实验三变频原理实验

上传人:ren****ao 文档编号:158661655 上传时间:2022-10-05 格式:DOC 页数:14 大小:393.02KB
收藏 版权申诉 举报 下载
实验三变频原理实验_第1页
第1页 / 共14页
实验三变频原理实验_第2页
第2页 / 共14页
实验三变频原理实验_第3页
第3页 / 共14页
资源描述:

《实验三变频原理实验》由会员分享,可在线阅读,更多相关《实验三变频原理实验(14页珍藏版)》请在装配图网上搜索。

1、实验三 变频原理实验一、实验原理主要完成的实验为三相SPWM、SVPWM、及马鞍波变频原理实验及在各种变频模式下V/F曲线的测定等。异步电机转速基本公式为:其中n为电机转速,f为电源频率,p为电机极对数,s为电机的转差率。当转差率固定在最佳值时,改变f即可改变转速n。为使电机在不同转速下运行在额定磁通,改变频率的同时必须成比例地改变输出电压的基波幅值。这就是所谓的VVVF(变压变频)控制。工频50Hz的交流电源经整流后可以得到一个直流电压源。对直流电压进行PWM逆变控制,使变频器输出PWM波形中的基波为预先设定的电压/频率比曲线所规定的电压频率数值。因此,这个PWM的调制方法是其中的关键技术。

2、目前常用的变频器调制方法有SPWM,马鞍波PWM,和空间电压矢量PWM等方式。1、SPWM变频调速方式:正弦波脉宽调制法(SPWM)是最常用的一种调制方法,SPWM信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变,从而改变了主回路输出电压的大小。当改变正弦参考信号的频率时,输出电压的频率即随之改变。在变频器中,输出电压的调整和输出频率的改变是同步协调完成的,这称为VVVF(变压变频)控制。SPWM 调制方式的特点是半个周期内脉冲中心线等距、脉冲等幅,调节脉冲的宽度,使各脉冲面积之和与正弦波下的面积成正比例,因此,其调制波形接近于正弦波。在实际运用中对

3、于三相逆变器,是由一个三相正弦波发生器产生三相参考信号,与一个公用的三角载波信号相比较,而产生三相调制波。如图6-1所示。2、马鞍波PWM变频调速方式前面已经说过,SPWM信号是由正弦波与三角载波信号相比较而产生的,正弦波幅值与三角波幅值之比为m,称为调制比。正弦波脉宽调制的主要优点是:逆变器输出线电压与调制比m成线性关系,有利于精确控制,谐波含量小。但是在一般情况下,要求调制比m1时,正弦波脉宽调制波中出现饱和现象,不但输出电压与频率失去所要求的配合关系,而且输出电压中谐波分量增大,特别是较低次谐波分量较大,对电机运行不利。另外可以证明,如果m1,从而可以在高次谐波信号分量不增加的条件下,增

4、加其基波分量的值,克服SPWM的不足。目前这种变频方式在家用电器上应用广泛,如变频空调等。3、空间电压矢量PWM变频调速方式对三相逆变器,根据三路开关的状态可以生成六个互差60的非零电压矢量V1V6,以及零矢量V0,V7,矢量分布如图6-3所示。当开关状态为(000)或(111)时,即生成零矢量,这时逆变器上半桥或下半桥功率器件全部导通,因此输出线电压为零。图6-3 空间电压矢量的分布由于电机磁链矢量是空间电压矢量的时间积分,因此控制电压矢量就可以控制磁链的轨迹和速率。在电压矢量的作用下,磁链轨迹越是接近圆,电机脉动转矩越小,运行性能越好。为了比较方便地演示空间电压矢量PWM控制方式的本质,我

5、们采用了最简单的六边形磁链轨迹。尽管如此,其效果仍优于SPWM方法。二、实验内容1、三相正弦波脉宽度调制(SPWM)变频原理实验1.1实验目的(1)掌握SPWM的基本原理和实现方法。(2)熟悉与SPWM控制有关的信号波形。1.2实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK13三相异步电动机变频调速控制3双踪示波器1.3、实验方法(1)接通挂件电源,关闭电机开关,调制方式设定在SPWM方式下(将控制部分S、V、P的三个端子都悬空),然后开启电源开关。(2)点动“增速”按键,将频率设定在0.5Hz,在SPWM部分观测三相正

6、弦波信号(在测试点“2、3、4”),观测三角载波信号(在测试点“5”),三相SPWM调制信号(在测试点“6、7、8”);再点动“转向”按键,改变转动方向,观测上述各信号的相位关系变化。(3)逐步升高频率,直至到达50Hz处,重复以上的步骤。(4)将频率设置为0.5HZ60HZ的范围内改变,在测试点“2、3、4”中观测正弦波信号的频率和幅值的关系。1.4实验报告要求(1) 画出与SPWM调制有关信号波形,说明SPWM的基本原理。(2) 分析在0.5HZ50Hz范围内正弦波信号的幅值与频率的关系。(3) 分析在50HZ60Hz范围内正弦波信号的幅值与频率的关系。2、三相马鞍波脉宽调制变频原理实验2

7、.1实验目的(1)通过实验,掌握马鞍波脉宽调制的原理及其实现方法。(2)熟悉与马鞍波脉冲宽度调制有关的信号波形。2.2实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK13三相异步电动机变频调速控制3双踪示波器自备2.3实验原理马鞍波PWM调制技术是VVVF变频器中经常采用的技术,这种技术主要是通过对基波正弦信号注入三次谐波,形成马鞍波。采用马鞍波做为参考波信号进行PWM调制,与SPWM调制方式相比,马鞍波调制的主要特点是电压较高,调制比可以大于1,形成过调制。2.4实验方法(1)接通挂件电源,关闭电机开关,并将调制方式设定

8、在马鞍波方式下(将控制部分V、P两端用导线短接,S端悬空),然后打开电源开关。(2)点动“增速”按键,将频率设定在0.5Hz。用示波器观测SPWM部分的三相正弦波信号(在测试点“2、3、4”),三角载波信号(在测试点“5”),三相SPWM调制信号(在测试点“6、7、8”);再点动“转向”按键,改变转动方向,再观测上述各信号的相位关系的变化。(3)逐步升高频率,直至50Hz处,重复以上的步骤。(4)将频率设置为0.5Hz60Hz的范围内改变,在测试点“2、3、4”观测马鞍波信号的频率和幅值的关系。2.5实验报告要求(1)画出与马鞍波调制PWM有关的主要信号波形,说明马鞍波PWM调制的基本原理。(

9、2)为什么采用马鞍波调制后的PWM输出电压比采用正弦波脉宽调制的PWM输出电压有较高的基波电压分量?2.6注意事项由于马鞍波PWM调制技术是在正弦波脉宽调制(SPWM)的基础上发展而来,其调制的原理与正弦波脉宽调制完全一致。故与正弦波脉宽调制共用其波形测试点。3、三相空间电压矢量变频原理实验3.1实验目的(1)通过实验,掌握空间电压矢量控制方式的原理及其实现方法。(2)熟悉与空间电压矢量控制方式有关的信号波形。3.2实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK13三相异步电动机变频调速控制3双踪示波器3.3实验方法(1

10、)接通挂件电源,关闭电机开关,并将调制方式设定在空间电压矢量方式下(将控制部分S、V两端用导线短接,P端悬空),然后打开电源开关。(2)点动“增速”按键,将频率设定在0.5Hz,用示波器观测SVPWM部分的三相矢量信号(在测试点“10、11、12”),三角载波信号(在测试点“14”), PWM信号(在测试点“13”),三相SVPWM调制信号(在测试点“15、16、17”);再点动“转向”按键,改变转动方向,再观测上述各信号的相位关系的变化。(3)逐步升高频率,直至50Hz处,重复以上的步骤。(4)将频率设置为0.5Hz60Hz的范围内改变,在测试点“13”中观测占空比与频率的关系(在V/F函数

11、不变的情况下)。3.4实验报告要求(1)简述空间电压矢量控制变频调速的原理。(2)画出在试验中观测到的所有波形。(3)简述注入“零矢量”的作用。4、SPWM、马鞍波、空间电压矢量调制方式下V/f曲线测定4.1实验目的(1)通过实验,了解SPWM调制方式下V/f曲线变化规律。(2)通过实验,了解马鞍波调制方式下V/f曲线变化规律。(3)通过实验,了解空间电压矢量PWM方式下V/f曲线变化规律。(4)定量分析“零矢量”的作用时间与输出电压的关系。4.2实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该挂件包含“三相电源输出”,“励磁电源”等几个模块。2DJK13三相异步电动机变频调速控制

12、3双踪示波器4万用表4.3实验步骤(1)接通挂件电源,关闭电机开关,并将调制方式设定在SPWM方式下(将控制部分S、V、P的三个端都悬空),然后打开电源开关。(2)将频率设定到0.5Hz,观测测试点“1”的电压波形,任意选择电压函数,记录相应的电压值。(3)将调制方式设定在马鞍波方式下(即控制部分V、P两端用导线短接,S端悬空)。(4)将频率设定到0.5Hz,观测测试点“1”的电压波形,任意选择电压函数,记录相应的电压值。(5)将调制方式设定在空间电压矢量方式下(即控制部分S、V两端用导线短接,P端悬空)。(6)将频率设定到0.5Hz,观测测试点“9”的电压波形及“13”点PWM的宽度,任意选

13、择电压函数,记录相应的电压值及PWM的占空比。4.4实验报告要求根据实验结果绘出不同变频模式下的V/f曲线,并分析。5、不同的变频模式下磁通轨迹观测实验5.1实验目的通过实验观测旋转磁通的轨迹和转速转向等,从而加深对电机恒磁通运行的认识。5.2实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK13三相异步电动机变频调速控制6双踪示波器自备5.3实验内容观测不同变频模式下的磁通轨迹。5.4实验方法(1)接通挂件电源,关闭电机开关,并将设定在SPWM方式下(将S、V、P三端子悬空),然后打开电源开关,将示波器的X、Y输入端分别接

14、磁通轨迹观测的X、Y测试孔,并将示波器置于X-Y方式。点动“增速”键将频率设定在0.5Hz,观察示波器中显示的磁通形状,再点动“转向”按键,改变转向,观察磁通轨迹的变化,再逐渐升高频率,观察磁通轨迹的变化。(2)设定在马鞍波PWM方式(用导线短接V、P两端子,S端悬空),重复上述的实验。(3)设定在电压空间矢量控制方式(用导线短接S、V两端子,P端悬空),重复上述的实验。5.5实验报告要求(1)画出在SPWM控制方式下旋转磁通的轨迹。(2)画出在马鞍波控制方式下旋转磁通的轨迹。(3)画出在空间矢量控制方式下的旋转磁通的轨迹。(4)对上述轨迹的变化做出分析。6、三相SPWM、马鞍波、SVPWM变

15、频调速系统实验6.1实验目的(1)掌握SPWM的调速基本原理和实现方法。(2)掌握马鞍波变频的调速基本原理和实现方法。(3)掌握SVPWM的调速基本原理和实现方法。6.2实验所需挂件及附件序号编 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK13三相异步电动机变频调速控制3DJ24三相鼠笼式异步电动机4双踪示波器6.3实验内容(1)正弦波脉宽调制(SPWM)变频调速实验(2)马鞍波变频调速实验(3)空间电压矢量(SVPWM)变频调速实验6.4实验方法(1)将DJ24电机与DJK13逆变输出部分连接,电机接成D形式,关闭电机开关,调制方式设定在SP

16、WM方式下(将S、V、P的三端子都悬空)。打开挂件电源开关,点动“增速”、“减速”和“转向”键,观测挂件工作是否正常,如果工作正常,将运行频率退到零,关闭挂件电源开关。然后打开电机开关,接通挂件电源,增加频率、降低频率以及改变转向观测电机的转速变化。(2)将频率退到零,改变设置到马鞍波PWM方式(用导线短接V、P两端子,S端悬空),增加频率、降低频率以及改变转向观测电机的转速变化。(3)将频率退到零,设置为电压空间矢量控制方式(用导线短接S、V两端子,P端悬空),再增加频率、降低频率以及改变转向观测电机的转速变化。在低转速的情况下,观察电机的运行状况,与正弦波脉宽调制下的进行比较。6.5实验报

17、告要求观察在不同的模式下电机运行状况,并分析原因。6.6注意事项(1)在频率不等于零的时候,不允许打开电机开关,以免发生危险。(2)切莫在电机运行中堵转,否则会导致无法修复的后果!附录DJK13挂件(三相异步电机变频调速控制)DJK13可完成三相正弦波脉宽调制SPWM变频原理实验、三相马鞍波(三次谐波注入)脉宽调制变频原理实验、三相空间电压矢量SVPWM变频原理等实验,面板图如下:图1 DJK13面板图1、显示、控制及计算机通讯接口控制部分由“转向”、“增速”、“减速”三个按键及四个钮子开关等组成。每次点动“转向”键,电机的转向改变一次,点动“增速”及“减速”键,电机的转速升高或降低,频率的范

18、围从0.5Hz60Hz,步进频率为0.5Hz。从0.5Hz50Hz范围内是恒转矩变频,50Hz60Hz为恒功率变频。K1、K2、K3、K4四个钮子开关为V/F函数曲线选择开关,每个开关代表一个二进制,将钮子开关拨到上面,表示“1”,将其拨到下面,表示“0”,从“0000”到“1111”共十六条V/F函数曲线。在按键的下面有“S、V、P”三个插孔,它的作用是切换变频模式。当三个全部都悬空时,工作在SPWM模式下;当短接“V”、“P”时,工作在马鞍波模式下。当短接“S”、“V”时,工作在SVPWM模式下。不允许将“S”、“P”插孔短接,否则会造成不可预料的后果。通讯接口用于本挂件与计算机联机(操作

19、方法详见附录),通过对计算机键盘和鼠标的操作,完成各种控制和在显示器上显示相应点的波形。使用时必须用本公司所附带的计算机插件板,专用软件与联接电缆。2、电压矢量观察 我们使用“旋转灯光法”来形象表示SVPWM的工作方式。通过对“V0V7”八个电压矢量的观察,更加形象直观的了解SVPWM的工作过程。3、磁通轨迹观测 在不同的变频模式下,其电机内部磁通轨迹是不一样的。面板上特别设有X、Y观测孔,分别接至示波器的X、Y通道,可观测到不同模式下的磁通轨迹。4、PLC控制接口 面板上所有控制部分(包括V/F函数选择,“转向”、“增速”、“减速”按键,“S、V、P”的切换)的控制接点都与PLC部分的接点一

20、一对应,经与PLC主机的输出端相连,通过对PLC的编程、操作可达到希望的控制效果。5、SPWM观测区SPWM及马鞍波的变频原理的波形观测(分别在对应的模式下才能观测到正确的波形)。测试点1:在这两种模式下的V/F函数的电压输出。测试点2、3、4:在SPWM模式下为三相正弦波信号,在马鞍波模式下为三相马鞍波信号。测试点5:高频三角波调制信号。测试点6、7、8:调制后的三相波形。6、SVPWM观测区SVPWM的波形观测(在SVPWM模式下才能观测到正确的波形)。 测试点9:在这SVPWM模式下的V/F函数的电压输出。测试点10、11、12:空间矢量三相的波形。测试点14:高频三角波调制信号。测试点13:三角波与V/F函数的电压信号合成后的PWM波形。测试点15、16、17:三相调制波形。7、三相主电路 主电路由单相桥式整流、滤波及三相逆变电路组成,逆变输出接三相鼠笼电机。主电路交流输入由一开关控制。逆变电路由六个IGBT管组成,其触发脉冲有相应的观测孔引出。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!