数据挖掘机器学习

上传人:痛*** 文档编号:162972989 上传时间:2022-10-20 格式:DOC 页数:58 大小:958.50KB
收藏 版权申诉 举报 下载
数据挖掘机器学习_第1页
第1页 / 共58页
数据挖掘机器学习_第2页
第2页 / 共58页
数据挖掘机器学习_第3页
第3页 / 共58页
资源描述:

《数据挖掘机器学习》由会员分享,可在线阅读,更多相关《数据挖掘机器学习(58页珍藏版)》请在装配图网上搜索。

1、机器学习、数据挖掘的经典算法总结1 决策树算法机器学习中,决策树是一个预测模型;它代表的是对象属性值与对象值之间的一种映射关系。树中每个节点表示某个对象,每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应具有上述属性值的子对象。决策树仅有单一输出;若需要多个输出,可以建立独立的决策树以处理不同输出。从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,它由它的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一

2、个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。决策树同时也可以依靠计算条件概率来构造。决策树如果依靠数学的计算方法可以取得更加理想的效果。1.1 决策树的工作原理决策树一般都是自上而下的来生成的。选择分割的方法有多种,但是目的都是一致的,即对目标类尝试进行最佳的分割。从根节点到叶子节点都有一条路径,这条路径就是一条“规则”。决策树可以是二叉的,也可以是多叉的。对每个节点的衡量:1) 通过该节点的记录数;2) 如果是叶子节点的话,分类的路径;3) 对叶子节点正确分类的比例。有些规则的效果可以比其他的一些规则要好。YYYYNNNNw

3、1Tx0 w4Tx0 w3Tx0 w2Tx0 二叉决策树框图1.2 ID3算法 1.2.1 概念提取算法CLS 1) 初始化参数C=E,E包括所有的例子,为根;2) 如果C中的任一元素e同属于同一个决策类则创建一个叶子节点YES终止;否则依启发式标准,选择特征Fi=V1, V2, V3, Vn并创建判定节点,划分C为互不相交的N个集合C1,C2,C3,Cn; 3) 对任一个Ci递归。1.2.2 ID3算法 1) 随机选择C的一个子集W (窗口);2) 调用CLS生成W的分类树DT(强调的启发式标准在后);3) 顺序扫描C搜集DT的意外(即由DT无法确定的例子); 4) 组合W与已发现的意外,形

4、成新的W; 5) 重复2)到4),直到无例外为止。启发式标准:只跟本身与其子树有关,采取信息理论用熵来量度。 熵是选择事件时选择自由度的量度,其计算方法为:P=freq(Cj,S)/|S|;INFO(S)=-SUM(P*LOG(P);SUM()函数是求j从1到n的和。Gain(X)=Info(X)-Infox(X);Infox(X)=SUM( (|Ti|/|T|)*Info(X); 为保证生成的决策树最小,ID3算法在生成子树时,选取使生成的子树的熵(即Gain(S)最小的特征来生成子树。ID3算法对数据的要求:1) 所有属性必须为离散量; 2) 所有的训练例的所有属性必须有一个明确的值;3)

5、 相同的因素必须得到相同的结论且训练例必须唯一。1.3 C4.5算法由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2) 在树构造过程中进行剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进行处理。C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。C4.5算法有如下缺点:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的

6、低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。分类决策树算法:C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。分类决策树算法是从大量事例中进行提取分类规则的自上而下的决策树。决策树的各部分是:根:学习的事例集;枝:分类的判定条件;叶:分好的各个类。1.3.1 C4.5对ID3算法的改进 1) 熵的改进,加上了子树的信息。Split_Infox(X)= -SUM( (|T|/|Ti|)*LOG(|Ti|/|T|); Gain ratio(X)= Gain(X)/Split_Infox(X); 2) 在输入数据上的改进 因素

7、属性的值可以是连续量,C4.5对其排序并分成不同的集合后按照ID3算法当作离散量进行处理,但结论属性的值必须是离散值。 训练例的因素属性值可以是不确定的,以?表示,但结论必须是确定的。 3) 对已生成的决策树进行裁剪,减小生成树的规模。2 The k-means algorithm(k平均算法)k-means algorithm是一个聚类算法,把n个对象根据它们的属性分为k个分割,k n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。假设有k个群组Si, i=1,2,.,k。i是群组S

8、i内所有元素xj的重心,或叫中心点。k平均聚类发明于1956年,该算法最常见的形式是采用被称为劳埃德算法(Lloyd algorithm)的迭代式改进探索法。劳埃德算法首先把输入点分成k个初始化分组,可以是随机的或者使用一些启发式数据。然后计算每组的中心点,根据中心点的位置把对象分到离它最近的中心,重新确定分组。继续重复不断地计算中心并重新分组,直到收敛,即对象不再改变分组(中心点位置不再改变)。劳埃德算法和k平均通常是紧密联系的,但是在实际应用中,劳埃德算法是解决k平均问题的启发式法则,对于某些起始点和重心的组合,劳埃德算法可能实际上收敛于错误的结果。(上面函数中存在的不同的最优解)虽然存在

9、变异,但是劳埃德算法仍旧保持流行,因为它在实际中收敛非常快。实际上,观察发现迭代次数远远少于点的数量。然而最近,David Arthur和Sergei Vassilvitskii提出存在特定的点集使得k平均算法花费超多项式时间达到收敛。近似的k平均算法已经被设计用于原始数据子集的计算。从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。k平均算法的一个缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。另外,算法还假设均方误差是计算群组分散度的最佳参数。3 SVM(支

10、持向量机)支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机属于一般化线性分类器。它们也可以被认为是提克洛夫规范化(Tikhonov Regularization)方法的一个特例。这种分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区。因此支持向量机也被称为最大边缘区分类器。在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用

11、在机器学习和计算机视觉的数据集聚(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量像能够观测到的一样包含在内从而计算最大似然的期望值;另外一步是最大化(M),也就是最大化在 E 步上找到的最大似然的期望值从而计算参数的最大似然估计。M 步上找到的参数然后用于另外一个 E 步计算,这个过程不断交替进行。Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Mach

12、ine,简称SVM)。支持向量机的提出有很深的理论背景。支持向量机方法是在近年来提出的一种新方法,但是进展很快,已经被广泛应用在各个领域之中。SVM的主要思想可以概括为两点:(1) 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2) 它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线

13、性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论,但对多数人来说,以前学到的或常用的是约束条件为等式表示的方式,但在此要用到以不等式作为必须满足的条件,此时只要了解拉格朗日理论的有关结论就行。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的模式识别支持向量机指南。van

14、der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。有很多个分类器(超平面)可以把数据分开,但是只有一个能够达到最大分割。我们通常希望分类的过程是一个机器学习的过程。这些数据点并不需要是中的点,而可以是任意(统计学符号)中或者 (计算机科学符号) 的点。我们希望能够把这些点通过一个n-1维的超平面分开,通常这个被称为线性分类器。有很多分类器都符合这个要求,但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。设样本属于两个类,用该样本训练SVM得到的最大间隔超平

15、面。在超平面上的样本点也称为支持向量。SVM的优势:由于支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(Generalizatin Ability)。支持向量机方法的几个主要优点是:l 可以解决小样本情况下的机器学习问题;l 可以提高泛化性能;l 可以解决高维问题;l 可以解决非线性问题;l 可以避免神经网络结构选择和局部极小点问题。4 贝叶斯(Bayes)分类器贝叶斯分类器的分类原理是通过某对象的先验概率

16、,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶斯分类器主要有四种,分别是:Naive Bayes、TAN、BAN和GBN。贝叶斯网络是一个带有概率注释的有向无环图,图中的每一个结点均表示一个随机变量,图中两结点间若存在着一条弧,则表示这两结点相对应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的。网络中任意一个结点X 均有一个相应的条件概率表(Conditional Probability Table,CPT),用以表示结点X 在其父结点取各可能值时的条件概率。若结点X 无父结点,则X 的CPT 为其先验概

17、率分布。贝叶斯网络的结构及各结点的CPT 定义了网络中各变量的概率分布。贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , . , cm),还包含一组结点X = ( X1 , X2 , . , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征向量为x = ( x1 , x2 , . , x n) ,则样本D 属于类别ci 的概率为P( C = ci | X = x) = P( C = ci | X1 = x1 , X2 = x 2 , . , Xn = x n) ,( i = 1 ,2 , . , m)

18、 。而由贝叶斯公式可得:P( C = ci | X = x) = P( X = x | C = ci) P( C = ci) / P( X = x)其中,P( C = ci) 可由领域专家的经验得到,称为先验概率;而P( X = x | C = ci) 和P( X = x) 的计算则较困难;P( C = ci | X = x)称为后验概率。应用贝叶斯网络分类器进行分类主要分成两阶段。第一阶段是贝叶斯网络分类器的学习,即从样本数据中构造分类器;第二阶段是贝叶斯网络分类器的推理,即计算类结点的条件概率,对分类数据进行分类。这两个阶段的时间复杂性均取决于特征值间的依赖程度,甚至可以是NP完全问题(世

19、界七大数学难题之一),因而在实际应用中,往往需要对贝叶斯网络分类器进行简化。根据对特征值间不同关联程度的假设,可以得出各种贝叶斯分类器,Naive Bayes、TAN、BAN、GBN就是其中较典型、研究较深入的贝叶斯分类器。4.1 朴素贝叶斯(Naive Bayes)分类器分类是将一个未知样本分到几个预先已知类的过程。数据分类问题的解决是一个两步过程:第一步,建立模型,描述预先的数据集或概念集。通过分析由属性/特征描述的样本(或实例,对象等)来构造模型。假定每一个样本都有一个预先定义的类,由一个被称为类标签的属性确定。为建立模型而被分析的数据元组形成训练数据集,该步也称作有指导的学习。4.1.

20、1 决策树模型和朴素贝叶斯模型的比较在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。决策树模型通过构造树来解决分类问题。首先利用训练数据集来构造一棵决策树,一旦树建立起来,它就可为未知样本产生一个分类。在分类问题中使用决策树模型有很多的优点,决策树便于使用,而且高效;根据决策树可以很容易地构造出规则,而规则通常易于解释和理解;决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小;决策树模型的另外一大优点就是可以对有许多属性的数据集构造决策树。决策树模型也有一些缺

21、点,比如处理缺失数据时的困难,过度拟合问题的出现,以及忽略数据集中属性之间的相关性等。和决策树模型相比,朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。朴素贝叶斯模型:Vmap=a

22、rg maxP( Vj | a1,a2.an)Vj属于V集合,其中j=1,2,N,即共有N类;Vmap是给定一个example,得到的最可能的目标值;a1.an是这个example里面的属性/特征,共有n个特征。Vmap为目标值,就是后面计算得出的概率最大的一个,所以用max 来表示,它意味着该example应该/最可能为得到最大后验概率的那个类,这与前面讲到的贝叶斯分类器是一致的。将贝叶斯公式应用到 P( Vj | a1,a2.an)中,可得到:Vmap= arg maxP(a1,a2.an | Vj ) P( Vj ) / P (a1,a2.an)又因为朴素贝叶斯分类器默认a1.an他们互

23、相独立的,所以P(a1,a2.an)对于结果没有影响(因为所有的概率都要除同一个东西之后再比较大小)。于是可得到:Vmap= arg maxP(a1,a2.an | Vj ) P( Vj )然后,朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立。换言之,该假定说明给定实例的目标值情况下,观察到联合的a1,a2.an的概率正好是对每个单独属性的概率乘积:P(a1,a2.an | Vj ) = i P( ai| Vj )。因此,朴素贝叶斯分类器公式为:Vnb =arg maxP( Vj )i P ( ai | Vj )。5 邻近算法(k-Nearest Neighbor alg

24、orithm,k最近邻算法)下图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3(即实线圆内部),由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5(即虚线圆内),由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近

25、的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,

26、而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。因此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。6 回归树分类器如果要选择在很大范围的情形下性能都好的、同时不需要应用开发者付出很多的努力并且易于被终端用户理解的分类技术的话,那么Brieman,

27、Friedman, Olshen和Stone(1984)提出的分类树方法是一个强有力的竞争者。6.1 分类树在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。6.2 递归划分让我们用变量Y表示因变量(分类变量),用X1, X2, X3,.,Xp表示自变量。通过递归的方式把关于变量X的p维空间划分为不重叠的矩形。首先,一个自变量被选择,比如Xi和Xi的一个值xi,比方说选择xi把p维空间为两部分:一部分是p维的超矩形,其中包含的点都满足Xixi。接着,这两部分中的一个部分通过选择一个变量和该变量的划分值以相似的方式被划分。这导致了三个矩形区域。

28、随着这个过程的持续,我们得到的矩形越来越小。这个想法是把整个X空间划分为矩形,其中的每个小矩形都尽可能是同构的或“纯”的。“纯”的意思是(矩形)所包含的点都属于同一类。我们认为包含的点都只属于一个类(当然,这并不总是可能的,因为经常存在一些属于不同类的点,但这些点的自变量有完全相同的值)。7 Adaboost分类器Adaboost是adaptive boost的缩写,它是一种迭代算法。其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及

29、上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器融合起来,作为最后的决策分类器。使用Adaboost分类器可以排除一些不必要的训练数据特征,并将重点放在关键的训练数据上。该算法其实是一个弱分类算法的提升过程,这个过程通过不断的训练,可以提高对数据的分类能力。整个过程如下所示:l 先通过对N个数据的训练样本的学习得到第一个弱分类器;l 将分错的样本和其他的新数据一起构成一个新的N个数据的训练样本,通过对这个样本的学习得到第二个弱分类器 ;l 将1.和2.都分错了的样本加上其他的新样本构成另一个新的N个数据的训练样本,通过对这个

30、样本的学习得到第三个弱分类器 ;l 最终经过提升的强分类器,即某个数据被分为哪一类要通过,的多数表决。对于boosting算法,存在两个问题:l 如何调整训练集,使得在训练集上训练的弱分类器得以进行;l 如何将训练得到的各个弱分类器联合起来形成强分类器。针对以上两个问题,adaboost算法进行了调整:l 使用加权后选取的训练数据代替随机选取的训练样本,这样将训练的焦点集中在比较难分的训练数据样本上;l 将弱分类器联合起来,使用加权的投票机制代替平均投票机制。让分类效果好的弱分类器具有较大的权重,而分类效果差的分类器具有较小的权重。Adaboost算法是Freund和Schapire根据在线分

31、配算法提出的,他们详细分析了Adaboost算法错误率的上界,以及为了使强分类器达到要求的错误率,算法所需要的最多迭代次数等相关问题。与Boosting算法不同的是,adaboost算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖掘弱分类器算法的能力。Adaboost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即其中 n 为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出

32、出来,从而得到一个新的样本分布。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过T次循环,得到T个弱分类器,把这T个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。8 人工神经网络(ANN, artificial neural network)人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络基本模型人工神经网络研究的局限性:l 研究受到脑科学研究成果的限制; l 缺少一个完整、成熟的理论体系;l 研究带有浓厚的策略和经验色彩;l 与传统技术的接口不成熟。 一般而言, AN

33、N与经典计算方法相比并非优越, 只有当常规方法解决不了或效果不佳时ANN方法才能显示出其优越性。尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断、特征提取和预测等问题,ANN往往是最有利的工具。另一方面, ANN对处理大量原始数据而不能用规则或公式描述的问题, 表现出极大的灵活性和自适应性。8.1 BP网络人工神经网络以其具有自学习、自组织、较好的容错性和优良的非线性逼近能力,受到众多领域学者的关注。在实际应用中,80%90%的人工神经网络模型是采用误差反传算法或其变化形式的网络模型(简称BP网络),目前主要应用于函数逼近、模式识别、分类和数据压缩或数据挖掘。 (1)BP网络建模

34、特点:l 非线性映照能力:神经网络能以任意精度逼近任何非线性连续函数。在建模过程中的许多问题正是具有高度的非线性。l 并行分布处理方式:在神经网络中信息是分布储存和并行处理的,这使它具有很强的容错性和很快的处理速度。l 自学习和自适应能力:神经网络在训练时,能从输入、输出的数据中提取出规律性的知识,记忆于网络的权值中,并具有泛化能力,即将这组权值应用于一般情形的能力。神经网络的学习也可以在线进行。l 数据融合的能力:神经网络可以同时处理定量信息和定性信息,因此它可以利用传统的工程技术(数值运算)和人工智能技术(符号处理)。l 多变量系统:神经网络的输入和输出变量的数目是任意的,对单变量系统与多

35、变量系统提供了一种通用的描述方式,不必考虑各子系统间的解耦问题。(2)样本数据的收集和整理分组:采用BP神经网络方法建模的首要和前提条件是有足够多典型性好和精度高的样本。而且,为监控训练(学习)过程使之不发生“过拟合”和评价建立的网络模型的性能和泛化能力,必须将收集到的数据随机分成训练样本、检验样本(10%以上)和测试样本(10%以上)3部分。此外,数据分组时还应尽可能考虑样本模式间的平衡。由于传统的误差反传BP算法较为成熟,且应用广泛,因此努力提高该方法的学习速度具有较高的实用价值。BP算法中有几个常用的参数,包括学习率,动量因子,形状因子及收敛误差界值E等。这些参数对训练速度的影响最为关键

36、。9 Fisher分类器X空间:WTX-W0 0 X1 -WTX-W0 0 X1Y = WTX-W0 h where the threshold h is found by sorting S on the values of A and choosing the split between successive values that maximizes the criterion above. An attribute A with discrete values has by default one outcome for each value, but an option allows

37、 the values to be grouped into two or more subsets with one outcome for each subset. The initial tree is then pruned to avoid overfitting. The pruning algorithm is based on a pessimistic estimate of the error rate associated with a set of N cases, E of which do not belong to the most frequent class.

38、 Instead of E/N, C4.5 determines the upper limit of the binomial probability when E events have been observed in N trials, using a user-specified confidence whose default value is 0.25. Pruning is carried out from the leaves to the root. The estimated error at a leaf with N cases and E errors is N t

39、imes the pessimistic error rate as above. For a subtree, C4.5 adds the estimated errors of the branches and compares this to the estimated error if the subtree is replaced by a leaf; if the latter is no higher than the former, the subtree is pruned. Similarly, C4.5 checks the estimated error if the

40、subtree is replaced by one of its branches and when this appears beneficial the tree is modified accordingly. The pruning process is completed in one pass through the tree. C4.5s tree-construction algorithm differs in several respects from CART 9, for instance: Tests in CART are always binary, but C

41、4.5 allows two or more outcomes. CART uses the Gini diversity index to rank tests, whereas C4.5 uses information-based criteria. CART prunes trees using a cost-complexity model whose parameters are estimated by cross-validation; C4.5 uses a single-pass algorithm derived from binomial confidence limi

42、ts. This brief discussion has not mentioned what happens when some of a cases values are unknown. CART looks for surrogate tests that approximate the outcomes when the tested attribute has an unknown value, but C4.5 apportions the case probabilistically among the outcomes.1.3 Ruleset classifiersComplex decision trees can be difficult to understand, for instance because information about one class is usually distributed throughout the tree. C4.5 introduced an alternative formalism consisting of a list of rules of the f

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!