年产1000T碱性蛋白酶生产车间设计-word格式

上传人:do****y1 文档编号:166568535 上传时间:2022-11-01 格式:DOCX 页数:34 大小:106.35KB
收藏 版权申诉 举报 下载
年产1000T碱性蛋白酶生产车间设计-word格式_第1页
第1页 / 共34页
年产1000T碱性蛋白酶生产车间设计-word格式_第2页
第2页 / 共34页
年产1000T碱性蛋白酶生产车间设计-word格式_第3页
第3页 / 共34页
资源描述:

《年产1000T碱性蛋白酶生产车间设计-word格式》由会员分享,可在线阅读,更多相关《年产1000T碱性蛋白酶生产车间设计-word格式(34页珍藏版)》请在装配图网上搜索。

1、目录摘要1前言31.1 选题背景31.2 课题来源31.3 设计目的和意义31.4 前景分析42 碱性蛋白酶的基本性质和生产工艺的选择42.1 碱性蛋白酶的基本性质52.2 培养基主要成分和生产方法62.3 生产工艺的选择62.4 分离纯化流程73 初始设计条件与基本物性数据93.1 初始设计条件93.2 工艺参数与基本物性数据的选取94 生产工艺的物料衡算95 热量衡算 106 设备设计计算与选型 116.1 发酵罐设计 116.2 种子罐176.3 空气分过滤器196.4 连续操作设备的设计选型21致谢28参考文献28年产 1000T 碱性蛋白酶生产车间设计摘要:碱性蛋白酶是一类非常重要的

2、工业用酶,如何在工厂进行有效的生产尤 为重要。本论文就主要介绍了用液态发酵法生产碱性蛋白酶,并采用双水相萃 取进行提纯,冷冻干燥法将产品进行干燥的工艺流程;并通过物料衡算、热量 衡算、设备选型、等几个步骤初步设计了年产1000T碱性蛋白酶的车间项目; 分析了传统工艺所存在的不足和问题;另外也谈到了碱性蛋白酶产业的发展前 景以及研究的目的和意义;并且最终设计出带控制点的工艺流程图,设备布置 图,发酵罐装配图。关键词:碱性蛋白酶;液态发酵;双水相萃取;冷冻干燥;生产车间Design annual output of 1000T alkalineprotease workshopAbstract:T

3、he alkaline protease is one of very important industrial enzymes,and how to produce the plant effectively is particularly important.This paper introduces the process that use liquid fermentation on the production of alkaline protease, use two-phase extraction for purification of water, freeze-drying

4、 process to dry the product;and through the material balance, heat balance, equipment selection, etc. I preliminary design the annual output of several steps 1000T alkaline protease workshop projects;I analysis of the shortcomings of traditional crafts and problems in the pape;I have also talked abo

5、ut the prospects for the development of alkaline protease, and the purpose and meaning;and ultimately design a process flow diagram with control points, equipment layout diagram, fermentor assemble diagram.Key words: Alkaline protease;Liquid Aermentation;Aqueous two-phase extraction; Areeze Drying ;

6、Workshop.一、一前言碱性蛋白酶(Alkaline protease)是指在pH值偏碱性范围内水解蛋白质肽键 的酶类,1913年Rohm首先将胰蛋白酶作为洗涤浸泡剂使用,1945年瑞士 Dr.Jaag等人在地衣芽抱杆菌(Bacillus licheniAormis)中发现了碱性蛋白酶。碱 性蛋白酶可以在碱性条件下保持良好的活力,并催化蛋白水解,可用于制革、 丝绸、医药、食品和生物化学试剂等领域,其最大用途是作为添加剂生产加酶 洗涤剂。1.1 选题背景碱性蛋白酶是一类非常重要的工业用酶,广泛存在于动、植物及微生物中, 微生物来源的蛋白酶都是胞外酶,与动、植物来源的碱性蛋白酶相比,除了具 有

7、动植物蛋白酶所具有的全部特性外,还具有下游技术处理相对简单、价格低 廉、来源广、产量高、菌体易于培养、高产菌株选育简单、快速、适于大规模 工业化生产等优点2。碱性蛋白酶主要应用于洗涤行业中, 在制革、食品等其它行业也有广泛 应用。目前我国洗涤行业中加酶洗涤剂也占90%以上, 且占有率有上升趋势。 我国碱性蛋白酶的研究发展很快。目前, 国外碱性蛋白酶主要应用于洗涤及皮革等行业中, 99%以上洗涤 剂均添加了碱性蛋白酶, 因此市场需求出现了供不应求的现象。相信随着碱 性蛋白酶研究的进一步深入, 该现象将会得到有效的缓解。当前国外碱性蛋 白酶高产菌株的选育主要用基因工程技术和蛋白质工程手段进行工业微

8、生物 菌种的定向选育, 目的性强, 而且酶结构研究也比较深入。 Tsuyoshi Nonaka3 等人研究了枯草杆菌抗氧化性稳定性并期望能应用于洗涤剂行业。 Kunamneni Adinarayana4等人研究了枯草芽抱杆菌PE - 11的热稳定性。研究表明,该酶 在60C处理了 350 min酶仍保持100%活力。极端碱性蛋白酶和高活力碱性蛋 白酶工程菌构建成为国外碱性蛋白酶的热点5。1.2 课题来源本课题来源于三峡大学化生学院毕业设计课题组。充分考虑了理论与实践 的结合,并且关注了目前国内外碱性蛋白酶产业的发展现状和前景。课题本身 也来源于生产实践的需要。1.3 设计目的和意义碱性蛋白酶可

9、以在碱性条件下保持良好的活力,并催化蛋白水解,可用于 制革、丝绸、医药、食品和生物化学试剂等领域,其最大用途是作为添加剂生 产加酶洗涤剂。碱性蛋白酶最早在猪的胰脏中发现。1913年,Rohm首先将胰 蛋白酶作为洗涤浸泡剂使用。1945年瑞士的DrJaag等发现了微生物碱性蛋白 酶,使蛋白酶有可能广泛应用于洗涤剂工业。 1963年,诺和诺德公司(现诺维 信公司)发现了更适用于洗涤剂的碱性蛋白酶Alcalase,酶制剂被广泛地应用于 洗涤剂产品中,出现了加酶洗衣粉;随后的 20 年中,细菌类蛋白酶是唯一被 应用于洗涤剂中的商品化酶制剂6。目前我国所用的碱性蛋白酶工业生产菌种为地衣芽抱杆菌2709的

10、突变株。这些菌株所产碱性蛋白酶在PH8-10的范围内活性较好。经过多年传统方法的 菌种选育和工艺优化,碱性蛋白酶的单位产量为10000y/ml发酵液,己很难有 大的突破,其发酵单位与国外先进水平相差甚远。近几年,国内学者对2709 碱性蛋白酶、嗜麦芽假单胞菌以及嗜热脂肪芽抱杆菌耐热碱性蛋白酶等都做了 基因克隆和在大肠杆菌中的表达研究。其中,江南大学的唐雪明构建的整合型 工程菌酶活力在实验室水平上最高可达24480p/ml。但未见这些高产基因工程 菌株应用于工业化生产的报道,有关它们的研究仍停留在实验室水平。在国外, 如世界著名公司NovoNordisk和Geneneor,碱性蛋白酶生产菌株均为

11、基因工程 菌株,据这些公司销售网站报道,其发酵单位产量在25000-30000p/ml。1.4 前景分析1.4.1 国外生产碱性蛋白酶的发展前景自20世纪中叶以来,工业用酶制剂市场得到了蓬勃发展。据统计数据表 明, 1981 年工业酶制剂生产量约65, 000吨,产值4亿美元;1985年工业酶 制剂约生产75, 000吨,产值约6亿美元;1998年全世界工业酶制剂销售额高 达16亿美元。进入20世纪90年代后,市场对酶制剂的需求进一步增强,以 世界上最大的酶制剂生产商丹麦的NovoNordisk公司为例,1993年的酶制剂销 售额为9亿美元;1998年产业用酶的销售额为巧18亿美元。从总体来看

12、,世 界酶制剂的生产量正以每年8%左右的速度递增,酶制剂的生产品种已由原来 的十多个发展为数十个。 1994 年以来,酶制剂市场量最大的是洗涤剂用酶,第 二位是淀粉加工用酶,以后依次为乳制品加工、制酒工业、纤维工业和饮料业 等。酶作为生物催化剂,在许多化学反应中具有不可低估的作用。酶催化剂作 为生物进化的高级形式,与一般的化学催化剂相比,它可以在非常温和的条件 下高效、专一地催化底物转变为产物。酶工程技术已成为生物工程技术的重要 组成部分,无论是基因工程、蛋白质工程、细胞工程和发酵工程都需要酶分子 的参与。酶催化的高效性、特异性及产品的高效回收、简单的反应体系等优点 使酶工程技术成为现代生物技

13、术的主要支柱之一。1.4.2我国生产碱性蛋白酶的发展前景此产品高活力高碱性蛋白酶是从嗜碱芽孢杆菌中筛选的新型碱性蛋白酶 菌种产生的,是继传统2709碱性蛋白酶之后又一可工业化生产的碱性蛋白酶 品种。国内碱性蛋白酶目前的产品形式主要为粉状和颗粒碱性蛋白酶,有明显 的不良气味。诺奥科技开发的碱性蛋白酶为精制酶,发酵活力高,耐碱性强 (PH9-11),无不良气味,可用于酵母水解、制备硫酸软骨素、咸味香精等食品 加工行业,填补了国内酶制剂行业在此酶品种上的市场空白。通过对此酶酶学 性质的进一步分析研究,可为国内应用行业的科研人员提供一种新的蛋白酶品 种,推动酶制剂应用技术的快速发展。近十年来,酶制剂产

14、业已经成为生物工程的重要组成部分,它的发展非常 迅速,仅 1998年全世界工业酶制剂销售额高达 16 亿美元,预计到 2012 年, 销售额将达到 40 亿美元。酶制剂对我国的国民经济发展起着非常重要的作用, 是我国化学工业“十五”和“十一五”规划中加快发展的精细化工产品,酶制剂工 业作为高技术产业,是 21 世纪最有希望的新兴产业之一。酶制剂是一类具有生物催化能力的蛋白质,它以用量少、催化效率高、专 一性强的特点,在生物技术应用领域备受瞩目。目前,在世界范围内蛋白分解 酶是工业酶种中应用得最多的一种酶,约占酶总量的 60,其中碱性蛋白酶就 占 25 。碱性蛋白酶广泛存在于细菌、放线菌和真菌中

15、,其中以芽孢杆菌碱性 蛋白酶的研究最为广泛和深入。碱性蛋白酶在改善人民生活质量、降低劳动强 度、节约原料和能源、保护环境等方面发挥着重要作用,并产生巨大的经济效 益和社会效益。在高技术日新月异的今天,碱性蛋白酶在日用化工、食品、环 保、医药及一些新兴产业中更是具有巨大的市场潜力,发展前景极其广阔,大 力开发碱性蛋白酶的应用基础研究及生产研究势在必行。 2碱性蛋白酶的基本性质和生产工艺的选择2.1 碱性蛋白酶的基本性质2.1.1 碱性蛋白酶的概念碱性蛋白酶是经细菌原生质体诱变方法造育的2709枯草杆微生物通过深 层发酵、提取及精制而成的一种蛋白水解酶,属于一种丝氨酸脆外高碱性蛋白 酶,它能水解蛋

16、白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能 力。生产工艺是采用微滤超滤膜分离、喷雾干燥或真空冷冻干燥等先进技术, 广泛应用于食品、医疗、酿造、丝绸、制革等行业。 2.1.2碱性蛋白酶的特点碱性蛋白酶是由芽孢杆菌发酵而得,主要成分为枯草杆菌蛋白酶,是一种 内切酶,催化部位为丝氨酸,分子量约为27300。碱性蛋白酶是目前市场上流行的洗涤添加剂,能大幅度提高洗涤去污能 力,特别对血渍、汗渍、奶渍、油渍等蛋白类污垢,具有独特的洗涤效果。碱 性蛋白酶在技术上采用细菌原生质体诱变处理方法,从国内碱性蛋白菌生产菌 2709枯草杆菌中研究选育出若干稳定高性能菌株,在后处理上,采用去渣盐析 沉淀法,

17、减少了蛋白酶的杂质含量和产品特有的气味,提高了溶解速度,与洗 涤剂有更好的配伍性,延长了保质期。碱性蛋白酶作为水解大豆分离蛋白的酶源,确定水解条件及制备多肽的工 艺用于碱性蛋白酶制备多肽,从而达到理想的效果8。大豆从古至今被认为是 “营养的宝库”, 在日本关于大豆的研究已经十分深入。从脱脂大豆到原油, 从医用到食用所涉及的领域十分广泛,产品品种繁多,其中大豆多肽的研究成 为了近年来的热点。多肽是由蛋白质中20 种天然氨基酸以不同组成和排列方 式构成的,从二肽到复杂的线性或环形结构的不同肽类的总称,其中可调节生 物生理功能的多肽称为功能肽。2.2 培养基主要成分和生产方法2.2.1培养基主要成分

18、是淀粉2%(M / V),麸皮5%(M / V),玉米浆3%(M / V), 接种量 5%(V/V),溶氧 0.03-0.04MPa,吐温-80 0.02%(M / V), MgSO4 0.02%。2.2.2 碱性蛋白酶的主要生产方法1. 直接提取法:从动物器官中提取碱性蛋白酶,然后进行分离纯化。2. 微生物发酵法:培养有产量高的碱性蛋白酶产生菌,目前主要有固态发酵 法和液态发酵法。诺维信和庞博等生物技术公司普遍采用液态发酵法生产 碱性蛋白酶。2.3 生产工艺的选择上述几种方法中,直接提取法操作简单,但是对原料要求高,并且所得酶 制品比活力很低,提取过程中极易降低酶活力,不适合工业化生产。目前

19、主要 利用微生物发酵法生产碱性蛋白酶,其液态发酵法产酶率较高,并且耗能少, 且简便了下游工作的分离提纯;而固态发酵法产酶周期长,酶比活力较低,产 酶量少,加大了下一步分离提纯的难度。综上所述,采用液态发酵工艺是可行的,而且是目前国内外碱性蛋白酶生 产的主要生产方法,所以在本次设计采用的工艺是液态发酵法。2.3.1 工艺原理邱秀宝8采集38 个不同土样, 从中筛选到一株产碱性蛋白酶的嗜碱性短 小芽孢杆菌 R115 , 经 NTG 和利福平处理, 获得一株具有高产稳产的碱性 蛋白酶变异株B45。徐子渊等将碱性蛋白酶生产菌2709进行诱变育种,获 得变异株C1213,酶产量提高了 40%。郑铁曾10

20、等对如何提高C1213碱性蛋 白酶活力进行了研究, 通过优化设计, 酶活力达到21 000 U /mL, 相对原 始菌株2709酶活提高了 170%。冯清平11等也从土样中筛选到一株产碱性蛋白 酶的嗜碱性地衣芽孢杆菌 53 - A6 , 对其原生质体进行复合诱变处理, 从中 选育出了耐高温、耐碱的碱性蛋白酶高产株。在生物技术领域中, 碱性蛋白 酶可作为工具酶用于核酸纯化过姚刚等人对培养基成分及培养条件进行优化, 得出最佳的发酵培养基成分为:酵母浸粉 2%、蔗糖 1.0%、吐温-80 0.5%、硫 酸镁0.02%;发酵条件为:接种量4%(V/V)、起始pH9,在150ml的三角瓶中, 装液量为2

21、5ml,发酵36h。在最佳培养条件下,碱性蛋白酶粗酶活力可达 1670U/ml12。2.3.2 工艺流程图液态发酵法生产碱性蛋白酶的工艺流程,包括原料预处理、液态发酵工序、 双水相萃取和冷冻干燥工艺三大部分。本次设计的主体是原料预处理、液态发 酵工序,生产碱性蛋白酶的基本工艺流程如图 1 所示。空气1菌种培养基1列压1预热1冷却1连消iV除张一二级种子维持1降温1I高压匀质耕 I离心分离*离&分离FEG-Jk冷冻干煉机含1=1 -1 口口废液相 PEG水相图1碱性蛋白酶工艺流程图2.3.3工艺流程说明首先培养基经过预处理进行灭菌、均质,待温度降到37C。将培养基分别 加入到种子罐和发酵罐内进行

22、发酵,通风搅拌24h。放罐后直接对发酵液进行 双水相萃取,经过两次萃取后获得纯的酶液,最后对酶液进行冷冻干燥,便制 得产品。2.3.4分离纯化流程1.双水相萃取萃取原理:将亲水性聚合物加入水中会形成两相。聚合物以不同的比例分配 与这两相中,而水分在每一相中都会占很大的比例(85%-95%),生物蛋白质等 在这种体系中能够保持自然活性。当两种聚合物的水溶液相互混合时,究竟是分层成两相,还是混合成一相, 取决于两种因素,一是混合熵的变化,二是分子间的作用力。对大分子而言, 则分子间的作用力占主导地位,也就是说,由分子间的作用力决定混合的结果。若两种聚合物的分子间存在斥力,那么再某一分子的周围就可能

23、系同种分 子而非异种分子。当达到平衡后则分成两相,两种聚合物分别进入到每一相中, 达到分离的目的。反过来,如果两种聚合物之间存在引力,如在带相反电荷的 两种聚合物电解质之间,则它们相互结合而存在于同一相中,若两种聚合物间 不存在分子间力,则它们相互混合。根据上述分析可知,能够进行双水相萃取 的必要条件是:形成的两种聚合物分子间存在引力。双水相萃取中,影响分配的主要参数有聚合物的分子质量和浓度、pH、盐 的种类和浓度、操作稳定等。聚合物分子质量低时,生物大分子易分配于富含 该聚合物的相中,当远离临界点时,双水相萃取本身受温度的影响很小。大规 模生产总是在常温下操作,一则节省制冷费用,再则聚合物在

24、常温下对蛋白质 有稳定作用,不会引起损失,同时温度高时,粘度低,有利于相的分离操作。 因此,确定适宜的操作条件,可达到较高的分配系数和选择性。双水相萃取的 一个重要优点是可直接从细胞破碎浆液中萃取蛋白质而无需将细胞碎片分离, 一步操作可达到固液分离和纯化两个目的。双水相萃取方法: 双水相萃取法的一个主要应用是胞内酶的提取,采用 双水相系统可使欲提取的酶与细胞碎片以较大的分配系数分配在不同的相中, 进而采用离心法就可实现分离。采用双水相萃取时,通常将蛋白质分配在上相 (PEG),细胞碎片分配在下相(盐)。反过来对相的分离不利,因为当上相固含量 髙时,分离机的性能会受到影响。在操作时,单位重量相系

25、统中料浆的加入量 是一个重要参数。显然,料浆的加入量愈多愈经济,但过量的料浆会影响原来 聚合物的成相系统,是分配系数降低,结果收率降低。根据经验,一般每 1kg 萃取系统处理 200-400湿菌体为宜。2. 冷冻干燥冷冻干燥原理:冷冻干燥是将湿物料在较低温度下冻结成固态,然后在高 度真空(130Pa-0.1MPa)下,将其中固态水分直接升华为气态而除去的干燥过程, 也称为升华干燥。冷冻干燥也是真空干燥的一种特例。冷动干燥也可将湿物料不预冻,而是利用高度真空时水分汽化吸热而将物 料自行冻结。这种冻结能量消耗小,但对液体物料易产生泡沫或飞溅现象而遭 致损失,同时也不易获得多孔性的均匀干燥物。冷冻干

26、燥中升华温度一般为 -35C-5C,而抽出的水分可在冷凝器上冷冻聚集或直接为真空泵排出。若升 华时需要的热量直接由所干燥的物料供给,这种情况下,物料温度减低很快, 以至于冰的蒸汽压很低而使升华速率降低。一般情况下,热量由加热介质通过 干燥室的间壁供给,因此,既要供给湿物料的热量以保证一定的干燥数率,又 要避免冰的融化。与其他干燥相比,冷冻干燥具有以下特点:1) 干燥温度低,特别适合于高热敏性物料的干燥,生物制品的干燥。又系在真空下操作,氧气极少,物料中易氧化物质得到了保护,因此,制品中的 有效物质及营养成分损失很少。2) 能保持原物料的外观形状。物料在升华脱水前先进行预冻,形成稳定的固 体骨架

27、。干燥后体积形状基本不变,不失原有的固体结构,无干缩现象。3) 冻干制品具有多孔结构,因而有理想的速溶性和快速复水性。干燥过程中, 物料中溶于水的溶质就地析出,避免了一般干燥方法中因物料水分向表面 转移而将无机盐和其他有效成分带到物料表面,产生表面硬化现象。4) 冷冻干燥脱水彻底(一般低于 2%-5%),质量轻,产品保存期长,若采用真 空密封包装,常温下即可运输、保存,十分简便。但冷冻干燥需要昂贵的专用设备,干燥周期长,能耗较大,产量小,加工 成本高。冷冻干燥流程:冷冻干燥过程分为两个阶段,第一阶段,在低于熔点的温 度下,使物料中的固态水分直接升华,大约有 98%-99%的水分在这一阶段除去。

28、 第二阶段中,将物料温度逐渐升高甚至高于室温,使水分汽化除去,此时水分 可以减少到 0.5%。冷东干燥系统主要有 4 部分组成,即冷冻装置、真空装置、 水汽去除装置和加热部分,用于生物制品的了扭动干燥流程见带控制点饿工艺 流程图。预冷冻和干燥均在一个箱内完成。带干燥的物料放入干燥室内,开动 预冷用冷冻机对物料进行冷冻,随之开启冷凝器和真空装置,实现升华干燥操 作。加热器以作冷凝器内化霜之用。第一阶段升华干燥结束后,开启油加热循 环泵对干燥室加热升温,使之汽化排除剩余的水分。 3初始设计条件与基本物性数据3.1 碱性蛋白酶发酵工艺技术指标指标名称单位指标数生产规模t/a1000生产方法深成液态发

29、酵年生产天数d/a300产品日产量t/a3.4产品质量比活力(U/g)50 万倒罐率%1.0发酵周期h36发酵液酶活力U/ml18000碱性蛋白酶提取率%85冷冻干燥酶收率%80平均总收率率%683.2 工艺参数与基本物性数据的选取3.2.1 工艺参数碱性蛋白酶比活力比活力为50万U/g,生产周期为36h,发酵温度为37C, 溶氧为 0.03-0.04MPa。3.2.2 基本物性数据的选取在低温下油或油脂的平均热容在2.05-2.51kJ/(kg. C),随着温度升高比热将 增加。4物料衡算根据物料衡算的质量守衡定律,在间歇操作过程中,若系统内不发生物料 量的积累,输入的物料量等于输出的物料量

30、。表 1 物料的基本物性参数密度(kg/m3)汽化替热 kJ/kg比热容 kJ/(kgC)沸点(C)培养基10004.183水99822584.183100生产1000kg比活力为50万U/g的发酵液量:50 万 U/gx1000x1000=108 万 U108 万 U/18000=2.78x107ml=27.8m318000U/ml -发酵液酶活V0=V /(0.68x0.7)=92.6/(0.68x0.7)=194.54m30.68平均总收率 0.7填充系数发酵液所需淀粉量:194.54x2%=3.89kg发酵液所需麸皮量:194.54x5%=9.73kg发酵液所需玉米浆量:194.54x

31、3%=5.83kg 二级接种量: V2=1%V1=1.95m3 吐温-80(M / V): 0.02%x194.54=0.0389kg MgSO4(M / V): 0.02%x194.54=0.0389kg表2物料一览表物料名称生产lt(100万U/g)酶1000t/a酶生产的每日物料量的物料量物料量发酵液(m3)27.82780032.43二级种液(m3)1.9519506.5淀粉(kg)3.89389012.97麸皮(kg)9.73973032.43玉米浆(kg)5.83583019.43吐温-80(kg)0.038938.90.13培养基(kg)19.491949065.00MgSO4(

32、kg)0.038938.90.135 热量衡算5.1 基准温度的选定为便于计算,热量输入和输出的基准温度选为20C(293K)。5.2 连消塔的热量衡算Q=Gc(t2-t)=13406x3.91x(115-70)=2.36x106(kJ/h)5.3 发酵罐的热量衡算发酵时放出的生物热:Q 总=4.18x6000x102.14=2.56x106(kJ/h)表3热量衡算表设备热量衡算(kJh)备注螺旋板换热器0物料循环加热连消塔2.36x106蒸汽加热维持罐0只需保温喷淋冷却2x106原水冷却种子罐2.56x104夹套冷却发酵罐5.12x106蛇管冷却发酵一次所需总热量2.36x106蒸汽 133

33、9kg/h6 设备设计计算与选型 14 15 16 176.1 发酵罐设计6.1.1 设备设计要求单表4设备设计要求单技术特性指标压力体内0.5Mpa温度体内104,视为湍流,则搅拌功率准数m=1.3 x 10-3Np=4.7p2) 计算不通气时搅拌轴功率 P0:P0/ =NN3D5P0p式中Np 在湍流搅拌状态时其值为常数4.7N搅拌转速,N=87 r/min=1.45 r/sD 搅拌器直径,D=1.5mp 醪液密度,p=1050kg/m3代入上式:P0/ =4.7x1.453x1.55x1050 =114.25kw两档搅拌 P0=2P0=228.5 kw3) 计算通风时的轴功率 Pg:oP

34、2 ND3P =2.25x10-3x( )o.39(kw)gQ 0.08式中P0不通风时搅拌轴功率(kw),P02=228.52=5.22x1O4N轴转速,N=87 r/minD 搅拌器直径(cm)D3=1.53x106=3.38x106Q 通风量(ml/min),设通风比vvm=0.11-0.18,取低限,如通风量变大,P 会小,为安全。现取 0.11;则 Q=102.14x0.11x106=1.12x107(ml/min) gQ0.08=(1.12x107)0.08=3.66 代入上式:Pg=2.25x10-3x(5.22x104 x87x3.38x1043.66)0.39=31.26(k

35、w)4) 求电机功率 P :电PP =gx1.01电n nn123采用三角带传动n =0.92; n =0.99; n =0.98;双端面密封增加的功率123为 1%;代入公式数值得:P =3126x1.01=35.37 kw电 0.92 x 0.99 x 0.98故选择电机的型号为:6.1.7 设备结构的工艺设计1. 空气分布器:由于枯草芽孢杆菌是好氧菌,故可直接采用单管式。2. 挡板:人梯和竖式冷却蛇管也可以器挡板的作用,所以可不设挡板。3. 密封方式:采用双端面机械轴封。4. 冷却管布置:采用竖式冷却蛇管。求管道截面积。1) 求最高热负荷下的耗水量 W:QW=总c (t t )p 2 1

36、式中Q 每lm3醪液在发酵最旺盛时,lh的发热量与醪液总体积的乘积:总Q 总=4.18x6000x102.14=2.56x106(kJ/h)Cp冷却水的比热容,4.18kJ/(kgK)t2冷却水终温,t2=27Ct1 冷却水初温,t1=20C将各值代入上式W=4.185627-2O)=8.75X104(kg/h)=24.3(kg/s)冷却水体积流量为2.43x10-2m3/s,取冷却水在竖直蛇管中的流速为1m/s根据流体力学方程式,冷却管总截面积 S 为:总WS =W总 v式中 W 冷却水体积流量,W=2.43x10-2m3/sv 冷却水流速,v=1m/s代入上式:S 总=2.43 :心=2.

37、56x10-2(m2)进水总管直径 d =-S /0.785 = .256x 10-2/0.785 =0.178(m)总总2) 冷却管组数和管径:设冷却管总表面积为S,管径d0,组数为n,则: 总0S =n0.785d02总0根据本罐的情况,取n=8,求管径得。由上式得:d0=、S /0.785n .2.43 x 10-2 /(8 x 0.785) =0.062(m)0总v查金属材料表选取976x4mm无缝不锈钢钢管(GB/T 17395),d =68mm,内d d0,可满足要求,d =72mm。内 0 平均现取蛇管圈端部U型弯管曲径为270mm,则两直管距离为540mm,两端 弯管总长度为

38、l0:l0=nD=3.14x54O=1696(mm)3)冷却管总长度L计算:由前知冷却管总面积A=92.85m2;现取无缝钢 管:申76x4,每米长冷却面积为A0=3.14xO.O72xl=O.23(m2),贝廿:L=92.850.23403.7(m)冷却管占有的体积:V=0.785x0.0762x403.7=1.83(m2)4) 每组管长L0和管组高度:L0= - = 4037=50.5(m)00 n 8另需连接管 8m: L =L+8=403.7+8=411.7(m)实排竖直蛇管的高度,设为静液面的高度,下部可伸入封头250(mm)。 设发酵罐内附件占有体积为0.5m3,则总占有体积为:V

39、 =V +V +V =102.14+1.83+0.5=104.5(m3) 总 液 管 附件V - V 104 5 -12 71则筒体部分液深为:一封 = 一.亠=5.77(m)S0.785 x 4.52截竖蛇管总高: H =5.77+0.25=6.02(m)又两端弯管总长l0=1696mm,两端弯管总高为540mm。则直观部分高度: h=H -540=5480(mm)则一圈管长 l=2h+l0=2x5480+1696=12656(mm)5) 每组管子圈数 n0:吠鵲=4 (圈)现取管间距为2.5D =2.5x0.076=0.19(m)竖蛇管与管壁的最小距离为外0.15m,则可计算出与搅拌器的距

40、离在允许范围内(不小于200mm)。6) 校核布置后冷却管的实际传热面积:A =ndL =3.14x0.072x411.7=93.08(m3)实 平均 实而前有A=92.85m2,A A,可满足要求。实5. 设备材料的选择 选择Q235A碳素钢板(GB3274)。6. 发酵罐壁厚的计算1) 发酵罐的壁厚 S:S=PD2( 0 P+C(cm)式中P设计压力,现取P=0.4PaD 发酵罐内径,D=450(cm)o一Q235A 钢的许用应力,O=113MPa申一焊缝系数,根据焊伤的情况和探伤的程度而定。其范围在0.5-1 之间,现取9=0-7C 壁厚附加量(cm)式中C=C1+C2+C3C1-钢板负

41、偏差,其范围为0.13-1.3,现取C1=0.8mmC2腐蚀裕量,双面腐蚀取C2=2mmC3-加工减薄量,对冷加工C3=0mm上式 C=0.8+2+0=0.28(cm)S=0.4 X 450+0.282 x 113 x 0.7 - 0.4=1.42(cm)9m。M2) 封头壁厚计算选用15mm厚(0Cr18Ni9Ti)不锈钢板制作。直径4.5m,厚15mm,筒高=nDHSp=3.14x4.5x9xl5xl0-3x7.85xl03=14974(kg)筒S= pD +C (cm)2( od-P式中 P=0.4MPa D=450cmo=113MPa 申=0.7 C=0.08+0.2+0.1=0.38

42、S= 0.4 % 450 +0.382 x 113 x 0.7 x 0.4=15.2(cm)查钢材手册圆整为 16cm7. 接管直径和长度的确定:排料管(通风管)按排料管计算,该罐实际装罐量为102.4m3,设两小时内排空,贝幽料体积流量:102.14Q=0.0142(m3/s)3600 x 2发酵醪流速 为 v=1m/s ;贝 物 料 管 截 面 积 为 A :A 物物Q 0.0142=0.0142(m2)v1S =0.785d2fd瓦0.785 = 0.0142/0.785 =0.134(m) 排排按通风管计算,压缩空气在0.4MPa下,在常温20C, 0.1MPa的情况下通 风比为0.1

43、8vvm,现折算到4MPa、37C状态,取风速Q1=25m/soQ=102.14x0.18=18.39(m3/min)=0.31(m3/s)利 用 气 态 方 程 式 计 算 工 作 状 态 下 的 风 量 QA:0.1273 + 37Q.=0.31x x=0.082(m3/s)A 0.4273 + 20风管截面积Sa: Sa=牛二罟如10-3)dA=、0.00328/0.785 =0.065(m)故取d=0.134(m),选择管径为申135x40 (mm)8. 支座选择对于大型发酵罐,选择裙式支座。6.2 种子罐6.2.1 种子罐的选型:采用机械搅拌通风发酵罐。6.2.2 种子罐容积和数量的

44、其确定:1. 种子罐容积的确定:接种量按 1%计算,则种子罐容积 V 为:种V =V x1%=168.49x1%=1.68m3种总式中 V总一发酵罐总容积(m3)2. 种子罐个数的确定:种子罐周期16h,故只需一个。3. 主要尺寸的确定:种子罐仍采用几何相似的机械搅拌通风发酵罐H:D=2:1, 则种子罐容积 V =2V +V ,简化计算方程式如下:总封 筒, nnV =_D3+ D3=1.68m3 总212D=0.97m圆整到推荐的系列尺寸,取D=1m,则H=2D=2(m)。查相应的封头高 H =250+25=275(mm)封罐总体高 H : H =2H +H =2x275+2000=2550

45、(mm)罐罐封筒单个封头的容量: V =0.15(m3)封封头表面积: S =1.16m2封圆筒容量:V =0.785D2x2D=0.785x12x2=1.57(m3)筒不计上封头容积:V = V +V =2x0.15+1.57=1.87(m3)1.68m3,可有效封 筒满足设计要求。4. 冷却面积的计算:当罐的容积VA,故满足要求。实6) 设备材料选择:不锈钢(0Cr18Ni9Ti)7) 壁厚计算:对于带夹套的容器应按外压容器计算壁厚。考虑大冷却水压力与容器内的压力有不同时存在的情况,取水压作为容器外压。i. 夹套内罐的壁厚:S PD 内 +C2( 0P设计压力,与水压有关,P=0.4MPa

46、C 壁厚附加量,C=C1+C2+C3=0.5+0+0=0.5(mm)申一焊缝系数,取0.7D 发酵罐直径, 100(mm)内一许用应力,取137MPa+0.5=0.71(cm)=8(mm)0.4 x 100S=2 x 137 x 0.7ii. 封头的厚度8 :封对于上封头 8 =6mm封对于下封头 8 =8mm封iii. 冷却外套壁厚 8:套封夹套直径与筒体直径的关系为:D =D +100=1100(mm) 夹内查表得8 =4mm。夹套内有导流板。 套iv. 外套封头壁厚 8: 8 =6mm套封 套封5. 设备结构与工艺设计1)挡板:根据全挡板条件,兰-Z=0.5D式中 B 挡板宽度 B=0.

47、1D=0.1x1000=100(mm)D 罐径 D=1000mmZ挡板数:Z=0.5 D =0.5x=5 块,取 Z=6 块 B 1002) 搅拌器:种子罐仍采用六弯叶涡轮搅拌器。比例尺寸如下直径 Di=0.35D=0.35x1000=350mm 叶片宽度 h=0.2Di=0.2x350=70mm 弧长 r=0.375Di=131.3mm盘径 9=0.75Di=0.75x350=262.5mm叶旋长 l=0.25Di=87.5mm 搅拌器间距 Y=D=350mm底距 b= =150mm3搅拌器转速 比=叫(#)2/3=470(2112)2/3=220r/min350两档搅拌。搅拌功率为:3)

48、进风管(进出料管):该管为物料与通风共用,管底距罐底 30mm。按通风管设计:设罐压为0.4MPa,发酵温度t=32C,风速 v=20m/s,通风量为Q=0.18vvm,常压下t0=2OC,送风量V为:V=1.O2xO.18=O.18(m3/min)将通风换算成工作状态,求通风管直径 d1:273 +1273 +1O =.0.18 x 巴 x 岂I 0.4 2930.785 x v x 600.785 x 20 x 60=7.1(mm)按输送物料算:20min送完1.0214m3物料,则物料流量为V = 1.0214物 20 x 60=8.51x10-4m3/sVA=物 =v8.51 x 10

49、40.5=0.0017(m2)In 0017取水流速为v=1m/s,g=:话=47(mm)故取申57x3.5(mm)4)冷却水管由于所需冷却热量Qmax=2.56x104kJ/h,冷却水水温变化max23C27C,水的比热容 cw=1x4.18kJ/(kg .C).则耗水量 W 为:设水流速=1531(kg/h)w= Q = 2.56 x104c (t -1 )4.18(27 - 23)w 2 1=0.42x10-3(m3/s)v=1m/s ; 则 冷 却 管 直 径 为h04船=0.023(m)=23(mm),查金属材料表,取焊接管D申32x3.5(mm)取冷却水管接管长度为100mm。 g

50、6. 支座选择 选用支撑式支座。6.3 空气分过滤器6.3.1 种子罐分过滤器1. 分过滤器过滤层直径的计算:nvD =(m)滤层i n v式中 v 通过分过滤器的空气(在0.4MPa)流量(m3/s)0 1273 + 371V=1.0214x0.18x xx=0.00081(m3/s)0.429360vs 通过分过滤器的气速,现取vs =0.2m/s代入上式。D = :4%.0008l =72(mm)取 D =75(mm) 滤层3.14 x 0.2滤层 丿2. 分过滤器直径的计算:取 D =1.3D 。则 D=1.3x75=97.5(mm),圆整后取 D =100mm过滤器滤层过滤器过滤器3

51、. 分过滤器强度的计算:取 P =0.4xl.25=0.5MPa 申=0.7:设计0=137.2MPa C=0.5(mm),则分过滤器厚度S为:PD0.5x1000S=内 +C=+0.5=0.76(mm)2。 - P2 x 137.2 x 0.705取 S=2mm。4. 进出气管:与种子罐进出气管相配合,取申57x3.5(mm)。5. 数量:一个种子罐,所以配一个分过滤器。6. 滤层厚度:使用经树脂处理过的滤纸 5-6 层,夹持在两花板中。花板孔申8m m,孔间距14mm,开孔率40%左右。为了加强滤纸耐用性,可在纸层 两侧加金属丝网。7. 分过滤器的高度:一般取筒体部分高度为直径尺寸的1.1

52、-1.5倍:现取 h =D x1.5=100x1.5=150(mm)筒 过滤器6.3.2发酵罐分过滤器1. 分过滤器滤层直径的计算:,r4D =(m)滤层 n v1 s式中 v 通过分过滤器的空气(在0.4MPa)流量(m3/s)0 1273 + 371V=102.14x0.18x xx=0.081(m3/s)0.429360vs 通过分过滤器的气速,现取vs =0.2m/s代入上式。D = J4x 0.00081 =0.72(m)取 D =0.75(m)滤层 3.14 x 0.2滤层2. 分过滤器直径:D =1.3D=1.3x0.75=0.975(m)过滤器 滤层查金属材料表,选无缝钢板。圆

53、整到推荐值:D =1000(mm)o过滤器3. 分过滤器的壁厚:设计压力为 0.5MPac PD, c 0.5 X1000 cur-、S=内 +C=+0.5=7.6(mm)2。 - P2 x 137.2 x 0.705取 S=8mm。4. 进出气管:进出气管直径可取与设备通风管一致,即5. 数量:分过滤器与发酵罐相配合,每罐一个,共需 2台。6. 滤层厚度:同种子罐,分过滤器 5-6 层超细玻璃纤维滤纸,经树脂处理过 使用。7. 分过滤器高度:比例参数同种子罐分过滤器。h =1.5xD=1.5x1000=1500(mm)筒 过滤器h 锥 J5过滤器=1.5x1000=1500(mm)6.4 连

54、续操作设备的设计选型 灭菌流程:连消塔喷淋冷却流程。该流程主要由连消塔、螺旋板换热器、 维持罐、喷淋冷却组成。利用热发酵液预热冷发酵液,以节省热量。6.4.1 连消塔1. 连消塔的选型 选喷孔型。2. 生产能力、数量和容积的确定1) 生产能力:8h处理102.14m3的发酵液,该发酵液的密度为1.05t/m3。 数量:一套。2) 主要尺寸及接管的计算3. 灭菌是假的确定:灭菌时间的确定可用阿伦里乌斯方程计算得经验值,一 般取10mi n。培养基在连消塔中的停留时间取10s。4. 连消塔的长度:现取培养基流速v=0.3m/s,在连消塔内的滞留时间t=10s; 则连消塔长度 L:L=vt=0.3x10=3(m)5. 连消蒸汽耗量:设8h处理一罐发酵液,则质量流量G为:糖G 糖=102.4;1.05 =13.4(t/h)=13406(kg/h)发酵液固形物含量x=10.4%,则比热容Cp为:c =xBc B=(100-10.4)% x4.18+10.4%x1.55p B p ,B=3.75+0.16=3.91kg/(kg .C)连消终温取t2=115C,预热温度取70C,加热蒸汽P=0.42MPa,相应饱和蒸汽温度145C,干饱和蒸汽热焓九=654.3x4.18kJ/kg,比容v”=0.45m3

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!