基于单片机的环境噪声监测仪的设计

上传人:沈*** 文档编号:163042978 上传时间:2022-10-20 格式:DOC 页数:67 大小:2.74MB
收藏 版权申诉 举报 下载
基于单片机的环境噪声监测仪的设计_第1页
第1页 / 共67页
基于单片机的环境噪声监测仪的设计_第2页
第2页 / 共67页
基于单片机的环境噪声监测仪的设计_第3页
第3页 / 共67页
资源描述:

《基于单片机的环境噪声监测仪的设计》由会员分享,可在线阅读,更多相关《基于单片机的环境噪声监测仪的设计(67页珍藏版)》请在装配图网上搜索。

1、 基于单片机的环境噪声监测仪的设计院 系自动化学院专 业测控技术与仪器班 级5407102学 号200504071041姓 名徐莉指导教师刘利秋负责教师刘利秋沈阳航空工业学院2009年6月沈阳航空工业学院毕业设计(论文)摘 要噪声对人体健康有着严重的危害,因此减少噪声危害已成为当前一项重要的任务。环境噪声监测,是人类提高生活质量,加强环境保护的一个重要环节。本文详细介绍了噪声监测系统的测量原理和系统组成,包括:噪声信号的转换、放大、V/F转换、数据采集和显示系统的设计。外界噪声信号通过传声器转换成音频信号,电信号经过放大和V/ F 变换输入到单片机进行处理,并转换成相应的噪声分贝值通过LED

2、显示,从而实现噪声的实时监测。该系统具有实现简单,精确度高,可用于实际进行噪声的实时监测等特点。关键词:运算放大器;V/F转换器;单片机;LEDAbstractThe noise does the health of people a lot of harm, so cutting down the danger of the noise has become a term of important task now. Measuring noise of environment has played an important role in improving the living qual

3、ity and strengthening the environment safeguard. In the paper, the measurement principle and the system constitution are introduced in detail, including: the noise signal converting system, signal magnifying system, V/F converting system, data collection and indication system. This paper introduces

4、the ways to convert the real-time monitoring of the noise into acoustic frequency electrical signal by using microphone, operational amplifier and V/ F converter, which will act as Single Chip Micoyos input signal. Then the SCM will change it into a noise DB value, which will be displayed on LED. Th

5、is system is simple 0and has high precision, so it is always used in monitoring the urban noise real-time.Key words:operational amplifier; V/ F converter;Single Chip Micoyo; LED目 录第1章 绪论11.1 课题产生的背景11.2 有关噪声的基础知识31.2.1 振动与声31.2.2 声波方程41.2.3 声压级测量机理51.2.4 噪声简介61.3 噪声监测系统的研发现状71.4 本课题的主要任务及意义81.4.1 设计

6、任务81.4.2 课题意义91.4.3 论文内容安排9第2章 噪声监测系统的总体方案设计102.1 噪声监测系统任务分析102.2 硬件系统设计方案102.3 软件系统设计方案11第3章 噪声监测系统的硬件设计133.1 传声器133.2 信号放大器153.3 交直流转换电路的设计183.3.1 有效值检测电路AD536183.3.2 AD536辅助电路的设计193.4 电压-频率转换电路的设计203.4.1 电压-频率转换芯片LM331203.4.2 电压-频率变换器223.5 单片机系统的设计233.5.1 单片机的选择233.5.2 单片机外围电路的设计263.6 显示及指示电路的设计3

7、03.6.1 显示电路的设计303.6.2 指示电路的设计31第4章 噪声监测系统的软件设计334.1 噪声监测系统的软件设计方案334.2 系统内部RAM的分配354.3 中断服务程序的设计354.3.1 T0中断子程序的设计364.3.2 T1中断子程序的设计374.4 查表子程序384.5 显示子程序404.6 指示范围子程序41第5章 系统调试与分析435.1 调试分析的一般过程435.2 硬件调试435.3 软件调试445.4 噪声监测器的系统调试455.5 调试故障及原因分析465.6 测试结果分析47结论48社会经济效益分析49参考文献50致 谢52附录 噪声监测仪硬件系统原理图

8、53附录 噪声监测仪软件程序清单54附录 噪声监测仪元器件清单63-IV-沈阳航空工业学院毕业设计(论文)-35-沈阳航空工业学院毕业设计(论文)第1章 绪论1.1 课题产生的背景噪声即噪音,是一类引起人烦躁、或音量过强而危害人体健康的声音。 噪声通常是指那些难听的,令人厌烦的声音。噪音的波形是杂乱无章的。从环境保护的角度看,凡是影响人们正常学习,工作和休息的声音凡是人们在某些场合“不需要的声音”,都统称为噪声。如机器的轰鸣声,各种交通工具的马达声、鸣笛声,人的嘈杂声及各种突发的声响等,均称为噪声。噪声污染属于感觉公害,它与人们的主观意愿有关,与人们的生活状态有关,因而它具有与其他公害不同的特

9、点。噪音污染主要来源于交通运输、车辆鸣笛、工业噪音、建筑施工、社会噪音如音乐厅、高音喇叭、早市和人的大声说话等。 环境噪声监测,是人类提高生活质量,加强环境保护的一个重要环节,在各大城市的繁华街区和居民区,已有大型环境噪声显示器竖立街头。但目前国内的便携式噪声测试仪,多为价格昂贵的进口专用设备,除卫生、计量等环保专业部门拥有外,无法作为民用品推广普及。本文介绍一种以89C52单片机为核心,采用V/F转换技术构成的低成本、便携式数字显示环境噪声测量仪。该仪器工作稳定、性能良好,经校验定标后能满足一般民用需要,可广泛应用于工矿企业、机关学校等需要对环境噪声进行测量和控制的场合。噪声测量一般有如下几

10、个方面的目的:测量声压级以了解噪声对环境的污染情况,检验噪声是否符合有关标准;进行噪声信号的频谱分析,以了解噪声的频率结构;测量噪声源的声功率或声功率级,以客观了解噪声源特性。按测量环境来分,噪声测量分实验室测量和现场测量两种。所谓噪声的实验室测量是指将被测对象放在消声室或混响室中测量,其测量的精度比较高。但由于条件的限制,大多情况下只能进行现场测量。为了更客观地表示仪器设备的噪声源特性,往往需要测量噪声源的声功率级。因为在一定的工作状态下,仪器的声功率级是一个恒量,它不象声压级随距离的改变而改变。但声功率级是不能直接测出的,它是在特定条件下,由测得的声压级计算而得到的。此处仅对常用的自由场法

11、作一简单的介绍。设是以噪声源为中心,r为半径的球面S上数个测点测出的平均声压级。R应选择得足够大,一般为被测对象尺寸的两倍。设参考面积S0为1,则在自由场中的声功率级为(1.1)如仪器放在坚硬的地面上,此时声源以半球面辐射。于是式(1.1)化为(1.2)式中,为非标准气压和温度状态时的修正量;按下式求得:(1.3)式中,为个测点平均声压;为第个测点的声压;为基准声压。为了满足自由场条件,此时,距离声源为和两点处的声压级应满足下列关系:(1.4)当时,即在自由场中距离加倍,噪声级减少6dB,据此,可以判断声场是否为自由场。本文所述的测量系统主要是考虑人耳对噪声的主观评价。因此采用声功率级测量,即

12、外界噪声信号通过传声器转换成音频信号,经过放大和V/ F 变换输入到单片机进行处理,并转换成相应的DB 值通过LED 显示,从而实现噪声的实时监测。1.2 有关噪声的基础知识1.2.1 振动与声振动与声是紧密相连的,不同的声音就是不同的振动方式,声源体发生振动会引起四周空气振荡,这种振荡方式就是声波。声音是以声波的形式进行传递和存在的。声波借助空气向四面八方传播。声波在传播中遇到障碍物时,它的能量一部分会被障碍物吸收,另一部分会被反射回来。若在一个封闭的室内,产生的反射声波会被周围的墙壁、天花板和其它障碍物所吸收和反射,形成一系列逐渐衰减的反射声波。声波是一种机械波,具有纵波一般的波动特性,例

13、如,反射、折射、绕射、干涉等。机械振动常常引起声波辐射,物体振动时激励着它周围的空气质点振动。由于空气具有可压缩性,在质点的相互作用下,振动物体周围的空气就交替地产生压缩与膨胀,并且逐渐向外传播而形成声波。声音三要素是:响度、音高、音色。1响度响度,又称声强或音量,它表示的是声音能量的强弱程度,主要取决于声波振幅的大小。声音的响度一般用声压或声强来计量,声压的单位为帕(Pa),它与基准声压比值的对数值称为声压级,单位是分贝(dB)。响度是听觉的基础。正常人听觉的强度范围为0dB140dB。固然,超出人耳的可听频率范围(即频域)的声音,即使响度再大,人耳也听不出来。但在人耳的可听频域内,若声音弱

14、到或强到一定程度,人耳同样是听不到的。当声音减弱到人耳刚刚可以听见时,此时的声音强度称为“听阈”。而当声音增强到使人耳感到疼痛时,这个阈值称为“痛阈”。2音高也称音调,表示人耳对声音调子高低的主观感受。客观上音高大小主要取决于声波基频的高低,频率高则音调高,反之则低,单位用赫兹(Hz)表示。人耳对响度的感觉有一个从闻阈到痛阈的范围。人耳对频率的感觉同样有一个从最低可听频率20Hz到最高可听频率别20kHz的范围。音高与频率之间的变化并非线性关系,除了频率之外,音高还与声音的响度及波形有关。音高的变化与两个频率相对变化的对数成正比。 3音色音色又称音品,由声音波形的谐波频谱和包络决定。声音波形的

15、基频所产生的听得最清楚的音称为基音,各次谐波的微小振动所产生的声音称泛音。单一频率的音称为纯音,具有谐波的音称为复音。声音波形各次谐波的比例和随时间的衰减大小决定了各种声源的音色特征,其包络是每个周期波峰间的连线,包络的陡缓影响声音强度的瞬态特性。另外,表征声音的其它物理特性还有:音值,又称音长,是由振动持续时间的长短决定的。持续的时间长,音则长;反之则短。从以上主观描述声音的三个主要特征看,人耳的听觉特性并非完全线性。声音传到人的耳内经处理后,除了基音外,还会产生各种谐音及它们的和音和差音,并不是所有这些成分都能被感觉。人耳对声音具有接收、选择、分析、判断响度、音高和音品的功能。根据声音的物

16、理特性还可以分为音质、音长、音强和音高四个要素。1.2.2 声波方程声波方程是根据声波动过程的物理性质,应用物理学中三个基本定律,即牛顿第二定律、质量守恒定律以及描述压强、体积和温度等状态参数关系的物态方程,建立的声压随空间位置和时间变化的数学表达式。在理想媒质中,波动方程为:(1.5)式中声压();拉普拉斯算子。由声源辐射的声波在同一时刻相位相同各点的轨迹叫波阵面,也称波前。波阵面为平面的声波称为平面波,即同一时刻振动相位相同的质点在同一无限延伸的平面上。当一个点声源在无反射物的空间中辐射声波时,在距离声源足够远处的声波,可以认为是平面波。平面波是声波中最简单的一种。在实际工作中,为了简化运

17、算,经常将声波作近似处理,距离声源较远的声波都可以近似地按平面波处理。设X轴是声波传播的方向,在原点X=0处的平面上各点的振动状态为: ,声速为C,则时间t后,声波向前传播了距离x=ct。在距离x处的振动可写为:(1.6)分别对位移x,时间t求二次偏导数得式(1.7),此方程即为平面波沿x轴方向传播的波动方程:(1.7)1.2.3 声压级测量机理人耳的听阈一般是20m Pa (微帕),痛阈一般是200Pa(帕),其间相差107倍,这样宽广的声压范围很不易测量,而且人耳对声压的相对变化的分辨具有非线性特征。因此,声学中常用声压级LP来反映声压的变化,将声压P的声压级表示成(1.8)其中,基准量P

18、0为20m Pa。当P= P0时,LP=0dB,而当P=200 Pa时,LP=140dB。用声级计可以测量声压级,采用1kHz纯音输入0.2秒到0.25秒或0.5秒以上,即可得到真实声压级或平均声压级。考虑到人耳对不同频率的响度感觉,在噪声测量中,常取40方(phon)等响曲线的反曲线对声压级进行计权校正,即用A计权网络测得A声级,写成dB(A)。表1.1给出倍频带中心频率与A声级的校正量之间的关系。表1.1 倍频带中心频率与A声级校正量的关系倍频带中心频率(Hz)31.563125250500A声级校正量(dB)39.4-26.2-16.1-8.6-3.2倍频带中心频率(Hz)1k2k4k8

19、k16kA声级校正量(dB)01.21.0-1.1-6.61.2.4 噪声简介1噪声概念物理学定义:噪声是发生体做无规则时发出的声音。生理学定义:凡是妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音产生干扰的声音。从这个意义上来说,噪声的来源很多。街道上的汽车声、安静的图书馆里的说话声、建筑工地的机器声、以及邻居电视机过大的声音,都是噪声。总体讲,噪音是物体振动产生。2噪声对人的危害随着工业生产、交通运输、城市建筑的发展,以及人口密度的增加,家庭设施(音响、空调、电视机等)的增多,环境噪声日益严重,它已成为污染人类社会环境的一大公害。噪声具有局部性、暂时性和多发性的特点。噪声不仅会影响

20、听力,而且还对人的心血管系统、神经系统、内分泌系统产生不利影响,所以有人称噪声为“致人死命的慢性毒药”。噪声给人带来生理上和心理上的危害主要有以下几方面: 干扰休息和睡眠、影响工作效率:干扰休息和睡眠;使工作效率降低。 损伤听觉、视觉器官:强的噪声可以引起耳部的不适,如耳鸣、耳痛、听力损伤;噪声对视力的损害。 对人体的生理影响:损害心血管;对女性生理机能的损害;噪声还可以引起如神经系统功能紊乱、精神障碍、内分泌紊乱甚至事故率升高。3防治噪声污染的一些办法 营造隔音林 将噪声污染严重的企业搬离市区 源头处预防,传播过程消减 4噪声的利用噪声一向为人们所厌恶。但是,随着现代科学技术的发展,人们也能

21、利用噪声造福人类。虽然噪音是世界四大公害之一,但它还是有用处的。 利用噪声除草。 利用噪声发电。 利用噪声来制冷。 利用噪声除尘。 利用噪声克敌。 利用噪声诊病。 利用噪声有源消声。5人对不同声强的感觉无法忍受:150dB130dB感到疼痛:130dB110dB很吵:110dB70dB较静:70dB50dB安静:50dB30dB极静:30dB10dB无声:0dB1.3 噪声监测系统的研发现状随着噪声污染的日趋严重,噪声监测技术的研究及设备的开发也得到迅速发展,世界发达国家的噪声监测设备的产值平均以10-15%的速度增加,我国在93年噪声振动监测设备产值已达到6.2亿元,“八五”期间用于噪声治理

22、的工程费用达到9.2亿元,上述产值尚不包括配套的噪声振动监测设备,预计我国配套的噪声振动监测设备20亿左右。高速运输系统和工具等一些新出现的噪声源和计算机、数字处理、新材料等技术发展使噪声监测技术、设备的研究与发展面临挑战,又提供了机遇。噪声监测技术和设备已开始进入规范化、标准化、系列化和配套化阶段。噪声监测技术和设备的研究和开发已取得很大进展但应看到仍有一些技术不够成熟,需进一步研究的问题仍然很多。声级计是一种能够把工业噪声、生活噪声和车辆噪声等,按人耳听觉特性近似地测定其噪声级的仪器。噪声级是指用声级计测得的并经过听感修正的声压级(dB)或响度级(方)。根据声级计在标准条件下测量1000H

23、z纯音所表现出的精度,六十年代国际上把声级计分为两类,一类叫精密声级计,一类叫普通声级计。我国也采用这种分法。70年代以来有些国家推行四类分法,即分为0型、1型、2型和3型。它们的精度分别为0.46、0.76、1.00和1.5dB。根据声级计所用电源的不同,还可将声级计分为交流式声级计和用干电池的电池式声级计两类。电池式声级计也称为便携式声级计,这种仪器体积小、重量轻、现场使用方便。声级计一般由传声器、前置放大器、衰减器、放大器、计权网络、检波器、指示表头和电源等组成,其原理方框图如图1.1所示。图1.1 声级计原理方框图1-传声器,2-前置放大器,3-输入衰减器,4-输入放大器,5-计权网络

24、6-输出衰减器,7-输出放大器,8-检波器 9-表头为适应测量现场的需要,声级计一般都备有三脚支架,以便视需要将声级计固定在三脚支架上。声级计面板上一般还备有一些插孔。这些插孔如果与便携式倍频带滤波器相联,可组成小型现场使用的简易频谱分析系统,如果与录音机组合,则可把现场噪声录制在磁带上贮存下来,以便待以后再进行更祥细的研究,如果与示波器组合,则可观察到声压变化的波形,并可用照相机将波形摄制下来,还可以把分析仪、记录仪等仪器与声级计组合、配套使用,这要根据测试条件和测试要求而定。1.4 本课题的主要任务及意义1.4.1 设计任务查阅资料,了解课题背景,了解环境噪声的特点。学习、掌握声压计的测量

25、机理、传声器测量基本原理。合理选择噪声测量传感器,掌握其测量原理及应用。学习单片机原理,熟悉单片机系统设计和软件编程。进行整体方案设计,做出开题报告。进行系统硬件电路设计,包括传声器测量系统设计、单片机系统硬件设计。审查后,焊接或在面包板上搭接电路。编写程序,仿真调试。仿真调试通过后,固化程序,脱离开发系统运行。在实验室进行环境模拟,测试系统,完成系统联调。1.4.2 课题意义噪声是日常生活中常见的物理现象。在大多数情况下,噪声是有害的。噪声在生理和心理上也会危害人类的健康,因而已被列入需要控制的危害之一。但噪声也有可以被利用的一面。无论是利用噪声还是防止噪声,都必须确定其量值。在长期的科学研

26、究和工程实践中已逐步形成了一门较完整的噪声工程学科,可供进行理论计算和分析。但这些毕竟还是建立在简化和近似的数学模型上,还必须用试验和测量技术进行验证。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低噪声的要求,需要进行噪声的分析与设计,并通过实验来验证,改进设计。总之,噪声的测量不仅在噪声研究领域里占有重要的地位,而且已经广泛应用于机械制造、建筑工程、地球物探、生物医疗等各个领域。1.4.3 论文内容安排本文按噪声监测系统构造的不同部分分别进行了介绍。首先在第1章绪论中简要地介绍研究噪声监测的意义以及有关于噪声的一些的基础知识。第2章是噪声监测系统的总体设计,主要包括硬件和软件设计两

27、部分。第3章是噪声监测系统硬件设计,本章主要介绍了传声器、功率放大器、交直流转换电路、V/F转换电路以及数据的采集,处理和显示部分的设计。第4章是噪声监测的系统软件设计,本章主要介绍单片机编程以及主程序设计,数据的采集、处理、显示等功能。第5章是系统调试与结果分析,说明了硬件调试、软件调试及软硬联调的过程,并介绍了调试过程中出现的问题和解决的办法。第2章 噪声监测系统的总体方案设计2.1 噪声监测系统任务分析本设计的任务是要完成基于单片机的环境噪声监测仪的设计系统,它的主要是设计以单片机为核心、采用V/F转换技术的便携式环境噪声测量仪,实现环境噪声的实时测量和LED数字显示,给出噪声水平的大致

28、指示。基于本次任务,该设计方案由硬件和软件两部分组成。噪声测量仪的硬件电路系统,包括噪声信号的转换、放大、交直流转换与电压、频率转换电路以及单片机系统的硬件电路、LED显示电路等。软件部分主要是用单片机语言编程,实现对信号的采集、转换及显示。在遵循软硬件相结合的原则下,先进行硬件电路的计,再进行软件编程,进行模块化设计,并对各模块进行调试,最后进行软硬件联合调试和故障的排除。2.2 硬件系统设计方案按照系统设计功能的要求,初步确定控制系统包括硬件和软件系统两部分。其中硬件系统结构框图如图2.1所示。环境噪声经高灵敏度、无指向性驻极体传声器转换成电信号。放大电路由运放LM386构成,精心调整相关

29、外围元件参数,可使其输出幅频特性满足测量要求的电压信号。通过V/F转换器后,输出频率信号变为TTL电平送给单片机的P3.4引脚,经软件处理后,噪声声压级显示值由P1口输出,驱动LED数码管显示。噪声传声器交直流转换V/F转换电路单片机LED显示图2.1 噪声监测仪硬件结构框图传声器是将声波信号转换成电信号的传感器,是噪声测量系统中的一个主要环节。根据膜片感受声压的情况不同,传声器可分为三类:压强式传声器,其膜片的一面感受声压;差压式传声器,其膜片的两面均感受声压,引起膜片振动的力取决于膜片两面压差的大小;压强和压差组合式传声器。在噪声测量中常用的压强式传声器。功率放大器的作用相当于扬声器的音量

30、调节器。音频功率放大电路的作用主要是将信号处理器发送过来的信号功率放大,使其信号的功率达到设计要求。此方案中的V/F转换电路主要是由LM331构成的电压/频率转换电路。LM331使用了新型温度补偿能隙基准电路,在规定工作温度范围内和4伏电源电压下都有较高精度。LM331可得到只有价格高的V/F转换器才有的高水平精度温度。由LM331构成的电压/频率转换电路,输出的频率信号变成TTL电平送给单片机的P3.4引脚,作为T0的计数脉冲。该转换电路线性良好,抗干扰能力强,输出频率范围在10100kHz以上,优于普通8位并行A/D转换器,有利于提高系统的测量范围。89C52单片机是本设计的核心部分。LM

31、331直接与单片机定时/计数器连接,这种方式简单。LED显示器是由发光二极管构成的,常用的LED显示器为8段,每一段对应一个发光二极管。这种显示器有共阳极和共阴极两种。LED显示器有静态显示和动态显示两种显示方式。此设计中用的是动态显示方式。2.3 软件系统设计方案 环境噪声测量系统的软件采用模块化设计,由主程序、中断服务程序、查表子程序和显示子程序组成。各程序模块的流程图如图2.2所示。在图中xi表示读取的计数值,i从0开始。主程序处于循环工作状态,主要完成定时/计数器和中断系统的初始化,并循环调用查表和显示子程序。值得指出的是,查表程序程序实现了计数值向声压级的转换。为了提高系统的抗干扰能

32、力,除了需要在硬件上采取相应的措施外,软件上采用冗余设计法即重复重要的指令,未用空间设置操作指令,以防止程序跳飞而死机。开始定时/记数器初始化中断系统初始化调用查表子程序调用显示子程序(a)主程序中断入口关T0、T1读计数器重新初始化T0、T1开T0、T1中断返回(b)中断服务程序查表子程序入口取表中双字节数xixi(TH0)(TL0)置表首地址i=i+1数值显示返回NY(c)查表子程序显示子程序入口置表扫描次数允许高位显示送显示值延时交换显示位扫描结束吗?返回NY(d)显示子程序图2.2 噪声监测系统的软件流程图第3章 噪声监测系统的硬件设计声学测距系统硬件电路主要由七个部分组成:传声器、音

33、频放大器、交直流转换、V/F转换电路、单片机采集处理和LED显示以及测量范围的指示电路。声波发射系统用来发射非单一频率的宽频噪声信号;接收系统接收经扬声器发出的噪声音频信号;信号处理系统是对接收器接收到的信号进行调理,输入到计算机中,进行数据处理。3.1 传声器传声器(Microphone)又称话筒,俗称“麦克风”。传声器是将声波转换为相应电信号的传感器。传声器包括声波接收器和力-电换能器两个部分。由声音造成的空气压力使传感器的振动膜振动,进而经变换器将此机械运动转换成电参量的变化,是噪声测量系统中的一个主要环节。根据膜片感受声压的情况不同,传声器可分为三类:声强式传声器,其膜片的一面感受声压

34、;差压式传声器,其膜片的两面均感受声压,引起膜片振动的力取决于膜片两面差压的大小;压强和差压组合式传声器。在噪声测量中常用的是压强式传声器。若按照膜片振动转换成电能的方式来分,传声器可分为:电容式传声器,它利用电场耦合的方式将膜片的振动转换成电量;压电式传声器,通过声压使晶体产生电荷;动圈式传声器,利用磁场耦合的方式将膜片的振动转换成电量。传声器按结构不同,可分为动圈式、晶体式、铝带式、电容式、炭粒式、立体声话筒等多种;按产生电压的作用原理不同,可分为恒速式和恒幅式两类;按输出阻抗可分为高阻式和低阻式。各种传声器的主要技术特性和适用性见表3.1。表3.1 传声器的主要技术特性和适用性主要技术特

35、性和适用性传声器类型电容式压电式动圈式频率响应声压级在2dB时,频率响应一般为20-7000Hz,亦有达20-18000Hz的还较平直不很平直灵敏度0.3-50Mv/Pa较高较低动态范围(dB)较高者:20-146较低者:90-184较窄较窄工作环境要求温度-50-150相对湿度:90%因温度变化,准确度影响较大能在高温下工作,但易受磁场干扰适用性适用于精密声级计,能与各种带通滤波器配合使用,必须配用前置放大器适用于普通声级计,结构简单,造价低适用于普通声级计,多用于频率响应,灵敏度、指向性要求低的实验室测量恒速式传声器的输出电压正比于其运动元件的速度。当入射声波强度不随话音频率变化时,则运动

36、元件的运动速度在运用频带内恒定不变。这类传声器,常见的有动圈式传声器和铝带式传声器。恒幅式传声器的输出电压正比于运动元件的位移幅度。当入射声波强度不变时,该运动元件的位移幅度在运用频带内不变,其产生的电动势不变。这类传声器,常见的有晶体传声器和电容传声器。下面分别作简要介绍:动圈式:膜片受声波冲击、带动线圈在磁场中运动产生电流输出。优点:耐用,音色丰满。缺点:近讲效应。(近讲效应:话筒离音源越近,拾取的音量就越大,反之越小,动圈式话筒与口形接近,其音量提升的同时低频成份也随之大大提高。调音台低切功能)。铝带式:采用一根很轻的波纹形铝合金金属带,悬于磁场,在两磁极之间,声波使金属带震动,做切割磁

37、力线运动而产生电流输出。优点:阻抗低,声音清晰高。缺点:怕风,只限室内使用。电容式:由膜片和在其后的固定极板构成一个电容器,膜片受振引起电容器的容量发生变化,产生输出电压。优点:运动性好,瞬态特性好,频率响应很宽。缺点:需外供电源。晶体式:通信设备常用到的传声器类型一般是晶体式传声器。晶体式传声器又称压电式传声器,它是利用晶体的压电效应制成的,化工材料酒石酸钾钠和钛酸钡晶体都有较强的压电效应。当晶体的两面受到压力时,在两面间出现正负电荷,产生某一方向的电动势:当受到相反方向的应力时,晶体两面则产生与受压力相反的电荷和电动势。当晶体受到交变声波的作用时,便产生音频电动势。恒速度式:传声器的输出电

38、压正比于其运动元件的速度。当入射声波强度不随话音频率变化时,则运动元件的运动速度在运用频带内恒定不变。这类传声器,常见的有动圈式传声器和铝带式传声器。恒幅度式:传声器的输出电压正比于运动元件的位移幅度。当入射声波强度不变时,该运动元件的位移幅度在运用频带内不变,其产生的电动势不变。这类传声器,常见的有晶体传声器和电容传声器。通信设备常用到的传声器类型一般是晶体式传声器。晶体式传声器又称压电式传声器,它是利用晶体的压电效应制成的,化工材料酒石酸钾钠和钛酸钡晶体都有较强的压电效应。当晶体的两面受到压力时,在两面间出现正负电荷,产生某一方向的电动势:当受到相反方向的应力时,晶体两面则产生与受压力相反

39、的电荷和电动势。当晶体受到交变声波的作用时,便产生音频电动势。晶体式传声器按结构的不同可分为膜片式和声电池式两种。膜片式传声器价格低廉、输出电压高,使用方便,考虑元器件的性价比和应用功能选用的是膜片式晶体传声器。膜片式传声器实物外形如图3.1所示。图3.1 膜片式传声器实物外形图3.2 信号放大器LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20倍。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。输入端以地为参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使

40、得LM386特别适用于电池供电的场合。功率放大器的作用相当于扬声器的音量调节器。音频功率放大电路的作用主要是将信号处理器发送过来的信号功率放大,使其信号的功率达到设计要求。对该部分电路的要求是输出功率大。在电路设计过程中进行对比,通过比较发现LM386集成电路使用简单,基本没有外围器件,而且它还有体积小、电源范围宽、外接元件少、电压增益可调整、频率响应好、输出功率大、总谐波失真小等优点。因此选用LM386来组成音频功率放大电路。LM386 被广泛地应用在录音机和收音机音频放大、室內对讲机、红外线、超声波、小型马达驱动器等电路中。LM386的引脚图如图3.2所示。图3.2 LM386引脚图其中L

41、M386的内部方块图如图3.3所示。图3.3 LM386的内部方块图LM386的特性有以下几点:1静态功耗低,约为4mA,可用于电池供电。 2工作电压范围宽,4-12V 或5-18V。 3外围元件少。 4电压增益可调,20-200倍。 5低失真度。20倍的音频放大器如图3.4所示。由于传声器输出的电信号比较弱,只有毫伏级,为了使数据采集卡能很好的采集到相应数据,必须经过电压放大器进行电压放大,采用LM386芯片电压增益200倍的接法,即在1和8引脚间接10uF的电容,如图3.5所示。图3.4 20倍的音频放大器图3.5 200倍的电压放大器3.3 交直流转换电路的设计3.3.1 有效值检测电路

42、AD536所谓真有效值即为“真正有效值”之意,英文缩写为“TRMS”,有的文献也称为真普通数字直流电压表自然只能测量直流电压,欲需测量交流电压必须增加AC/DC转换电路,一般的交流电压表为降低成本和简化电路,均使用简易的平均值响应交流/直流转换器。常用的平均值响应AC/DC转换器是运算放大器和二极管组成的半波(或全波)线性整流电路,这种电路具有线性度好、准确度高、电路简单、成本低廉等优点。但是这种电路是按照正弦波平均值与有效值的关系(VRMS=1.111Vp)来定义的,因此这类电表只能测量正弦波电压。平均值AC/DC转换的电压表只能测量无失真的正弦波电压,对于正弦波失真的交流电压,这类电表测量

43、就会引起误差,更不能测量方波、矩形波、三角波、锯齿波、梯形波、阶梯波等非正弦波,利用真有效值数字仪表可准确测量各种波形的有效值,满足现代电子测量之需要。交流电压的有效值的表达式的定义如下:(3.1)近似公式: (3.2)我们对式(3.1)进行变换,两边平方,并令 (3.3)就得到真有效值电压的另一种表达式(3.4)从(3.4)式即得,对输入电压依次进行“取绝对值平方/除法取平均值”运算,也能得到交流电压的有效值,而且这公式更有使用价值。举例说明:假如要测量的电压变化范围是0.1V10V,平方后U2=10mV100V,这就要求平方器具有相当大的动态范围是(10000:1),这样的平方电路误差就可

44、能超过1mV,要平方器能输出100V的电压,技术上是难以实现的。如果使用式(3.4)的既便于设计电路,也能保证了准确度。目前大多数的集成单片真有效值/直流转换器均采用式(3.4)的原理而设计。真有效值仪表的的核心器件是TRMS/DC转换器。现在市场上这类单片的集成芯片很多,真有效值仪表普遍使用了这类集成电路。单片集成电路具有集成度高、功能完善,外围元件少,电路连接简单、电性能指标容易保证等诸多优点,这类芯片能准确、实时测量各种电压波形的有效值,无须考虑波形参数和失真,这些性能是平均值仪表无法比拟的。可见,通过测量信号的有效值即可知信号的峰值信息,从而可知振动的峰值。且输出的直流信号便于单片机进

45、行数据采集和数据处理。在此系统中采用有效值检测电路AD536测量信号的有效值,经过一系列的数据处理可得振动的振幅。3.3.2 AD536辅助电路的设计图3.6是由AD536构成真有效值TRMS/DC转换电路,AD536内含有源整流器(绝对值电路),平方/除法电路,镜像电流源及缓冲放大器。图中的R2和R3为偏置电阻,两电阻的公共连接端接到AD536的COM,由于AD536的COM内部为CMOS电路,阻抗较高,流经COM端的电流仅为数uA。C1为输入隔直电容,CAV为平均电容,它与内部的电阻r(25K)构成低通滤波器,以获得平均值电压,有效值电压通过AD536的第6脚输出。C21C31Vin +V

46、sVsCAV COMbufout RLbufin IoutAd536CAV 1VinC1 1R1 1K10Koutput+5VR220KR3 10K图3.6 AD536构成真有效值电压表AD536由于电路采用了隔直电容,所以这样的电路仅适合于测量交流电,不能测量直流或变化缓慢的电压。AD536的满量程电压为7V,如果使用的AD转换器输入电压范围不匹配,应设一个电压转换电路。3.4 电压-频率转换电路的设计电压/频率变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331采用

47、了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。3.4.1 电压-频率转换芯片LM331LM331/331A是一种非常理想的精密电压/频率转换器,可用于制作简洁、低成本的模数转换器,特长积分周期的数字积分器,线性频率调制与解调及其它各种功能电路。当作为压/频转换器使用时,其输出脉冲链的频率精确地与输入端施加的电压

48、成比例变化,体现了压/频转换器的特有的优势。可轻松应用于所有的标准压/频转换场合。更值得一提的是,LM331/331A达到的精度-温度稳定性很高。其它同等级别温度稳定性的压/频转换模块成本要高的多。另外,LM331/331A也适用于低工作电压的数字系统,在微处理器控制系统中作为低成本的模数转换器。此外。用这种转换方式和光电偶合器时连接相当方便。由于LM331/331A内含温度补偿带隙基准源,所以4.0V电压供电的情况下,就可在整个工作温度范围内高精确的工作。内部精密计时器电路在很低偏置电流的情况下,也不会降低对100kHz电压/频率转换器的响应。LM331/331A的输出可驱动三个TTL负载,

49、其输出端可承受高达40V的电压冲击。主要特点: 具有最大0.01的线性度 改进的电压/频率转换器应用性能 双电源或单电源供电 工作电压:5V 数字脉冲输出端电平与所有5V的标准逻辑电路兼容 出色的温度稳定性,温漂小于50ppm/ 低功耗:15mW典型值(5V工作电压) 动态范围宽,在100kHz的频率范围下,最小为100dB 满量程频率范围宽:1Hz100kHz 低成本LM331可用作精密的频率电压(F/V)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其他相关的器件。LM331为双列直插式8脚芯片,其引脚如图3.7所示。LM331内部有(1)输入比较电路、(2)定时比较电路、(3)

50、R-S触发电路、(4)复零晶体管、(5)输出驱动管、(6)能隙基准电路、(7)精密电流源电路、(8)电流开关、(9)输出保护点路等部分。输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS等不同的逻辑电路。此外,LM331可采用单/双电源供电,电压范围为440V,输出也高达40V。IR(PIN1)为电流源输出端,在f0(PIN3)输出逻辑低电平时,电流源IR输出对电容CL充电。引脚2(PIN2)为增益调整,改变RS的值可调节电路转换增益的大小。f0(PIN3)为频率输出端,为逻辑低电平,脉冲宽度由Rt和Ct决定。引脚4(PI

51、N4)为电源地。引脚5(PIN5)为定时比较器正相输入端。引脚6(PIN6)为输入比较器反相输入端。引脚7(PIN7)为输入比较器正相输入端。引脚8(PIN8)为电源正端。图3.7 LM331逻辑框图3.4.2 电压-频率变换器图3.8是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、RS触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi输入一正电压时,输入比较器输出高电平,使RS触发器置位,输出高

52、电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使RS触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使RS触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压频率变换。其输入电压和输出频率的关系为:f0=(VinR4)/(2.09R3R2C2),由式知电阻R2、R3、R4、和C2

53、直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。图3.8 电压频率变换电路3.5 单片机系统的设计3.5.1 单片机的选择单片机自从问世以来,它一直是工业检测、控制应用的主角。市场上常用的单片机有Intel公司的MCS-51系列,日本松下公司的MN6800系列等。其中,MCS-51由于单片机应用系统具有体积小,可靠性高,功能强,价格低等特点,很容易形成产品而更受青睐。8031单片机片内不带程序存储器ROM,使用时需外接程序存储器和一片逻辑电路74LS373,外接的程序存储器多为EPR

54、OM的2764系列。用户若想对写入到EPROM中的程序进行修改,必须先用一种特殊的紫外线灯将其照射擦除,之后再可写入。写入到外接程序存储器的程序代码没什么保密性可言。8051单片机片内有4K ROM,无须外接存储器和74LS373,更能体现“单片”的简练。但是编的程序无法烧写到其ROM中,只有将程序交芯片厂代为烧写,并是一次性的,今后都不能改写其内容。8751单片机与8051单片机基本一样,但8751单片机片内有4K的EPROM,用户可以将自己编写的程序写入单片机的EPROM中进行现场实验与应用,EPROM的改写同样需要用紫外线照射一定时间擦除后再烧写。图3.9 89C52管脚图89C51单片

55、机为EPROM型,在实际电路中可以直接互换8051单片机或8751单片机,不但和8051单片机指令,管脚完全兼容,而且其片内的4K程序存储器是FLASH工艺的。89C52是由北京集成电路中心(BIDC)设计,由美国的Atmel公司生产八位单片机。它是一种低功耗高性能的具有8K字节可电气烧录及可擦除的程序ROM的八位CMOS单片机。该器件是用高密度、非易丢失存储技术制造并且与国际工业标准80C51单片机指令系统和引脚完全兼容。综上所述,从使用方便与简化电路以及其性价比等角度来考虑,89C52比较合适的。本系统采用CPU为89C52的单片机,89C52本身带有8K的内存储器,可以在编程器上实现闪烁

56、式的电擦写达几万次以上,比以往惯用的8031CPU外加EPROM为核心的单片机系统在硬件上具有更加简单、方便等优点,而且完全兼容MCS-51系列单片机的所有功能。89C52管脚图如图3.9所示。下面介绍89C52的主要管脚功能如下:VCC(40):电源+5V;VSS(20):接地;P0口(32-39):双向I/O口,既可作低8位地址和8位数据总线使用,也可作普通I/O口;P3口(10-17):多用途端口,既可作普通I/O口,也可按每位定义的第二功能操作;P2口(21-28):既可作高8位地址总线,也可作普通I/O口;P1口(1-8): 准双向通用I/O口;RST(9):复位信号输入端;ALE/

57、PROG:地址锁存信号输出端;PSEN:内外程序存储器选择线;XTAL1(19)和XTAL2(18):外接石英晶体振荡器。由于本课题的需要用到单片机内部的计数器和定时器,所以在这里有必要介绍定时器/计数器的工作原理。首先,先看看定时器/计数器的结构图3.10:图3.10 定时器/计数器的结构原理图从上面定时器/计数器的结构图中可以看出,16位的定时/计数器分别由两个8位专用寄存器组成,即:T0由TH0和TL0构成;T1由TH1和TL1构成。其访问地址依次为8AH-8DH。每个寄存器均可单独访问。这些寄存器是用于存放定时或计数初值的。此外,其内部还有一个8位的定时器方式寄存器TMOD和一个8位的

58、定时控制寄存器TCON。这些寄存器之间是通过内部总线和控制逻辑电路连接起来的。TMOD主要是用于选定定时器的工作方式;TCON主要是用于控制定时器的启动停止,此外TCON还可以保存T0、T1的溢出和中断标志。当定时器工作在计数方式时,外部事件通过引脚T0(P3.4)或T1(P3.5)输入。当定时器/计数器为计数工作方式时,通过引脚T0和T1对外部信号计数,外部脉冲的上升沿将触发计数。计数器在每个机器周期的S5P2期间采样引脚输入电平。若一个机器周期采样值为0,下一个机器周期采样值为1,则计数器加1。此后的机器周期S3P1期间,新的计数值装入计数器。所以检测一个由0至1的跳变需要两个机器周期,由

59、于本课题所利用的是计数器T0、定时器T1,并且是工作在工作方式1。所以以下重点介绍工作方式1的特点。工作方式1是16位的计数器,由TLX作为高8位和THX作为低八位。由于计数器为16位,其计数范围最大。当启动TX前,TLX和THX装入计数初值,当TLX计满后,向THX进位,当计数器计数达到0FFFF后,再计一个数,则计数器产生溢出中断,向CPU请求中断,在中断程序时THX和TLX需重新装入初值,以便中断返回后重新开始计数。所以,工作方式1是一种需重装初值的计数器。由于这种方式,计数范围大,所以在计较大数据时可采用这种工作方式。鉴于本课题的实际情况在此课题T0用来对外部脉冲计数,而T1用来做内部

60、定时器,即每个机器周期产生一个计数脉冲,可以用来实现等待计时功能。3.5.2 单片机外围电路的设计由单片机硬件设计原理可知:(1)尽可能采用功能强的芯片,以简化电路;(2)留有余地,在设计硬件电路时,要考虑到将来修改、扩展的方便。因此在89C52芯片本身的最小系统需求外,还选择了8155H进行了扩展。1时钟电路89C52的时钟可以两种方式产生,一种是内部方式,利用芯片内部的振荡电路;另一种方式为外部方式。本系统采用内部时钟电路。下面介绍内部时钟方式。内部有一个用于构成震荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是此放大器的输入端和输出端。这个放大器与作为反馈元件的片外晶体或陶瓷谐振

61、器一起构成一个自激振荡器。图3-11是89C52片内振荡器电路。89C52虽然有内部振荡电路,但要形成时钟,必须外接元件,图3-12是内部时钟方式的电路。外接晶体(在频率稳定性不高,而尽可能要求廉价时,可选用陶瓷谐振器)以及电容CX1和CX2构成并联谐振电路,接在放大器的反馈回路中。对外接电容的值虽然没有严格的要求,但电容的大小会影响振荡频率的高低,振荡器的稳定性,起振的快速性和温度的稳定性。晶体可在1.2MHz12MHz之间任选,电容CX1和CX2的典型值在20pF100pF之间选择,但在60pF70pF时振荡器有较高的频率稳定性。典型值通常选择为30pF左右。外接陶瓷谐振器时,CX1和CX

62、2的典型值约为47pF。在设计印刷电路板时,晶体或陶瓷振荡器和电容应尽可能安装得与单片机芯片靠近,以减少寄生电容,更好地保证振荡器稳定和可靠地工作。为了提高温度稳定性,应采用温度稳定性能好的NPO高频电容。本设计采用11.0592MHz的晶阵。图3.11 89C52片内振荡器电路图 图3.12 内部时钟方式的电路图2复位电路89C52的复位输入引脚RET(即RESET)为89C52提供了初始化的手段。有了它可以使程序从指定处开始执行,即从程序存储器中的0000H地址单元开始执行程序。在89C52的时钟电路工作后,只要在RET引脚上出现两个机器周期以上的高电平时,单片机内部则初始复位。只要RET保持高电平,则89C52循环复位。只有当RET由高电平变成低电平以后,89C52才从0000H地址开始执行程序。本系统的复位电路是采用按键复位的电路,如图3-13所示,是常用复位电路之一。当89C5

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!