陶瓷力学性能

上传人:z****2 文档编号:159281943 上传时间:2022-10-08 格式:DOC 页数:17 大小:738.50KB
收藏 版权申诉 举报 下载
陶瓷力学性能_第1页
第1页 / 共17页
陶瓷力学性能_第2页
第2页 / 共17页
陶瓷力学性能_第3页
第3页 / 共17页
资源描述:

《陶瓷力学性能》由会员分享,可在线阅读,更多相关《陶瓷力学性能(17页珍藏版)》请在装配图网上搜索。

1、陶瓷的力学性能newmaker:学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其W而表面能小。因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使 因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。本节主要讨论弹性、硬度、强 1素、环境因素的影响。【模量亍性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。因此,其弹性性质就显得尤为重要。与: 3的弹性变形可用虎克定律来描述。形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。弹性模量反映的是原子间

2、距的微小变化所需外力的大小 二室温下的弹性模量。S11.3窿磯的弾性漢数振EfGFn#料E/GPa10(101-241瘓莱石14?LaC3N -55fj欣棒3545WCCo400-530Cr250 45nMK别0亠髭(JANSC4 5lilWME侧H卅4J F广-tup msi風i22W5K0IDSjO;TKljNaCJ.LlFThOi1刊【模量的影响和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。原子间距增大,由成j变为d,(见图11.2)而该 1性模量降低。因此,固体的弹性模量一般均随温度的升高而降低。图11.3给出一些陶瓷的弹性模量随温度的变化情况。一般来说 往往

3、具有较高的弹性模量。图11.2原了间鉛合力随原子间距的变化iDO1;5 判 牢益Tfc匚kl.3 酒度对詡性頰就的重响)QD(阱N in )ra:i 4聊性愎気i?着丿气之间的关靈熔点的关系 i低反映其原子间结合力的大小。一般来说,弹性模量与熔点成正比例关系。不同种类的陶瓷材料样性模量之间大体上有如下关系$碳化物。f述陶瓷材料弹性变形的重要参数。表11.4给出一些陶瓷材料和金属的泊松比。可以看出除BeO与MgO外大多数陶瓷材料的泊松 1松比。为松氏的迓悩値HfC*114 一些陶瓷林料在宝温下的泊松比0. 170.17大瘩黴盘広0却AMhStO0.25-0300J3材料致密度的关系(密度对其弹性

4、模量影响很大。图11.5给出AL2O3陶瓷的弹性模量随气孔率的变化及某些理论计算值的比较。Fros指出弹性模量与系图口扁 气孔率对Ay h陶瓷彈性模量的燼响孔率的增加,陶瓷的弹性模量量急剧下降。弹性模量 t决定于原子间结合力.即与原子种类和化学键类型有关,所以弹性模量对显微组织并不敏感.一旦材料种类确定,则通过热处理等!极为有限的-但对由不同组元构成的复合材料的弹性模量来说,由于各组元的弹性模量不同,因而复合材料的弹性模量随各组元的匚律不能准确地描述复合材料的弹性模量,只能粗略地估算。当需要复合材料准确的弹性模量值时,可进行实际测量。11.7给出AI2O3+SiCw、ZrO2(Y2O3)+Si

5、Cw、及AI2O3+ZrO2(Y2O3)+SiCw等复合材料的弹性模最随第M相含量的变化情况。I许的情况下,可以通过在一定范围内调整两相比例来获得所需的弹性模量值。 Al Qr郎 罰 * 心畀Y) n AitCriiivorsiiCi (srRiiit:,jM沖嘟!喘霑轴tZrO:口门倉貳坟童de挥知赴Sit 憧站I皿】图LM ftiJh + ZrOj + SiC.51合材料前裨桂根.fit1 U.7麻二射制砒山忆SSt合捞舞的种性樱世J重要力学性能参数之一,金属材料的硬度与强度之间有直接的对应关系。而陶瓷材料属脆性材料。测定硬度时,在压头压入区域会 合破坏的伪塑性变形。因此,陶瓷材料的硬度很

6、难与其强度直接对应起来。但硬度高、耐磨性好是陶瓷材料的主要优良特性之一 系,加之在陶瓷材料的力学性能评价中,硬度测定是使用最普遍且数据获得比较容易的评价方法之一,因而占有重要的地位。0定陶瓷材料硬度的方法最常用的是维氏硬度。亍硬材料.因而多数情况下底痕的边缘产生破碎,同时在任痕角上沿对角线延长方向上产生裂纹、而压痕形状不如金属材料那样规则 E困难,所以在试样制备时,其测试表面最后应用金刚石研磨抛光成镜面。维氏硬度测定的同时.根据区痕角部产生裂纹的长度.通 右韧性。因此,维氏硬度测试是一种简单经济、一举多得的方法。一些常用陶瓷的维氏硬度值。有时陶瓷材料也测量洛氏硬度值HR,洛氏硬度又分为HRA、

7、HRC和HRD。録14用一黑常用陶鞄材料的礎度值材Mt!V7CPaM料EiV/CP*AlaOj.23.7SeO)1.4SE33MgALiG,IMSiiM典ZtSK47.1ZfOit 灿/诵,S16ZrQtCClO)14.1a,cIE$ dgo6用C-BM70匚大都是采用维氏硬度法和显微硬度法。陶瓷材料的高温硬度测定。同其它高温性能测试相比,所用试样量少,且测定方法简便;. 1度有一定对应性,同时通过长时间保持载荷可以显示其蠕变特性,所以高温使区是陶瓷材料使用较普遍的高温性能测试方法。通过 I测试陶瓷的高温断裂韧性,但高温硬度对温度的敏感性比强度对温度的敏感性大,即随温度的提高硬度值比强度值下降

8、得快,致使 ;他方法测得的结果有较大的差异,因此,用压痕法测高温裂韧性时.要对其计算公式加以修正。图11.8给出硬度随温度的变化曲4DQ 乩附1就阳图li用1护並叫与匚v&気儿的高够哽度田nr臨瓷的變氏厦旣与禅性棋量的按拓,性能之间的关系 3材料,维氏硬度HV与弹性模量E之间的关系如图11.9所示,大体上呈直线关系,其定量关系式为E/20HV。但此关系只是在常温 嘀,硬度的下降比弹性模量的下降明显,所以E/HV值随温度的升高而增加。wu等人试图用维氏硬度法测得的HV/KIC比值作 寸旨标。上述比值并非无量纲也难以赋予确切的物理意义。但硬度在某种意义上表征的是变形抗力.断裂动性表征的是裂纹扩展阻

9、力 J程度上可以表示材料的脆性断裂程度。;他学键所决定、在室温下几乎不能产生滑移或位错运动,因而很难产生塑性变形,所以其破坏方式为脆性断裂。一般陶瓷材料在室1图11.10中1所示,即在断裂前几乎没有塑性变形。因此陶瓷材料室温强度测定只能获得一个断裂强度。值。而金属材料则可获?瓷材料的室温强度是弹性变形抗力即当弹性变形达到极限程度而发生断裂时的应力。强度与弹性模量和硬度一样,是材料本身的物 I的成分组织结构,同时也随外界条件(如温度、应力状态等)的变化而变化。帕勺脆性,在绝大多数情况下都是测定其弯曲强度,而很少测定拉伸强度,表11.6给出了一些常见陶瓷材料强度的数据。1L4 聲寿衽杆料的材斛呼曲

10、aA/M娈整石(用阳【他也i一 1_WD 1jrfj-jayIDO150172-20塾结TW、口 一石需岂孔鼻、L?3W5签谿卅叔空3站弋孔率)曲扎喜)LjS-240】船空堵莫莱石心另空率i1751(HT喊擔禺ft石些弋孔串)林压越闻(196弋乱单)碗T励350_側眾躬ShNML輛:率)Tie题反妙住5(1 % -2S % *C孔率)1MO- J501-00-2W甜兀苜气孔剌_烧箱SiCt的事j4J0520!5!iSW.MC(in 轉沖曲筍)140450笫督昶t妁第醐弋扎事)J4_烬锲3iOsLl轉克试毅慕竟所玻璃卵L|I1 -瓦机加工论嶽南胸进- 1-lE*D- 1站压氐口 3陽PFL率j-

11、 1希虚FCWz懵弋旳家0-网TSDFt?1 3一持弗畐楼II3JS-Att土鶴5,1晰I2Hi热火砖帥坯一舫%輒孔率)&期一1 2 隔菽舟睦(吊毗勺孔事)1458T隔洛火砖U驰*1亡40 1U|:2组织因素 f的脆性来自于其化学健的种类。实际陶瓷晶体中大都以方向性较强的离子链和共价健为主。多数晶体的结构复杂,平均原子间距大 ;,同金属材料相比.在室温下发生的滑移几乎没有,位错的滑移很难发生。因此很容易由表面或内部存在的缺陷引起应力集中而产 3材料脆性的原因所在、也是其强度值分散性较大的原因所在。都是用烧结的方法制造的,在晶界上大都存在着气孔、裂纹和玻璃相即非晶相等。而且有时在晶内也存在有气孔

12、、层错、位借等缺 匚于本身材料外,上述微观组织因素对强度也有显著的影响(即微观组织敏感性),其中气孔率与晶粒尺寸是两个最重要的影响因素。虽度的影响。气孔是绝大多数陶瓷的主要组织缺陷之一,气孔明显地降低了载荷作用横截面积。同时气孔也是引起应力集中的地方3的强度随气孔束的增加近似按指数规律下降。有关气孔率与温度的关系式有多种提案,其中最常用的经验公式:)率;的强度;其值在47之间.许多试验数据与此式接近。IAL203陶瓷的弯曲强度和气孔率之间的关系。可以看出试验值与理论值符合较好。由上述可知,为了获得高强度,应制备接近理 L。00211.19陶奋庁金厲的应力-战聖曲統粪理0.1 D 卫 0304

13、0.5*点理斡土 轴巧的强度与吒孔車的关靈寸强度的影响。陶瓷材料的强度和晶粒尺寸的关系与金属有类似的规律。I Ti02陶瓷强度与晶粒尺寸的关系;多晶AL203、MgO和结晶玻璃的粒径与强度之间关系也符合Hall-petch关系式。* _-4 - EX内密裂陵扩嗣9111.12 TiGi的駆桩尺寸时侵度的龙响图11.U 甬驚的豁酸应力与邇廈的依納关克那僦图匚上讲,实验研究已得到了 of与d-1/2关系趋势相一致的结果。?瓷来讲,要做出只有晶粒尺寸大小不同而其他组织参量都相同的试样是非常困难的,因此,往往其它因素与晶粒尺寸同时对强度起 ?瓷中的of与d-1/2的关系并非那么容易搞清,还有待于进一步

14、研究。但无论如何,室温断裂强度无疑地随晶粒尺寸的减小而增高 来说,努力获得细晶粒组织,对提高室温强度是有利而无害的。主质与厚度、晶粒形状对强度的影响。陶瓷材料的烧结大都要加入助偏剂,因此形成一定量的低熔点晶界相面促进致密化。晶界相 叟)对强度有显著影响。晶界相最好能起阻止裂纹过界扩展并松弛裂纹尖端应力场的作用。晶界玻璃相的存在对强度是不利的,所以 拍勺数量,并通过热处理使其晶化。对单相多晶陶瓷材料,晶粒形状最好为均匀的等轴晶粒,这样承载时变形均匀而不易引起应力集 :分发挥。i强度单相多晶陶瓷的显微组织应符合如下要求晶粒尺寸小,晶体缺陷少,晶粒尺寸均匀、等轴,不易在晶界处引起应力集中; 量减少脆

15、性玻璃柜含量,应能阻止晶内型纹过界扩展,并能松弛裂纹尖端应力集中;减少气孔率,使其尽量接近理论密度。强化。为了提高陶瓷材料的强度,除了要控制上述组织因素外.更常见的是通过复合的办法提高强度.例如自生复相陶瓷棒晶强 散强化纤维强化、晶须强化等。在陶瓷的韧化一节中,除微裂纹韧化外.其它的强化方法均有强化效果,这里不再赘述。的影响个最大的特点就是高温强度比金属高得多。未来汽车用燃气发动机的附温度为1370t这样的工作温度,N、Cl、Ch系的超耐热合金 陶瓷却大有希望。1度当温度TVDSTm(T为熔点)时.基本保持不变,当温度高于0. 5h时才出现明显的降低13I. x 一等人提出图11.13所示的强

16、度 惜出,整个曲线可分为三个区域。在低温A区,断裂前无塑性变形.陶房的断裂主要决吁试样内部既存缺陷(裂纹、气孔等周起的 T裂,其断裂应力随温度犒变化不大;在中间温度B区,由于断裂前产生塑性变形,因而强度对既存缺陷的敏感t降低,断裂受塑性 匚的L升而有明显的降低。7升高时(C区)二维滑移系开动,位错塞积群中的一部分位借产主文B移而沿另外的滑移而继续滑移.松弛了应力集中因而抑制了裂F的z又滑移随温度的升高而变得活跃,由此而产生的对位错塞积群前端应力的松弛作用就区发明显。所以在此区域内,断裂应力:J趋势。图11.13给出的E陶瓷材料的强度随温度变化关系的一般趋势,并非对所有的陶瓷材料都符和很好.也并

17、附有陶瓷材料的1度随材料的纯度、微观组织结构因素和表面状态(粗糙度)的变化而变化.因此.即使是同一种材料.由于制备工艺不同。随温度的I 一些陶瓷的强度随温度的变化曲线。根据这些曲线.我们可以确定相立陶瓷材料的最高使用温度。陶瓷的高温强度受加载速率的影 5率的提高而提高.这同金属的高温变形抗力与加载速率的关系是类似的。1 400I 200ooo r反应烧结Bit?600试验温度T/匸11.14度对陶瓷材料强度的影响3材料在室温下甚至在高的温度范围很难产生塑性变形,因供断裂方式为脆性断裂.所以陶瓷材料的裂纹敏感性很强。基于陶瓷的这 ?性能是评价陶瓷材料力学性能朝重要指标,同时也是由于这种特性.其断

18、裂行为非常适合于用线弹性断裂力学来描述。最普遍用来 T裂力学参数就是断裂韧性(KIC)。-些陶瓷材料的J断裂韧性值,并附几种常用金属村料的断裂韧性以作对比.可见金属材料的值比陶瓷高一个数量级。要考虑使陶 匚挥.扩大在实际中的应用,就必须想办法大幅度提高和改善陶瓷的)。曦心 一些淘鞭与一些金厦断軽翻性值的出较J -1.肌巧4 4.5*75|ZrOj! 12-155-4址-匚业的33届枫5 fl.i1571SIS:3,5-6FVCNhCj-Mq flf4JTtCAHF7V7S铝合僉:是描述材料瞬间断裂时的裂纹尖端临界应力场强度因子。在工程上即使在很低的应力下经长时间作用也会使陶瓷材制发生断裂、 (

19、环载荷作用下,会产生低应力疲劳断裂。因此说.陶瓷材料具有延迟断裂的特征。为了描述这种具有时间效应的断裂现象.必须 亍其裂纹尖端应力场强度因子用之间的关系。图11.15给出二者之间关系的示意图(KI-v图).应力强蚁因小邑应力掘强It宙手恆严矽扩展噫率口的关系1 klG爭晶AhtH的询粹牲XX文章内容仅供参考(投稿)(2005-3-12,环瓷相关文章:工艺 newmaker (2005-3-12)1 newmaker (2005-3-12)t在刀具材料改性中的应用 姚建华 谢颂京(2005-3-7):聚碳硅烷转化陶瓷中的应用谢征芳陈朝辉李永清郑文伟胡海峰(2005-2-21)汨勺研究现状四川大学熊继沈保罗(2005-1-5)11作工艺简介 newmaker (2004-12-22)表面防磨强化技术及应用newmaker (2004-12-10)t展叶伟昌叶毅(2004-12-9)E陶瓷球 newmaker (2004-12-3)2O3-SiC纳米复合材料结构和机械性newmaker (2004-12-2)【录:工业陶瓷 工业陶瓷文章

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!