毕业设计(论文)全差分高增益、宽带宽cmos运算跨导放大器的设计

上传人:r****d 文档编号:163647394 上传时间:2022-10-22 格式:DOC 页数:37 大小:601KB
收藏 版权申诉 举报 下载
毕业设计(论文)全差分高增益、宽带宽cmos运算跨导放大器的设计_第1页
第1页 / 共37页
毕业设计(论文)全差分高增益、宽带宽cmos运算跨导放大器的设计_第2页
第2页 / 共37页
毕业设计(论文)全差分高增益、宽带宽cmos运算跨导放大器的设计_第3页
第3页 / 共37页
资源描述:

《毕业设计(论文)全差分高增益、宽带宽cmos运算跨导放大器的设计》由会员分享,可在线阅读,更多相关《毕业设计(论文)全差分高增益、宽带宽cmos运算跨导放大器的设计(37页珍藏版)》请在装配图网上搜索。

1、目 录1 引言12 软件介绍33 运算放大器设计基础5566784 系统总体设计10104.2 主放大电路设计114.3 偏置电路的设计134.4 输出级的设计134.5 共模反馈的设计144.6 总体布局155 仿真与分析171719 1920216 版图设计与分析226.1 L-Edit介绍2222236.3.1 NMOS版图设计236.3.2 电容电阻版图设计2426262727286.5 LVS版图比对297 结论31谢 辞32参考文献33附录134附录2361 引言集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多个CMOS管与电容

2、电阻通过耦合方式实现提高增益的模拟集成电路1。集成运放具有增益高、输入阻抗大、输出阻抗低、共模抑制比高和失调与漂移性小等优点,而且当输入电压值为零时,输出值也为零。集成运放是构成常用集成电路系统的通用模块2 3。自从1964年美国仙童公司研制出第一个单片集成运算放大器A702以来,集成运算放大器得到了广泛的应用。目前集成运放已成为集成电路中品种和数量最多的一类4。其发展速度相当之快。其发展先后经历了小规模IC(Integrated Circuit),中规模IC,大规模IC,超大规模IC和特大规模IC五个不同的阶段。随着运放种类的增多,集成电路的制造工艺也发展到了一个全新的阶段。基本的制造工艺有

3、以下几种:单晶硅和多晶硅、氧化工艺、掺杂工艺、掩膜的制版工艺、光刻工艺和金属化工艺等5。目前的半导体集成电路产品种类日益丰富,电子科学技术的应用已经渗入到社会生活的各个领域,很大程度上影响和改善着人们的生活6。人们对性能的要求也越来越高,譬如A/D及D/A转换器、有源滤波器、锁相环电路、模拟乘法器和精密比较器等电路中均需要采用高增益宽宽带的集成运算放大器。同时随着多媒体和通讯技术的迅猛发展,高增益宽带运算放大器在蓝牙技术、高精密测量仪器、图像放大器、信号处理系统和音频功放系统等方面的应用越来越广泛。由于运放的性能直接影响着整个电路的动态范围和高频领域的应用,因此研制具有良好性能的高增益宽带集成

4、运放对满足低功耗、宽频带等通信技术及其它高速模拟信号处理应用有重要的实用价值7。这些都对设计和生产带来了很大的压力和动力,也是一个很迫切需要解决的问题。随着集成运放种类和数量的日益增多,集成电路的制造工艺也得到了较快地发展。制造集成电路的主要工艺分为两种:双极型集成运放和CMOS集成运放。双极型集成运放技术发展的时间较长,到目前为止技术相对较为成熟,应用也比较广泛,具有较快的速度和较高的增益,但是这种电路结构在功耗和带宽方面的性能就不尽如人意8。随着CMOS集成电路技术的不断发展与进步,设计者开始尝试利用CMOS技术来设计高性能的集成运放,尤其是一些高精尖的精密仪器设备。CMOS运放电路在开环

5、增益、失调电压、速度等方面得性能与双极性晶体管相比稍微差一点,但是CMOS运放电路具有十分大的输入电压范围和输出摆幅,并且在输入阻抗和静态功耗等方面有着巨大的优越性。不仅如此,CMOS集成运放所占用的芯片面积连普通双极性集成运放电路的一半都不到。因此,CMOS集成运放在现代集成电路设计中占有的比重越来越大9 10。目前常见的集成运放有三种结构:简单的全差分结构、套筒式共源共栅结构和折叠共源共栅结构等。第一种简单的全差分结构优点是输出范围较大,缺点是幅频特性较差,直流增益较小,精度不高,功耗较大,电源抑制比和共模抑制比差,因此设计者一般不采用这种方法来设计精度较高的电路。第二种套筒式共源共栅结构

6、优点是具有很宽的带宽,运算速度很快,增益也很高,电路噪声和功耗都很低,缺点是电路的输出信号范围很小,并且共模输入范围也较窄,因此这种方法目前部分设计者采用。第三种折叠共源共栅结构优点是电路输出信号范围较大,由于输入信号和输出信号可以短接因而共模电平很容易确定,缺点是牺牲了电路的功耗和噪声等特性,因此这种电路目前也有很多设计者采用11。综合以上三种集成运放结构性能的优劣以及各种性能之间的折衷,本设计输入级选择折叠式共源共栅结构,因为它具有最快的速度和最大的增益,但单级折叠式结构虽然具有较高的增益但是还是不能完全满足设计要求,该结构输出摆幅较大,在考虑到继续进行放大的同时具有较好的输出摆幅和频率特

7、性,因此将以共源级作为输出级。与单级结构相比,两级结构将会增大功耗,降低速度,需要提出或采取相应措施解决这些问题12。本文提出了全差分、高增益和宽带宽的CMOS运算跨导放大器的设计。第一部分引言主要介绍了运算放大器的发展历程以及发展现状,国内对运算放大器的研究成果,以及运算放大器的未来的发展方向;第二部分介绍了设计集成运放所需要的软件Tanner软件和第三部分主要介绍集成运放的各种设计性能指标以及各种集成运放电路结构优劣的对比以及设计结构的选取;第四部分提出了折叠式共源共栅运算放大电路总体设计方案以及电路模块化设计;第五部分在0.13umCMOS工艺下采用T-Spice软件对全差分运算放大器电

8、路进行了直流增益、单位增益带宽、相位裕量、增益裕量、电源抑制比等电路参数进行了仿真与模拟分析;第六部分为版图设计的具体介绍,其中包括相关的设计规则,把简单的器件进行了详细的版图的设计;最后一部分为设计总结以及未来改进的方向。2 软件介绍本设计中集成运放的设计采用0.13um CMOS 工艺,设计采用Tanner EDA集成电路设计软件完成电路结构设计仿真、版图设计和LVS比对。Tanner EDA集成电路设计软件是由美国加州Tanner Research 公司开发的集成电路设计工具,该工具基于Windows平台,功能十分强大,很容易学习。Tanner EDA设计软件共包括五部分,分别为:S-E

9、dit,T-Spice,W-Edit,L-Edit和LVS,从电路设计、分析模拟到电路布局一应俱全。其中应用最广泛的是L-Edit版图设计软件,该软件在国内的版图设计软件中具有很大的优势,也是设计者们争相追逐的简单易用版图设计软件之一。Tanner EDA中的各软件的主要功能如表2-1 所示。表2-1 Tanner各软件主要功能软件 功能S-Edit编辑电路图T-Spice电路分析与模拟W-Edit显示T-Spice模拟结果L-Edit编辑布局图、自动配置与绕线、设计规则检查、截面观察、电路转换LVS电路图与布局图结果对比Tanner EDA的设计流程可以用图2-1来表示。具体设计流程大概为:

10、首先,根据设计需要把搭建电路模块,模块搭建是在S Edit中 编辑出来的。搭建完成之后根据已知公式与参数进行宽长比的修改,进行电路的性能优化,电路修改完毕之后将该电路图输出成SPICE文件。接下来用到了仿真模拟软件T-Spice,利用T-Spice输入相应命令,对电路图模拟并输出成SPICE文件,如果模拟结果有错误,回到S-Edit 检查电路图,如果T-Spice 模拟结果无误,则开始利用L-Edit 对电路进行版图的设计。用L-Edit 进行整体版图布局与连接,在版图设计中要使用DRC 功能做设计规则的检查,如果设计违反规则,说明版图设计中存在错误,需要返回L-Edit进行修改直到设计规则检

11、查没有错误为止。然后将通过验证的版图转化成SPICE文件,再利用T-Spice模拟,模拟过程中如果存在错误,还需要对版图进行修改,知道输出结果和电路原理图仿真结果一样之后才算完成。最后利用LVS将电路图输出的SPICE文件与版图转化的SPICE文件进行对比,若对比结果不相等,则回去修正L-Edit或S-Edit的图。直到验证无误为止,这样软件的设计就算完成了。之后把版图生成的文件送到工厂,由工厂负责加工批量生产 3。图2-1 Tanner设计流程图3 运算放大器设计基础1. 直流增益 运算放大器的直流增益是设计运放过程中最重要的一个性能指标。因为我们设计的目的就是要进行放大,因此直流增益尤为重

12、要。电路的直流增益即电路的放大倍数,计算公式为: (3-1)2单位增益带宽单位增益带宽是运算放大器的单位增益为1时单位增益带宽。这也有着一些条件:反馈网络中不能包含频率分量,而且在单位增益带宽频率范围内只能包含一个极点。在电路设计仿真过程中,在增益的幅频特性曲线中可以直接观察得到单位增益带宽。3. 功耗由于越来越多运算放大电路应用于便携式设备以及电池电源供电,电路的功耗就值得关注了。特别是现在的笔记本电脑,由于发热以及工作时间等问题,对电脑性能有一定的影响,也对使用者引起一些不方便。所以减小功耗能够使得系统更加精简,也使得电源的寿命更长久,而且也能使得芯片在一个适当的温度下工作。4. 噪声与失

13、调运放的输入噪声和失调确定了能被合理处理的最小信号电平。在常用的运放电路中,许多器件由于必须用大的尺寸或大的偏置电流都会引起噪声和失调。噪声与功耗速度和线性度之间是相互制约,是一个重要的参数。5. 输出摆幅输出摆幅即输出信号的幅度范围。现在使用运放的系统要求大的电压摆幅以适应大范围的信号值。例如,能响应管弦乐队音乐的高质量的话筒可以产生的瞬时电压范围大于四个数量级。所以对大摆幅的需求使全差分的运放使用相当普遍。但是,由于对于运算放大电路,最大的电压摆幅与器件尺寸、偏置电流、速度之间,其性能指标是相互制约、可以互换的。这对于运放设计而言,大的摆幅是一个很重要的课题。6. 转换速率与建立时间转换速

14、率是测量输出信号的最大斜率变化的量,其定义为放大电路在闭环状态下,输出为大信号时,放大电路输出电压对时间的最大变化率。转换速率反映了运放的大信号瞬态特性。对于任意波形的信号,如果其最大变化速率小于运放的转换速率,运放就能无失真地输出相应波形。建立时间即当运放闭环负反馈结构时,在限定输出负载并输入阶跃信号的条件下,将输出电压从输入信号阶跃时起至输出电压上升到稳定值的误差容限内所需的时间。7. 相位裕度相位裕度也是集成运放设计中的一个重要性能指标,主要是用来衡量反馈系统的稳定性。一般情况下,运算放大器的相位裕度要求不低于45度,在Tanner中可以直接输出相位特性。8. 线性开环运放有很大的非线性

15、,非线性问题可以通过两种办法解决一种是采用全差动实现方式以抑制偶次项谐波:另一种提供足够高的开环增益以使闭环反馈系统达到所要求的线性。9. 输入阻抗运放输入阻抗系由运放两输入端向运放方向视入的交流电阻。运放输入阻抗受制于输入级的结构和工艺的不同而不同。输入阻抗的大小,直接影响到运放输入级接收差模输入激励信号的比例。电压放大器,输入阻抗越大越好。10. 输出阻抗开环条件下,将输入端短路,运放输出端视为等效电压源时所得到的电阻,即运放的等效输出阻抗。理想情况下,运放输出阻抗为0。在开环结构中,运放的输出端接一个负载电阻便可以测输出电阻。11. 电源抑制比在实际设计中应用中,电源引入的噪声对电路性能

16、影响很大,为了有效抑制电路中电源噪声对设计的影响引入了电源抑制比的设计指标。噪声主要体现在运算放大器输出端,因此运算放大器输入到输出的增益除以电源到输出的增益定义为电源抑制比10。集成运放的主流设计结构主要有简单的全差分结构、套筒式共源共栅结构和折叠式共源共栅运放三种形式。各种设计结构各有优劣,本节将各种设计结构的性能优劣进行比较得出本设计所采用的设计结构。普通电路的设计通常采用双端输入单端输出结构,全差分运算放大器采用双端输入双端输出设计结构,比单端输出具有更宽的输出信号范围,其结构其应用范围更广,性能更优。单端输出运放结构的反馈电路,它的输出摆幅为Vmax-Vmin,如图3-3。双端输出的

17、运放结构输出的电压Vo的值是Vo2-Vo1,由此可见,差分电路的输出摆幅是单端输出的两倍,如图3-4。图3-3 单端输出运算放大器图3-4差分输出运算放大器套筒式共源共栅放大器结构是一个双端输入,双端输出的筒式结构运算放大器。跟基本的差分运算放大器相比较,就是在其简单的放大器基础之上把单个的MOS管替换成共源共栅结构以后得到的,电路结构如图3-1所示。套筒式共源共栅放大器结构的优点是:套筒式结构简单,处理速度较快。由于套筒式共源共栅放大器结构只有一条电流支路,因此该结构具有极低的功耗。但是该结构也有着一定的缺陷:由于输入级信号范围的限制使得输入的共模信号受到了较大的限制,并且电路的输出信号范围

18、也受到限制,从而导致电路的放大倍数受到限制,因此要得到较大的电路放大倍数就必须以降低信号的输入范围和输出信号范围为代价。 图3-1套筒式共源共栅拓扑图为了解决套筒式结构中信号的输入范围和输出信号范围限制的缺陷,设计者们提出了一种折叠式共源共栅的电路结构。由于PMOS管具有较高的输入阻抗,使得电路的输入信号范围和输出信号范围有很大地提高,折叠式共源共栅电路结构如图3-2所示。图3-2折叠共源共栅拓扑图折叠式共源共栅结构虽然使得电路的输入信号范围和输出信号范围有很大地提高,但是由于在原有电路结构增加了折叠式结构的MOS管构成了并联结构的共栅管,使得电路的增益降低、噪声影响变大。对以上三种结构的集成

19、运放结构各种性能指标进行比对,结果如表3-1所示:表3-1三种结构对比运放结构增益输出摆幅速度功耗噪声套筒式中中高低低折叠式中中高中中全差分式高中中高中表3-1所示的性能指标是基于理想集成运放来测试的,在实际应用中,实际集成运放和理想运放有一定的区别,要想使集成运放电路各方面最优化的性能指标是不可能实现的,总要舍弃其中的一些指标来满足设计的主要要求,各个性能指标之间的关系如图3-6所示5 6。噪声线性功耗增益输入、输出阻抗 速率电源电压电压摆幅图3-6模拟电路设计八边形法则4 系统总体设计本设计提出了一种全差分高增益、宽带宽CMOS运算跨导放大器的设计方案。设计CMOS工艺库对CMOS集成运算

20、放大器进行电路设计、性能分析以及版图设计。该集成运算放大器采用级联折叠式共源共栅结构,采用附加增益提高电路使得电路增益得到了级大地提高并且获得了较好的电路频率特性。本章主要对集成运算放大器进行整体设计和各个模块电路结构设计。CMOS运算跨导放大器的设计整体框图如图4-1所示,整个系统由五部分组成:差分输入模块、补偿电路模块、输出缓冲模块、偏置电路模块和高增益模块组成。整个设计主要工作原理是输入差分信号经过增益放大级,在偏置电路的作用下,结合补偿电路实现电路的放大作用,最后由输出缓冲级输出,从而较好的控制输出摆幅,获得较宽的带宽。补偿电路高增益级差分输入偏置电路输出缓冲图4-1系统框图图4-1所

21、示中第一级为CMOS运算跨导放大器的输入级差分输入模块,输入级主要作用将输入信号进行放大作用,并且该电路模块具有较高的输入阻抗可以提高后级负载驱动能力。由于本设计采用的是CMOS工艺,MOS管的栅极只有极微小的漏电流,可以保证电路具有很高的输入阻抗,从而满足设计要求。第二级为CMOS运算跨导放大器的中间级高增益模块,中间级的作用主要是将经过第一级差分输入模块放大的信号进行进一步地放大,使得电路的增益得到更大地提升。第三级为CMOS运算跨导放大器的输出级输出缓冲模块,输出级的作用主要是使得CMOS运算跨导放大器具有平稳的共模输出电平,因此需要该电路具有较高的输出阻抗。补偿电路模块的主要作用是通过

22、加上适当的反馈网络从而改变CMOS运算跨导放大器的开环特性,使得该集成运放在闭环条件下能够稳定地工作,而不会产生振荡。偏置电路模块的作用是为各个电路模块提供合适的偏置电压,使得电路具有稳定的性能。4.2 主放大电路设计主放大电路的设计包括差分输入模块和高增益模块。由于本设计要求开环增益为100dB,由于折叠式共源共栅运算放大器输出摆幅相对较高一点,并且在闭环状态下还能应用,因此具有很好的应用范围,因此输入结构选择了折叠式共源共栅结构,由于一级折叠共源共栅结构放大倍数大约在40-50dB左右,很明显一级放大效果不能满足设计要求,因此我们考虑使用两级级联的设计结构,两极的级联结构设计能很好的达到增

23、益的提升效果,以提供所需的设计增益。共模输入电源输入范围在0-2.4V,电源电压为0-3.3V。由于在同等的设计条件下,P管的跨导约为N管跨导的2.5倍,因此选择P管作为电路的差分对管作为输入端,主电路的设计如图4-2所示。图4-2主电路模块如图4-2所示,电路中M1、M2为两个PMOS差分对输入管,采用PMOS管作为输入管是由于PMOS管具有很高的的输入阻抗,两个PMOS管的漏极分别连接与M3、M4的源级相连,M1、M2与M3、M4共同构成了折叠式的差分输入电路模块;M5和M6两个NMOS管一起构成了运放电路的两条支路偏置电流源;M7、M8、M9、M10共同构成了主电路的部分,M0是尾电流源

24、,采用了一个PMOS管,产生的电流流入M1、M2的源级,输入信号加入输入级后就会正常工作。Vbias1、Vbias2、Vbias3是偏置电压,其作用是保证各个管子导通之后产生相应的漏极电流,因为只有合适的漏极电流各个管子才会正常工作,并且产生相应的输出。Vbias1、Vbias2、Vbias3是由偏置模块提供。运放的增益表达式为: (4-1)式中的Au为增益,Gm为M1、M2的等效跨导,Rout为输出阻抗。由此表达式可以看出来,这种结构能够实现放大的作用。漏极电流Id需要满足下面公式: (4-2) 式中,u为载流子迁移率,C为电容,Vds、Vgs和Vth分别为漏极电压、栅极电压、阈值电压W/L

25、为管子宽长比。根据计算得到各个管子所需要的漏极电流。主电路的设计采用的是两级级联的结构,其原理如下:第一级差分放大电路是采用两个PMOS管作为差分输入管的折叠式共源共栅结构,PMOS管的使用可以大大提高运放的增益,与普通全差分结构和套筒式结构相比,折叠式共源共栅结构的使用能够使设计得到一个比较合理的设计效果。在提高集成运放电路增益的同时,电路设计还需要考虑噪声对电路性能的影响,采用对称式的管子结构可以将电路的输出噪声影响降低到最小。对于集成运放来说,电路的电源抑制比也是影响电路性能的一个重要因素,第一级的结构能够产生较高的电路增益,电路噪声的提高会使得电源抑制比也会提高,需要通过理论计算从而合

26、理设计管子的宽长比,减小电源抑制比。折叠式结构功耗也相对较大,与其良好的输出摆幅相比还是可以接受的。第二级采用共源级,这样输出阻抗会符合设计的要求,与此同时还需要考虑输出摆幅的影响,共源级的设计会有较高的输出摆幅。因此,选择确定了共源级结构。4.3 偏置电路的设计偏置电路结构简单可行,该电路的主要作用是通过设计各个管子宽长比来产生不同的偏置电压。其中Iref作用是为整个电路提供参考基准电流,使得产生三个偏置电压,从而对主电路提供合适的偏置电压。偏置电路的模块如图4-3所示。图4-3偏置模块图4-3中M16管的漏极与偏置电流源Iref相连,M16管与M13管构成镜像电流源的结构,基准电流Iref

27、通过镜像结构把Iref按M16管宽长比的比例镜像到M13管,在M13管的漏极产生一个与基准电流成比例的电流。M16管和M13管的栅极与偏置电流源Iref相连,从而产生了偏置电压Vbias3;M14管的栅极与电阻R2上端相连一起构成输出偏置电压Vbias1,电流流过R2下端与M15管栅极相连一起构成输出偏置电压Vbias2。偏置模块的设计主要就是设计各个管子的宽长比,根据主电路中各个模块电压的需求产生合适的电压。本偏执模块的基准电流源的选取10uA电流源,M13-M16宽长比经过计算如下:M13(W/L)=9,M14(W/L)=2/3,M15(W/L)=2,M16(W/L)=10.5。4.4 输

28、出级的设计输出级可以采用电流源负载的共源极输出,这种电路结构在负载上的电压不是紧随其负载阻抗变化而变化的。如图4-4所示为本文实际采用的PMOS管输入的电流源负载共源输出级,能很好地满足输出摆幅的要求。图4-4输出级设计模块这种结构是反相器的结构,由于电路的输出摆幅要求在0-3.3V,因此输出级采用电流源做负载的共源级设计,其中,PMOS管M11作为输入管,可以将前级输出信号的电路增益进一步提高,以达到本设计的设计要求,因此M11管的宽长比相对较大一些。NMOS管M12作为电流源负载,Vbias2偏置电压由偏置电路提供,c为前级主电路的输出信号。输出级所能达到的增益计算公式为: Av2=GmR

29、out (4-3)其中,Gm为M11管子的跨导,Rout是晶体管M11和晶体管M12的输出阻抗并联的值。输出摆幅为: Vpp=Vdd-(Vgs11-Vth11)-(Vgs12-Vth12) (4-4)由式4-4可以得出,这种结构的安排能够提供主电路达不到的增益部分的要求,同时还能达到较大的输出摆幅。4.5 共模反馈的设计共模反馈电路是集成运放电路的一个重要的模块,其主要作用是使得集成运放能够工作在线性区,并且能够保证较好的输出电压特性。本设计中共模反馈电路的设计结构简单,性能较好,采用的是米勒补偿电容和补偿电阻串联的结构。共模反馈电路结构如图4-5所示。图4-5反馈电路结构 本设计的主电路采用

30、的是折叠式共源共栅结构,该结构将主电路的输出节点作为共模反馈电路的主极点,因此在本设计电路中采用米勒补偿电容使得主极点向低频范围移动,非主极点向高频范围移动,从而实现主极点和非主极点这两种极点的分离。补偿电阻的作用是抑制电路的温度漂移从而实现放大电路的零温漂,主极点的频率可由式4-5计算得到。 (4-5)非主极点频率可由式4-6计算得到。 (4-6)4.6 总体布局本设计总体布局思路是:首先分别搭建电路中的每一个独立模块,并且进行相应的电路参数计算和仿真,经过多次修改参数得到最优结果;然后将独立模块进行封装得到电路符号图;最后在总体电路顶层设计文件中把每一个独立电路模块调用出来,进行最后的搭建

31、,布局连线,生成最终的电路结构,添加仿真命令,进行整体电路的仿真与调试,总体电路结构图如图4-5所示。在设计的每一个独立模块中没有添加电源,在最后电路图中添加了电源。因此不会出现电源混乱的状态,单独模块仿真时候需要加上3.3V电压源。到此,电路的整体结构基本完成,还需要一些参数的微调。、R1=2K、R2=47K。电容Cm=1pF、C1=5pF,Iref为10A的电流源,在仿真时输入信号为1V的交流差分信号,根据电路增益的计算公式,输出信号值即为电路的增益。图4-5 总体结构电路图5 仿真与分析本设计采用0.13umCMOS工艺,利用T-Spice软件输入不同的命令对运算放大器的直流和交流特性、

32、噪声特性、电源抑制比和功耗等特性进行模拟和仿真,并且对仿真结果进行分析。运放的输入端是差分输入,在电路设计中在输入端加入交流正弦信号,输入信号幅度为1V,因为增益是输出与输入的比值,因此输出之后的就是增益。输入信号瞬态仿真图如图5-1所示。图5-1差分输入波形由上图可以看出输入的信号幅值为1V,输入信号的频率为100kHz,两个输入信号为差分共模信号,本设计在输入端添加Vin1加上一个0.8V的直流信号,目的是为了达到更好输入效果。这样的输入信号设计能很容易的识别交流小信号,能较好的抵抗外部电磁干扰,还能提高稳定性。运放的开环增益是电路在没有反馈情况下的电路增益,闭环增益是电路在加入反馈之后电

33、路的增益。运放的增益要求在不损坏其他性能的基础之上越高越好,本设计要求设计的增益为100dB。在输入端加入小信号之后,通过T-Spice进行添加.ac命令,输出交流仿真结果。输出图中能直接观察到电压的最终增益和输出的相位曲线,通过对曲线的观察分析,确定结果是否符合设计要求,仿真输出如图5-2所示。图5-2直流增益与输出相位根据图5-2仿真结果可以看出电路设计的增益在100dB左右,输出的相位裕度为80度左右,输出结果基本符合设计要求的,因此设计的电路结构较为合理可行。在模拟分析电压增益和相位裕度之后,还需要对电路的功耗进行进一步分析。因为功耗的大小直接关系到真个电路是否能够投入生产使用。因此,

34、电路的功耗也是必须严格控制的一个环节,电路功耗过大不仅会造成资源的浪费,对管子的使用寿命也会产生十分重要的影响,会大大减短使用寿命。本设计要求功耗为2mV。仿真通过输入功耗指令可以得到本设计的功耗情况,输出功耗仿真如图5-3所示。图5-3功耗由图5-3中可以看出纵轴为输出的功耗,通过观察输出功耗为2.1mW左右。折叠式共源共栅的电路结构本身就会有较大的功耗,观察对比发现这样的功耗能满足设计要求。噪声特性是整体设计性能中最重要的一个指标,噪声特性的效果直接影响最后运算放大器的性能好坏,这也是集成设计电路的一个重要指标。在运算放大器的输出端产生了较大的噪声。本设计在Tanner EDA软件中,通过

35、.noise命令语句对放大电路进行噪声特性的分析。具体分析噪声曲线如图5-4所示。图5-4放大器噪声分析从图5-4中可以看出模拟结果的输出电压的噪声大概在20dB左右,实际电压噪声只有11dB。相对来说,输出电压噪声相对较大,对电路产生了一定的影响。但是在设计过程中也是尽量避免,以免产生较大的误差。电源抑制比电源抑制比(PSRR)是指输入变化与输出变化之间的比值,常用分贝表示。电源抑制比也是主要针对运算放大器的一种失衡量。它反映的是电源电压在电路中出现变化时产生失衡电压的变化量。目前放大器越来越趋向于低功耗的设计,对于供电电源的要求也越来越高。计算电源抑制比的基本公式为: (5-1) 从上式可

36、以看出,影响电路输出信号的除了电路本身结构之外,供电电源的影响。如果的电源电压都不稳定,那输出信号波形势必会得到较大的影响。本设计的电源抑制比仿真图形如图5-4所示。图5-4电源抑制比在本设计中输入电源幅值直接设计成1V,这样增益输出结果的倒数即为电源抑制比。本文的电源抑制比大概在70dB左右。5.4设计指标经过对设计电路一些参数的模拟仿真,最后总结一下运算放大器的各个性能指标。运算放大器的设计指标如表5-1所示。表5-1运算放大器性能指标参数名性能指标工作电压工作电流80dB压摆率5V/us根据设计指标,以及对运算放大器的电路结构分析与了解,这些设计中的指标与设计要求相差无几,这样的设计能够

37、满足日常的需求。通过参数的调整与分析,最后把这些参数进行了微调,确定了最终的参数。其中各个管子的宽长比和管子的个数进行了列表,如表5-2所示。本文所应用的管子参数全部列在上表中,其中本设计的管子采用并联的结构进行连接,确保管子宽长比达到合适的要求。表5-2放大器参数列表管子名称管子类型W/umL/um数量M0PMOS12110M1PMOS10115M2PMOS10115M3NMOS1134M4NMOS1134M5NMOS1123M6NMOS1123M7PMOS1835M8PMOS1835M9PMOS1133M10PMOS1133M11PMOS411M12NMOS1127M13PMOS912M1

38、4NMOS231M15NMOS421M16PMOS116 版图设计与分析原理图仿真结果分析正确以后,需要根据相关软件和工艺进行版图的设计。本文主要利用L-Edit进行版图设计,设计的时候需要进行规则检查,把相关参数进行带入分析,之后进行模拟仿真并分析模拟电路的一些问题。只有完成版图设计之后才可以送到厂家进行使用。在设计版图之前还需要对版图设计中需要用到的一些软件、设计规则和参数进行详细介绍。6.1 L-Edit介绍集成电路版图设计软件种类繁多,每个设计公司的版图设计软件也会稍有区别,最常见的有virtuoso、cadence以及Tanner中的L-Edit。本设计主要用到了L-Edit版图设计

39、软件,下面对L-Edit进行一下介绍。L-Edit是一款比较完整的版图设计软件,同时这个软件也拥有具有相当高的工作效率和相当高的性能,功能强大而且比较完善。不管是从集成设计到输出,以及最后的加工服务,完全可以比得上那些几百万元级别的设计软件。L-Edit软件包括许多功能诸如:集成电路编辑器、自动布线编辑器、以及DRC设计规则检查器、组件性能提取分析器、设计的布局与原理图器件进行比对LVS等许多相当实用的功能。这些功能为设计者提供了一个完整的设计与验证解决方案。这些强大的功能和可靠的软件分析系统保证了电路在运行过程中能够高效、快速完成,深受各大公司的喜爱3。版图在设计过程中需要按照固定的版图设计

40、规则进行设计,设计规则是保证工艺实现的第一个基本要求。这些规则的设定可以提示设计者在设计电路过程中存在一些错误的设计,或者识别一些人为的电路结构连接错误。对于大型的集成电路设计来说,版图设计是成千上万的元件的有机结合。有了这些设计规则的检查,设计者可以分步进行检测,确保最后的电路能够准确、高效的完成。因此这样的规则检查也是十分重要也是十分必须的。版图的规则检测主要包括三个方面的检查:电路图设计规则的检查(DRC)、电路图应用规则检查(ERC)、版图设计与原理图器件的比对(LVS)。规则检测中最重要的就是规则检查也就是电路图设计规则的检查(DRC),这种规则检查是L-Edit在进行电路版图设计过

41、程中形成的的一套固定的技术参数,这些参数通常是由设备的参数决定的,也可能是在设计过程中通过测量得到的,也是在设计中的最优选择设计值。生产厂家也会根据这样的规则设计一套相应的生产设备,负责版图的批量生产。在版图连接过程中需要时刻进行设计规则检查。一个完整有用的芯片是在没有设计规则检查错误的前提情况下才能得到的。 在进行设计规则检查过程中,如果设计不符合设计规则,那么就会出现错误提示,并且在错误的地方做出标记,并做出解释,然后需要设计人员对解释进行分析,确定电路中存在的错误,然后进行改正。直到没有错误提示之后才能进行下一步操作13 14。在画版图时首先了解各个层次,充分利用各层特性来设计实际的元器

42、件。其中导体包括各个金属层。半导体包括多晶硅、N+掺杂区、P+掺杂区和阱区。绝缘介质包括各层介质(氧化硅、氧化氮)。在本设计中应用最多的就是NMOS、PMOS、电容和电阻。因此在这详细介绍一下MOS管以及电容电阻的设计步骤。6.3.1 NMOS版图设计设计器件的时候首先要对衬底进行设计,在L-Edit版图设计界面,一般规定编辑状态下的界面就是版图设计的衬底,衬底为P型衬底。在设计过程中需要对不同层次按规定进行叠加。NMOS的截面图如图6-1所示。图6-1NMOS的截面图 开始设计之前需要进行电路版图的图层进行设置,包括最小格点设置,最小引线的设计。这样设置好之后即可进行版图的绘制工作。 在设定

43、好需要用到的参数之后开始选取图层,进行图层的布局。在左面的面板中有需要用到的不同图层。在P衬底上画出合适的N-Select,在N-Select中画出需要用到的N型有源区Active层,在画出每个层之后需要进行DRC规则检测,检查设计是否符合规则,避免不必要的麻烦。检查无误之后画出多晶硅(poly),栅极的大小由栅长和栅宽决定,画好之后也同样需要进行检查。确认无误之后,开始画源级和漏极,在源级和漏极半途设计过程中需要用到Active Contact和Poly Contact这两个接触孔。画好之后进行DRC规则检测。源级和漏极需要通过第一层金属层与各个接触孔连接,连接好之后进行规则检查。检查无误之

44、后NMOS版图就基本完成了。因为设计时候有宽长比的限制,这样设计的栅长和栅宽需要根据要求进行安比例画出。完成的NMOS版图如图6-2。图6-2NMOS版图设计PMOS的版图的设计步骤和NMOS版图设计设计步骤基本相同,只是在各层之间的叠放次序不同,按照相同的原理把PMOS的版图画出,PMOS的版图设计结果如图6-3。图6-3 PMOS版图设计6.3.2 电容电阻版图设计NMOS和PMOS画好之后开始对电容和电阻的版图进行设计。电容的表达式为: (6-1)式子中的代表的是真空中的电阻率,代表的是二氧化硅的相对介电常数,T代表栅极氧化层的厚度,W和L分别代表版图中电容的宽度和长度。它们的乘积是电容

45、的面积。电容的版图设计思路是利用多晶硅布局,覆盖整个扩散区。然后在两层导电层之间的绝缘层利用二氧化硅或者氧化多晶硅进行隔绝。电容的版图设计也是在各层进行叠加,添加过孔,在通过金属层与外界进行连接。本设计中电容版图设计图如图6-4。图6-4 电容版图设计 电阻的版图设计是最简单的,电阻的版图用到了多晶硅电阻。电阻计算公式均为: (6-2)式中,Rs代表的是电阻值的大小,L和W分别代表电阻的长和宽,Rc代表的是每一个个接触部分的电阻值的大小,n表示所有接触孔的数量。电路中的电阻对整个电路性能和稳定性有着直接的影响。为提高电阻设计过程中的准确性,在电阻版图设计过程中大部分采用 “等比例复制”的方法,

46、所谓的“等比例复制”就是按照电阻值大小把电容电阻按照实际大小进行设计。采用并联和串联的方法来实现所要求的阻值。这样,可将工艺误差控制到最小限度。本设计的电阻版图如图6-5。图6-5 电阻版图设计基本器件完成之后开始进行整体电路搭建,各器件的设计是在cell中完成的,在总体结构中只需要把它调用出来即可。由于CMOS运算放大器中有许多的MOS管,而且由于差分结构,所以大部分管子之间的匹配问题显得尤为重要。我们在设计过程中要尽量把个部分的比例设计的比较精确,这样我们的设计才会有它存在的价值。除了考虑到各种规则和技巧之外,我们还需要十分仔细的去考虑每个器件的安放是否符合要求。从而达到很好的性能。版图的

47、设计与原理图设计类似,分模块进行搭建,首先把最基本的模块搭建出来,其中包括:NMOS、PMOS、Vdd、Gnd、Input、Output、Mental-poly、电容和电阻。单个模块版图已经分别画出。主电路模块中器件比较多,各个不同管子和器件需要进行交叉布线,因此需要严格谨慎,布线过程中还要考虑到线宽要求。主电路模块版图如图6-6所示。图6-6主电路模块版图布线完成后进行DRC设计规则检查,设计规则没有错误之后在进行LVS比对,比对无误之后即可完成设计要求。实际过程还需要考虑布线问题,布线时尽量按照紧密的方式进行布线,这样才能保证厂家的生产成本。更贴近于实际应用。偏置模块的搭建与输出模块搭建一

48、样,需要把不同管子和电容电阻进行连接,通过不同金属层进行连接。偏置模块版图如图6-7所示。这个模块主要是产生主电路工作时需要的工作电压,因此这个模块的设计要保证精确,正确。设计过程中要注意,右边两个偏置电压输出时候不能使用同一层金属层,以免进行交叉相连。连接完成后也需要进行DRC规则检查,确定规则逻辑上没有错误之后进行LVS比对,比对之后需要得到两个电路完全相等。这样就完成了偏置模块电路的版图设计。图6-7偏置模块版图 输出模块的版图设计是按照原理图中这部分的设计完成的,输出模块的版图如图6-8所示。值得着重提出的是在搭建电路过程中不同的线之间不允许重叠,输入与输出通过其中Input和Ment

49、al-poly进行连接,实现了不同金属层之间的连接。设计完成之后也需要进行DRC规则检测,检查无误后说明搭建的电路在规则检查中没有问题,不存在设计上的规则错误。然后进行LVS进行比对,需要的器件在版图中与T-Spice输出netlist进行比对确定版图设计中的器件与原理图中器件具有相同的规格,参数相等,这样才能保证版图设计的合理正确。图6-6输出模块版图最后整体布局把之前单独检查过正确的模块进行金属层布线,也需要注意不能交叉,布线完成后也需要进行DRC规则检查。检查没有错误提示之后然后进行LVS比对,这样比对的结果基本上能通过。因为在单独模块版图设计中与原理图都能进行匹配。最终整体的版图设计如

50、图6-9所示。本版图设计是全差分CMOS运算放大器的设计,由于运算放大器的全差分结构,使得电路中大部分MOS管均是成对出现的,版图中设计对于对称性有着较高的要求。在进行具体版图设计的时候必须考虑到对称性以及MOS管之间匹配的要求。还有就是版图中电容电阻的设计过程中,由于电容和电阻主要是电路的补偿模块,因此电容和电阻的设计需要进行详细的分析。不仅仅是结构上的合理,而且精度上也有很高的要求。图6-9总体版图设计6.5 LVS版图比对版图比对是设计的最后一步,在完成版图设计之后需要把版图与电路原理图进行对比,对比的结果直接关系到版图设计是否符合设计要求,是不是和原理图一样能完成原理图分析中所得到的结

51、果。半途比对应用到了LVS软件,前面对该软件有过简单的介绍。只需要在LVS中添加进两个需要比对的文件,然后进行参数的设定,包括一些需要比对的器件等设置。软件设置界面如图6-10。图6-10 LVS比对设置设置完成后进行比对,比对的结果如图6-11。图6-11版图比对由图6-11可以看出比对完成后版图中的器件和原理图中设计的器件完全符合,因此可以得到版图设计符合设计要求。7 结论本文引言首先介绍了集成运算放大器的发展史和主要的应用。之后的两章分别介绍了Tanner软件以及加工的工艺流程,之后详细研究了全差分高增益、宽带宽CMOS运算跨导放大器设计的基本原理和设计方案。分析三种运放结构之后,根据需

52、要的性能指标并且针对各种结构的优缺点不同,最终确定了一种折叠式共源共栅结构级联形式的设计方案,在提高增益的同时保证了输出摆幅的设计。在设计功能实现的过程中通过修改管子宽长比的比值。最终实现了各种性能基本符合要求的设计。本设计虽然实现了运算放大器的基本功能,但是与市场上流行的运算放大器相比,仍然存在很多需要改进的地方,例如带宽明显不够,版图设计不太规范等。这些不足之处制约了本设计的广泛应用性,但是,任何系统都是由功能少、不完善的系统向功能完善的系统慢慢发展的,性能也会越来越好。未来的运算放大器会拥有良好的性能的。为了获得较高的性能价格比,设计运算放大器时也不能盲目的追求高级的复杂的方案。在满足性

53、能指标的前提下,应尽可能的采用简单方案,因为简单方案意味着元器件少、可靠性高、资源利用率高、功耗低,从而就比较经济。如果将一个成熟的电路系统用一个较简单的工具等将它完完全全的表现出来,那么它的市场前景将是很大的。参考文献1 朱臻,王涛,易婷等. 一种用于高速A/D转换器的全差分、低功耗CMOS运算跨导放大器J. 复旦学报(自然科学版).2001,2, 40(1)2 李杨先. 一种高增益CMOS全差分运算放大器的设计 J. 电子设计, 2009,123 廖裕评.Tanner Pro 集成电路设计与布局实战技术M.科学出版社, 2007,074 冯乙引. 高精度运算放大器LMC6062/6082及

54、其应用 J. 国外电子元器件,2008,125 刘丰. CMOS高性能运算放大器的分析与设计J. 兰州大学硕士学位论文,2003,16 来新泉.专用集成电路设计基础教程M. 西安电子科技出版社, 2008,107 翟艳. 低压低功耗CMOS rail to rail运算放大器设计研究 D.西安电子科技大学.2005,458 (美)韦斯特,(美)哈里斯.CMOS超大规模集成电路设计(第四版)M.电子工业出 版社, 2011,089 池宝勇.CMOS射频集成电路分析与设计M.电子工业出版社, 2011,0210 (美)拉扎维,陈桂灿等译.模拟CMOS集成电路设计 M.西安交通大学出版社, 2003

55、,0211 钟文耀,郑美珠.CMOS电路模拟与设计:基于Hspice M.科学出版社, 2007,0712(美)R.JacobBaker著,张雅丽等译.CMOS集成电路设计手册(第3版模拟电路篇)M. 人民邮电出版社, 2014,0413(美)AmirM.Sodagar著,王志华,李冬梅,杨东译.双极型与CMOS放大器分析 M. 科学出版社, 2009,1114(美)佛朗哥(Franco,S.)著,刘树棠,朱茂林,荣玫译基于运算放大器和模拟集成电 路的电路设计 M.西安交通大学出版社, 2009,0215(美)科特尔,(美)曼西尼.运算放大器权威指南(第3版)M.人民邮电出版社, 2010,1

56、016(日)内山明治,村野靖著,陈镜超译.运算放大器电路M.科学出版社, 2009,0117(日)冈村廸夫著,王玲等译.OP放大电路设计M.科学出版社, 2004,0918 曾庆贵,姜玉稀.集成电路版图设计教程M.电子工业出版社, 2012,0319 王颖.集成电路版图设计与Tanner EDA工具的使用M.西安电子科技大学出版社, 2009,0520(美)塞因特著,李伟华,孙伟锋译.集成电路版图基础:实用指南M.清华大学出版社, 2006,10附录1运算放大器Spice输出语句:* Written on May 18, 2014 at 17:00:46* Waveform probing c

57、ommands.probe.options probefilename=zht.dat+ probesdbfile=C:Users张文硕Desktopbishezht.sdb+ probetopmodule=Module0.SUBCKT pianzhi1 vbias1 vbias2 vbias3 Gnd VddM14 vbias2 vbias1 N8 Gnd NMOS L=3u W=2u AD=66p PD=24u AS=66p PS=24u M15 N8 vbias2 Gnd Gnd NMOS L=2u W=4u AD=66p PD=24u AS=66p PS=24u M13 vbias1

58、vbias3 Vdd Vdd PMOS L=1u W=18u AD=66p PD=24u AS=66p PS=24uM16 vbias3 vbias3 Vdd Vdd PMOS L=1u W=10.5u AD=66p PD=24u AS=66p PS=24uiref vbias3 Gnd 10uA.ENDS.SUBCKT shuchub c vbias2 vout Gnd VddC1 vout Gnd 5pFM12 vout vbias2 Gnd Gnd NMOS L=2u W=77u AD=66p PD=24u AS=66p PS=24u M11 vout c Vdd Vdd PMOS L=1u W=38u AD=66p PD=24u AS=66p PS=24u.ENDS.SUBCKT zhudianlu12 c vbias1 vbias2 vbias3 vin1 vin2 Gn

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!