: (1) Cutting rate of straws increased with increasing of rotation speed of saw-tooth blade and moisture of straws, and higher moisture of straws would be of benefit to impr

55、ove cutting quality; (2) Power consumption increases along with increasing of rotation speed, and that decreased with increasing of moisture of straws; ( 3 ) Cutting rate of straws decreased with increasing of velocity of the vehicle while interval between the fixed and moved blade had been determin

56、ed, and to decrease the interval between the fixed and moved blade would be of benefit to improve cutting quality of straws without phenomena of rearing out and leaky cut, and could decrease power consumption. Compared with the other driving anti-blocking mechanism, the theoretical analysis and expe

57、rimental results showed that the sawing anti-blocking mechanism had better capability to cut and lower rotate speed and power consumption as well as stronger suitability for different stubbles mulch. 免耕播种机锯切防堵装置设计及其切割机理的研究 摘要:针对我国北方旱地一年两熟地区免耕播种机堵塞现象和已有卞动式防堵装置转速高( 1500 r/ min以上)、功耗大 (单位幅宽达1641.74 kW/

58、m,含牵引功率)的现实问题,设计了一种新型免耕播种机锯切防堵装置,分析了该装置的切割机理,应用有限元ANSYS软件计算了锯齿圆盘切刀的应力分布,得出了锯齿圆盘切刀川于玉米秸秆切割的可行性。上述试验表明:1)该装置采用逆转式作业,兼有无支撑和有支撑两种切割方式,切割彻底,并能借助刀齿前角和抛撒板将已切断秸秆定向抛送到开沟器后方,实现了切割、定向抛撒一体化功能;2)秸秆切碎率随转速和秸秆含水率的增大而增大,秸秆含水率高时有利于提高切割质量;3)秸秆切碎率在动定刀间隙一定时,随前进速度增大而降低,小间隙时无漏切和撕皮现象,切割质量高,功耗小。理论和试验结果表明:与其他卞动式防堵装置相比,锯切防堵装置

59、具有良好的切割性能,其转速低 (650 r/min)、功耗小(单位幅宽为2.95 kW/m)、秸秆覆盖量适应性强,为改善免耕播种机防堵性能提供了一条新途径。关键词:免耕播种机;锯切防堵装置;切割机理;切碎率1、 说明免耕播种机堵塞问题是影响我国一年两熟的北方旱地地区的生产效率和播种质量关键因素之一。这是因为有大量的作物根茬而且在作物收割不久就要进行播种,不留时间使作物根茬腐烂。目前,有两种方法来解决免耕播种机的堵塞问题:1)在播种前用秸秆刀切碎秸秆,这将导致增加的工作程序,并增加生产成本,以及推迟播期; 2)茬被安装在免耕播种机上的切除机构清除,如在河北农哈哈机械有限公司的纺纱地带和沟小麦播种

60、机和中国产农业大学 1 的2BMDF玉米地带等等。在实践中,驾驶砍机制在防堵问题上有巨大作用,但是因为秸秆切碎时的高转速,会产生更大的振动和噪声以及降低安全。据报道,几个主要秸秆切碎机制的刀片基础线速度是37 56米/秒 2 ,其中大部分是砧板机制结合切割突出了更高的惊人速度和更高的功率消耗 3 ,例如:刀片基础线速度高达34米/秒能取得削减玉米秸秆的良好效果 4 ,而大米和小麦秸秆高达24米/秒 5 。即使玉米秸秆被与与垂直的滑动切口相切,其切割一个和两三个秸秆的速度必须上升到10.3米/秒, 13.6米/秒, 15.8米/秒 6 ,并且有较高的功率消耗。简言之,因为驾驶砍机制目前开发有高旋

61、转速度(上面 1500转/分 )并且更高的力量消费(宽度单位能耗高达16 41.74千瓦/米,包括牵引动力),在实践中以减少旋转速度和力量消费将是迫切的.根据实际问题,本文件中的目标是要找到一种办法来解决64个缺陷,制造出对抓住稻草并且它必须在更高的旋转速度下,减少能耗和提高切割效果以及防堵性能免耕播种机。另外一些实验,对选择了齿形切削刀片的免耕播种机和切削机理的锯切防堵机制进行了研究。2结构和规则的锯切防堵装置的切割原理2.1结构和特性锯切防堵装置由锯齿圆盘切刀、定刀组合、抛撒板、主轴、罩壳、机架、以及传动系统组成。锯切防堵装置的零件图如图1.其中锯齿圆盘切刀、抛撒板、和定刀组合是该装置的主

62、要组成部分。设计的锯齿圆盘直径为350 mm,60齿;抛撒板安装在相邻两锯齿圆盘间,其最大回转直径为270 mm;定刀组合由锯齿形定刀和直刀形定刀组合而成,锯齿形定刀与锯齿圆盘切刀配合对秸秆进行剪切,而直刀形定刀主要起阻挡未切断秸秆落入抛撒区的作用,同时也参与剪切。该装置安装在土槽试验台上,工作幅宽为600 mm,相邻间隔为200毫米。其工作特点是秸秆既可由锯齿切刀直接切碎,也可由锯齿切刀和定刀组合作用而切碎,兼有无支撑与有支撑2种切割方式,锯齿刀端线速度低于甩刀式切割器线速度,即具有将高速砍切变为低速锯切的特点。1. 开沟铲组合; 2.锯齿圆盘切刀; 3.秸秆导向板; 4.定刀组合; 5.主

63、轴; 6.抛散弧板;7.罩壳; 8.机架; 9.轴承座; 10.传感器; 11.电缆; 12.调速电机; 13.台车悬挂臂图1锯齿防堵装置结构示意图2.2切割原理锯齿圆盘切刀由动力驱动作逆时针旋转。首先,当锯齿底部与秸秆接触时,锯齿嵌住秸秆进行无支撑切割,已切断的秸秆,依靠锯齿圆盘切刀的刀齿和抛撒板的旋转作用向后抛送。其次,未完全切断的秸杆在刀齿作用下,向前上方运动与定刀组合发生剪切作用,秸秆进行有支撑切割,从而完成秸秆的全部切断,由锯齿切刀和抛散板将断秆抛送到开沟器后方。如此反复,实现秸杆的连续切割和抛送。工作时圆盘锯齿不入土,其旋转最低点离地1530 mm。就田间垂直存在的秸秆的散布情况或

64、某个角度的前进方向而言,锯切防堵装置的横向的锯齿是为了减少重复切割、漏割和撕裂稻谷。 锯切防堵装置的工作程序制如下:1)无支撑切割阶段:相对地面静止的稻草首先被锯齿片切割,然后秸秆被完全切除或牢牢嵌入锯齿中。已切断的秸秆做自由运动并落到邻近的锯齿上; 2 )拖拽交付阶段:在稻草落下了相邻近的锯牙齿以后,他们将被抛洒装置向上扔到前者,而且,被嵌入锯牙齿的稻草将被更高的速度旋转的锯牙齿向前抛出; 3 )支撑切阶段:在无支撑阶段未被切割的稻草被定刀组合切割直到被完全切割。4 )抛撒阶段:正在被切割的稻草直接被锯齿圆盘切刀和抛散弧板扔到开沟器的后面,再一次,稻草将被连续地切割和抛撒。锯切防堵装置的工作

65、的原理如图2所示1.待切秸秆; 2.定刀组合; 3.罩壳; 4.锯齿圆盘切刀; 5.抛撒板;6.开沟器; 7.断秆; 8.地表; 9.放大定刀组合; 10.锯齿型定刀;N为无支撑切割点;K为支撑切割点;M为研究对象图2锯齿防堵装置防堵原理示意图2.3锯齿圆盘切刀的力学性能切割秸秆的锯齿圆盘切刀的切割特性属于无金属材料蠕动切割,它的最终的目的是不仅提供切割表面的质量,而且提高切碎效率,因此它能减少切削力和能量的消耗 9 .因为它350毫米的直径与它1.8毫米的厚度的比值超过了150 ,锯齿圆盘切刀属于超过薄圆盘。它是根据弹性理论的水平压力和无轴对称问题。并且因为锯齿圆盘切刀是,由凸缘托盘紧缩,它的中心洞的6个自由被限制,因此它的中心部件被认作完全约束而没有任何旋转和移动。.锯齿圆盘切刀属于过度的切刀工具,在秸秆切割中它使其达到非传统的切割力,主要原因如下:1 )内空并且外硬的稻草结构决定了微硬部分的差异分布,因此单个锯齿的力在切稻草时是不明确的; 2 ) 因为锯齿圆盘切刀的锯齿不连续所以锯齿圆盘切刀的全部的切削力在水平方向将不确定。这些选择特征将使锯齿圆盘切刀变得更理想,而且这些理想特性大小要与外部承受载荷上的承载特性和锯齿圆盘切刀尺寸相比较。因此为保证切割的平稳需弄清锯齿圆盘切刀所受的力

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!