2022费曼的演讲与纳米科技

上传人:痛*** 文档编号:156392268 上传时间:2022-09-26 格式:DOC 页数:77 大小:82KB
收藏 版权申诉 举报 下载
2022费曼的演讲与纳米科技_第1页
第1页 / 共77页
2022费曼的演讲与纳米科技_第2页
第2页 / 共77页
2022费曼的演讲与纳米科技_第3页
第3页 / 共77页
资源描述:

《2022费曼的演讲与纳米科技》由会员分享,可在线阅读,更多相关《2022费曼的演讲与纳米科技(77页珍藏版)》请在装配图网上搜索。

1、费曼的演讲与纳米科技 第一部分:费曼在其底层的丰富中都有哪些构想。一组: 费恩曼在1959的美国物理学会会议上做出了底层的丰富演说。在演说中,费恩曼提出了许多关于纳米尺度上的构想,主要分为四大点。 1.在针尖上写下24册的大英百科全书(包括如何写微小文字和如何读取这些文字的猜想,拓展到在卡片上写下所有的书籍)2.对显微镜的展望(精度的提升,不同原理的显微镜的发明)3.纳米机械装置(包括微型电脑,微型工厂,微型工具)4.任意排列原子,用物理的方法得到想要的各种化学物质。二组: 费曼在演说中共提出了五大设想:(1)微观信息的存入把全套24册的大英百科全书全写在大头针的针头上(2)微观信息的读取更好

2、的电子显微镜(3)在分子或原子的尺度上加工和制造原料和器件微型计算机、电子器件等(4)重新排列原子(5)微尺度下产生的新性质微观世界里的原子。三组: 粗略概括一下费恩曼的构想大致就是以下几个方面: 1.把全套24册的大英百科全书全写在大头针的针头上以及扩展后的批量生产2.利用“。”之类的符号加密技术来压缩文字以便高效利用空间3.更好的电子显微镜,文中所讲的性能提高100倍4.微型计算机,微型机床,微型元件的生产5.用于人体检查,治病等功能的微型机器人 6.主从系统,利用小机器制造小小机器以此迭代下去的方法 7.最终目的:用物理的方法来排列原子已达到造物者的境界:创造新的物质四组: (一)关于刻

3、字 1.在针头上写大英百科全书。 2.读取大英百科全书。(保守方法,当今已知)(1)把这些金属字压进塑料材料中,将之做成一个模子,(2)然后把这个塑料模子很小心地撕下来,(3)蒸发一层很薄的硅膜到模子上,(4)接着以某种角度蒸发黄金到硅膜上,使文字能够清楚地呈现,(5)最后把塑料膜溶掉,留下硅膜,(6)然后我们就可以用电子显微镜来阅读了。 3.拷贝刻在大头针头上的文字。 4.将人类所有的书缩小刻在一本小册子上,只要3*0。83612736平方米(相当于星期六邮报的四分之一)。 5.如果用编码来记录信息,一个字大概要六到七个编码,一个编码大概要125个原子表示,那么人类所以的资料是将是边长1/2

4、00英寸的大小的物体就可以保存的,相当于人类肉眼能够看到的最小的尘埃。 (二)更好的电镜(与课上内容有关) 1.将电镜改良一百倍,医学上很多问题都将得到解决,因为可以直接看得见。 2.同时很多化学分析问题也很方便得到解答,直接用电镜观测。 3.改变理论中的假设(如换用别的方法),让电镜变得更强。 (三)制造微观物体 1.制造极小同时按我们计划行事,听从人类指挥的物体。 2.在小尺度上制造出大容量内存。 3.将计算机做得更小,可能会出现很多新的特质(如多通道计算,图像识别),同时还可以降低能耗等。 4.用蒸镀法制造一些材料,如计算机内部导线。 5.制造小而有用的机器人。 6.重新设计能容忍较大误

5、差的微型汽车,利用同样的原理可以制造更多微型工具。 7.利用非晶体材料制造小机器。 8.电机零件在小尺寸上需要重新设计以保证能够顺利运行。 (四)制造微观机械零件 1.制造小而不需要润滑剂的机械零件,因此物体散热加快。 2.制造小型车床和小型机械工具,并利用其制造更小型的。 3.小机器帮助实施手术。 4.(通过极其精巧而小心的设计)通过伺服马达和主从手臂的关系用大机械零件制造小机械零件,并逐层深入,最终制造极其微观的机械零件。 5.在每个阶段都可以改善机械制造时的精度。 6.设计时要充分考虑小尺度下的各种相互作用的问题。 (五)重新排列原子(最终问题) 1.通过重排原子,制造出高纯度甚至绝对纯

6、的物体。 2.控制原子的排列,将会有很多美妙的事情。 3.制造微观上的震荡电路,将其排布到一起,使得无线电波辐射密度、强度和功率大大增加。(或大功率光柱) 4.利用超导或其他技巧解决小尺度下的阻抗太大等电器问题。 5.因为小尺度下的量子力学性能制造出有奇妙性能的物体。 6.小尺度下的制造可以没有误差,因为原子在某种程度上是一模一样的。 7.一个个原子地计划制造东西,如排列和制造新的原子。 (六)实验室间和学校间的竞赛 1.各个学校间通过竞赛鼓励制造更加微观的物体。 2.通过奖励措施鼓励科学家制造出微观物体。五组。 一、原子的操作性问题 (一)在针头上书写大英百科全书1.可行性 针头面积与纸张面

7、积相比较2.操作性 (1)如何写小字 a.离子源射出电子,聚焦b.蒸发法c.电子束撞击 (2)如何印刷书籍 塑胶硅膜为载体 (3)如何阅读 蒸发电子显微镜 (二)制造微型设备(以计算机、汽车、电器元件为例)1.优越性 使计算机能够作出判断,提高计算速度,获得新的特质(如模仿人脑的模糊记忆) 提高电器元件的强度2.操作性a.蒸发法 b.电力带动的主从手臂系统3.相关效益 由于元件小,散热快,也许可以省略润滑油 (三)重新排列原子 意义:制造小线圈和蓄电器,及其他电器元件;化学合成新分子二、原子的可视化 (一)对设备的要求 提高电子显微镜的精度 (二)应用 存储信息(555立方体) 第二部分:费曼

8、的设想是否都正确,有哪些得到了证实。一组: 费恩曼介绍了两种方法来做写小字这件事情,这两种方法共同的原理都是将显微镜用来做放大功能的镜头反置过来,将之用来缩小,不同的仅仅在于如何把小字写上去。费恩曼还提到一种关于小尺度的资讯,他假设用一点一横(.)的符号来替代字母,当然也可以是数字之类的,而每个字母会有六或七位元。应用到材料上时不是将所有的字写到针头表面,而是将这些位元写上去,其实这就是当代计算机技术中的循环二进制码,二进制码在1953年就取得了美国的专利,费恩曼在做此次演讲时肯定是参考了这种技术。关于大量信息储存在微小空间的事实,费恩曼类比到复杂的生物信息储存在一个个微小的生物细胞中。 关于

9、重新排列原子,在费恩曼这次演讲的四十年后,美国西北大学的一个化学系教授将这篇演讲稿的大部分内容刻在了一个大约只有10个香烟微粒大小的表面上。过去被认为异想天开的纳米技术,变成了一项严肃认真的研究工作。 关于制造某些微型机器:如用于生物医学方面的纳米机器人(可以注入人体血管内,进行健康检查和疾病治疗,对人体器官进行修复等)。一台能够在纳米尺度上操作的纳米机器人系统样机近日由中国科学院沈阳自动化所研制成功,并通过国家“863”自动化领域智能机器人专家组验收。在一个演示中,沈阳自动化研究所的研究人员操纵“纳米微操作机器人”,在一块硅基片上1*2um的区域上清新刻出“sia”三个英文字母;另一个演示中

10、,在一个5*5um的硅基片上,操作者将一个4um长,100nm粗细的碳纳米管准确移动到一个刻好的沟槽里。由美国加州intuitivesurgical公司制造的“达芬奇”(da-vinci)和由computermotion公司制造的“宙斯”(zeus)机器人手术系统都是三臂机器人,一只手用来捏住摄像机(所谓“扶镜”),另外两只操作手术器具。2000年“达芬奇”成为世界上首套可以正式在医院手术室腹腔手术中使用的机器人手术系统;微型机电系统(mems)的诞生:尖端直径为5微米的能夹起一个红细胞的微型镊子;3毫米大小能够开动的小汽车;可以在磁场中飞行的像蝴蝶大小的飞机;纳米机械专家设计出了只有几个分子

11、组成的微小齿轮和马达。二组: 关于电子显微镜,近年来有极大发展。1932年,德国物理学家knoll和ruska研制成功第一台透射电子显微镜。1938年,ardenne研制成功第一台扫描电子显微镜。1981年,瑞士科学家binning等发明扫描隧道显微镜。1990年,中国科学院白春礼支持研制成功首台原子力显微镜。电子显微镜的发展随着科学技术和生产实践的发展,电子显微镜得到不断改进、更新和完善,分辨率得到提高。现代高性能透射电子显微镜的点分辨率(pointersolution)已优于0.3nm,晶格分辨率(1atticeresolution)已达0.10.2nm。放大倍数从第一台电镜的十几倍提高到

12、几十万甚至百万倍。此外,电子显微镜的种类不断增加,功能不断扩展。除观察样品内部超微结构(ultramicrostructure)的透射电子显微镜和揭示样品表面形貌的扫描电子显微镜外,能同时观察样品表面和内部超微结构,乃至单个原子像的高分辨场发射枪扫描透射电子显微镜(scanningtransmissionnelectronmicroscope,stem)已经问世。此外,用于对样品中某些化学元素进行综合分析的分析电子显微镜(analyticalelectronmicroscope)、可观察活细胞的高压透射电子显微镜(highvoltagetransmissionelectronmicroscop

13、e,hvtem)、能观察含水样品的低温透射电子显微镜(cryotransmissionelectronmicroscope,ctem)等各种专用电子显微镜也已开始使用。最近几年来,计算机技术开始用于电子显微镜。电镜观察时大部分操作可用计算机控制,如样品的移动和放大倍数的调控等,使电镜操作简便易行。而计算机在图像显示、处理和存储等方面的优势,则更为电子显微镜的应用提供了极大方便。可以预料,基于internet网络技术的电子显微镜技术在远程教学和科研方面将发挥越来越重要的作用。第二节电子显微镜技术的发展与应用续表 三、电子显微镜的发展随着科学技术和生产实践的发展,电子显微镜得到不断改进、更新和完善

14、,分辨率得到提高。现代高性能透射电子显微镜的点分辨率(pointersolution)已优于0.3nm,晶格分辨率(1atticeresolution)已达0.10.2nm。放大倍数从第一台电镜的十几倍提高到几十万甚至百万倍。此外,电子显微镜的种类不断增加,功能不断扩展。除观察样品内部超微结构(ultramicrostructure)的透射电子显微镜和揭示样品表面形貌的扫描电子显微镜外,能同时观察样品表面和内部超微结构,乃至单个原子像的高分辨场发射枪扫描透射电子显微镜(scanningtransmissionelectronmicroscope,stem)已经问世。此外,用于对样品中某些化学元

15、素进行综合分析的分析电子显微镜(analyticalelectronmicroscope)、可观察活细胞的高压透射电子显微镜(highvoltagetransmissionnelectronmicroscope,hvtem)、能观察含水样品的低温透射电子显微镜(cryotransmissionelectronmicroscope,ctem)等各种专用电子显微镜也已开始使用。最近几年来,计算机技术开始用于电子显微镜。电镜观察时大部分操作可用计算机控制,如样品的移动和放大倍数的调控等,使电镜操作简便易行。而计算机在图像显示、处理和存储等方面的优势,则更为电子显微镜的应用提供了极大方便。可以预料,基

16、于internet网络技术的电子显微镜技术在远程教学和科研方面将发挥越来越重要的作用。 费恩曼提出的微小机器在医学上已经研发成功。特别是他引用他的朋友所说的:动手术时能把手术医师吞下去会很有趣。把机械手术医师弄到血管里,它跑到心脏里四处看(资讯当然要送出来)。它找出有问题的瓣膜,拿出一只小刀割掉。其它小机器也许能永久装在身体内,以协助功能异常的器官。这在现代医学上可以查找到很多例子。如:(1)爬行摄像胶囊,由意大利圣安娜高等学校的crim实验室开发。这个机器人可携带摄像机,通过有弹性的“腿”爬进患者的消化道,替代传统内窥镜进行检查。它可用来检查食管、胃和十二指肠内部的损伤或溃疡情况。 (2)游

17、动摄像胶囊,这款摄像胶囊由微型螺旋桨驱动,也设计用于检查人体消化系统。在被患者从嘴里吞服下以后,它会“游动”检查医生所怀疑的区域。(3)ares机器人,即“可重构装配腔内手术系统”。患者只需将机器人一块块地吞服进肚子,或由医生通过人体自然的孔将机器人一块块插进人体,然后机器人在人体内自行组装。一般来说,患者将吞服下15块机器人块。随后机器人块会按照设定好的路线,滑到有病的地方。ares机器人可以让需要动外科手术的人不用担心身体留下疤痕。 (4)ritsumeikan大学和shiga医科大学的研究人员,最近开发出了一款微型机器人原型,通过手术切开病灶,将其放入体内,遥控操纵。和现在那些可吞服的照

18、片拍摄和信息采集机器人不同,这款微型机器人通过病人体外附近的外磁场控制,在某些情况下,可以不进行外科手术就完成治疗。到现在为止,研究人员已经试验了5种不同的形态,测试比如拍摄照片,采集组织样本,服用药剂等功能。机器人就位后通过病人事先做好的核磁共振成像操纵,并通过细小的电缆将数据和照片传回电脑。该机器人由塑料制成,长0.8,直径0.4,在人体内爬行时应该不会感觉到这个小东西。据推测已通过了动物测试,下次就要进行人体测试。 费恩曼在演说的最后说,他还想提供1000美元給首先造出工作电动马达的人。“这是个旋转电动马达,可以由马达外面控制,而且不计算连进马达的线,为1/64英寸边长的立方体。”演说后

19、的第二年,即1960年,比尔o麦克里兰就制造出了合乎规格的发动机,要求获得奖励。虽然麦克里兰并未能设计出新的生产方法,费曼还是奖励了他。 另外,我们认为构想中存在着缺陷: 1、最好的显微镜虽然更好的显微镜已经研制出,但是并没有能完成用电子显微镜观察的方法代替传统的化学分析; 2、“如此小的机器,由外部供应点能可能是最方便的。”外部供能不能持久,据考证,已经研制出了内部供能的小尺寸机器; 3、完全用搬动原子实现“化学合成”粒子间有很多的作用力,当物理搬运的时候很可能自然地出现撞击,发生化学反应。 4、“一百双小手臂”,一百双小手臂的提出是为了要制造小的机器,但是当小手臂趋于小尺寸的时候,它本身的

20、制造确实问题。很多纳米元件都是以分子形式存在,比如分子开关。而当我们要进行机器制造这种高水平操作时这种分子元件不一定能满足需求,所以我们进行小尺寸操作的开始究竟在哪里。三组: a.微型计算机。(为达到更高运算速度,需要将零部件做的足够小)纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。现在纳米技术正从微电子机械系统起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积只有数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而

21、且其性能要比今天的计算机强大许多倍。前景光明。b.用于医疗的纳米机器人。(让病人吞下去来达到救死扶伤的目的)我认为这是完全可以实现的,就目前而言,已经有类似的机器人问世了。意大利比萨一所高中的教师最近成功研制出一台微型机器人,它可以在人体的肠道内穿梭自如,既可以拍照,也能操作小型外科手术。据意大利媒体报道,一年前仅仅是图纸上的智能机器人,经过专家的潜心研究,如今已成为现实。这台微型智能机器人大小如同一粒感冒胶囊,外观像一只长着脚的“昆虫”,可以在食道和直肠之间穿越自如。据称,病人可以像服药一样,用水把这台机器人送到肠道内,然后医生只要手持遥控器,微型机器人就能按照医生的指令进行工作。专家在评论

22、这台机器人时说,它的最大特点是能够在人体内做一些小的外科手术,如同外科大夫在现场操刀做手术一样。专家认为,如果沿着这个思路设计机器人,可以出入于人体各个器官的微型智能机器人今后都将成为现实。此外还有吞服式机器人、采血机器人、结肠诊疗机器人等。最新的报告显示纳米机器人的发明者是美国哥伦比亚大学生物工程学研究人员米兰o斯托诺维克等人,组成机器人的原料是dna分子,它们的外形很像蜘蛛,因此又被称为“纳米蜘蛛”微型机器人。它们能够跟随dna的运行轨迹自由地行走、移动、转向以及停止。虽然以前研制出的dna分子机器人也具有行走功能,但不会超过3步,而新的机器人却能行走50步。c.微型机床。(假如人类能够用

23、普通尺度的仪器.来制造体积较小的仪器,而较小的仪器又可以制造更小型的仪器,就这样一步步逐级地缩小仪器,以致最后可可以实现按照人类意志来排列、重组的原子,如此将可以对人类的科技与生活创造出新的奇迹。)这个是已经达到了部分实现的。日本通商产业省的机械技术研究所成功地研制出世界上最小车床微型数控车床。该车床只有手掌大小。此次开发的关键在于改进了压电调节器的驱动方式,使之可以平滑地进行控制操作,同时还装配检测滑块位移的微型线性编码器,使其动作控制可以象普通机床那样进行数字化编程控制。该微型线性编码器由奥林巴斯光学工业公司制造,通过将这种编码器和改进了驱动方式的压电调节器内部直动微型滑块相配合,就可以完

24、成对精密动作的数码控制。该车床还装备了袖珍用户数控装置,同其他普通车床一样使其数控化成为可能。用户数控装置采用了微处理器的nc电路板。d.微型汽车。老实说,我并不认为这一技术有什么实现的必要。但是如果能通过这个来达到对其他产品的微缩,不失为一个好的方向。e.主从手臂实现若干机床同时工作并生产出产品。我认为这个是不太可能实现的。因为庞大的联系网络,以及数控阶段的每一个环节都必须做到精准无误,在手臂的生产前期也需要做到万无一失,这样才有可能实现这个构想。而目前并未查到相关报道。 1.发展进步暗视野显微镜、相位差显微镜、视频显微镜、荧光显微镜、偏光显微镜、超声波显微镜、解剖显微镜、共聚焦显微镜、扫描

25、隧道显微镜等等,不仅提高了显微镜的精度而且适用于不同条件下的观测,实现了费恩曼关于提高显微镜放大倍数100倍的构想。 2.微型马达的发明,推动了微型电动机发明,其主要应用于三个领域: 1、无特殊控制要求的驱动场合作为运动机械负载的动力源。 2、音像设备。例如,在盒式录像机中,微特电机既是磁鼓组件的关键元件,又是其主导轴驱动、收供带和磁带盒的自动装载以及磁带张力控制的重要元件。 3、办公自动化设备、计算机外部设备和工业自动化设备。如磁盘驱动器、复印机、数控机床、机器人等都应用了微型电动机。 3.纽曼用五百万分之一的电子束作字母刻字,完成双城记刻写,赢得了费恩曼的奖金,一定程度上实现了费恩曼的写小

26、字的构想。 4.纳米机器人在生物领域,医学领域,军事领域等诸多领域屡建奇功。例如沈阳自动化所研究团队开发了单细胞活动状态表征技术、液体环境探测噪声抑制技术、抗原分子特异性识别技术以及细胞表面改性方法等。这些方法与技术的突破,表明沈阳自动化研究所在纳米机器人与生命科学融合研究方面取得了实质性进展,为纳米操作机器人在细胞分子生物学的应用开辟了新的道路。 5.微型机床的制造,德国在此领域有着许多发明专利,日本发明了世界上最小机床只有手掌大小。微型操作工具如微型镊子等的发明,为在纳米尺度上操作机器人提供可能。 6.医用纳米机器人与在纳米尺度上了解生物大分子的精细结构及其与功能的联系。在纳米尺度上获得生

27、命信息,例如,利用扫描隧道显微镜获取细胞膜和细胞表面的结构信息等。纳米机器人的研制。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗。还可以用来进行人体器官的修复工作、作整容手术、从基因中除去有害的,或把正常的安装在基因中,使机体正常运行。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。 四组: 理论上、技术上都可行也不一定能付之于实践或者说普及,他自己也承认“也许这没法让你们去做,而只有经济利益可以。那

28、么我想做点事鼓励你们,但是我现在还没准备好。我个人在此提供1,000给首先把书上一页长宽都缩为1/25,000,写成电子显微镜可以看到的样子的人。”事实上也是如此,例如芯片:芯片的原料晶圆晶圆的成分是硅,硅是由石英沙所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将些纯硅制成硅晶棒,成为制造集成电路的石英半导体的材料,将其切片就是芯片制作具体需要的晶圆。晶圆越薄,成产的成本越低,但对工艺就要求的越高。因特尔公司没有再将芯片变小,而是转向其它方面的拓展,不是技术上有多难,而是会得不偿失,有损利益,事实上历史上的多次科技革命总是由经济利益带动的无论是瓦特的蒸汽机还是法拉第的发电机。

29、两年前,研究人员研制出电子甲虫,可通过笔记本电脑进行无线导航。借助于植入装置,他们能够刺激甲虫大脑操控翅膀,进而控制甲虫的起落和飞行。分子导线:分子导线是指所有由单分子或多分子构成的能够起到传导作用的体系,其传导的对象包括电子、光子和离子。它是分子元件与外部连结的纽带,起传输信息作用。分子导线可分为两类:一类是在高分子链方向形成共轭双键结构,导电方向是链方向;另一类是在某种平面分子晶体中,分子面互相堆砌成柱状结构,其导电方向是分子柱的堆砌方向。由于芳香类烃类分子具有共轭键,其电子离域化程度很高,因此具有着很好的电子传输能力,是作为分子导线理想的材料。 分子存储器:分子存储器是指用来存储信息的量

30、子化体系。分子水平上的存储是通过具有双稳态或多稳态特性的分子材料实现的。在外界条件的作用下,这种材料可从原来的绝缘态直接跃迁为导电态,相当于计算机存储器中的“0”和“1”两种状态。分子存储器的机制有:分子内或分子间的氢转移、二聚化反应、顺-反式异构、电荷转移、苯-醌转变。例如,半苯醌具有价态互变异构体,是带有对称双位阱的模型分子,在粒子交换使偶极矩发生改变时两个互变异构体仍能维持相等的基态能量。由于信息是用二进制进行编码,要实现这一点,两种构型间必须按要求转换并能识别每一个构型。 分子电路:分子电路是以分子作为功能电子器件构成的电子线路。目前分子电子学面临的最大难题就是如何将分子器件组装为逻辑

31、电路并与宏观世界相连接。lieber等利用交叉排列的半导体纳米线构筑了各种逻辑电路38。avouris39和dekker40分别利用不同的方法用碳纳米管制得晶体管和逻辑电路。进而,人们组装了包含有机分子的逻辑电路13,这种可以作为存储器的电路使用了微流体技术,所用的有机分子作为分子开关,整个器件即能用作可寻址的存储器。分子开关:分子开关是具有双稳态的量子化体系。具有双稳态的分子通过施加一定的影响,如光、电、热、磁、酸碱性的改变等,分子的形状、化学键的生成或断裂、振动以及旋转等性质会随之变化,通过这些几何和化学上的变化,分子在两种状态之间可逆转换,两种状态由于电阻值高低不同而对应于电路的通断,从

32、而构成开关。例如偶氮分子能在光照下发生顺反异构,冠醚分子能与离子配位发生构象变化等等。轮烷和索烃是目前研究较多的两类分子27-29。轮烷由一个环状和一个棒状两部分组成,环可以以棒为轴进行旋转或沿棒的方向滑动,棒的两端带有位阻较大的集团以阻止环的脱落。当环停留于棒上引入的两个不同的位点时,就对应了两种不同的状态。索烃由两个环状分子套在一起组成,两环间可发生相对运动。在其中一个环上引入不同的位点,同样可以构成双稳态分子开关。还可以选择具有可逆氧化还原反应的分子改变开关的阈值。schiffrin小组研究出一种此类分子开关30,当bipy分子处于2价氧化状态时没有电流,开关处于关状态;当stm针尖施加

33、一适当的电压时bipy分子还原为1价状态,此时有较大电流通过三明治结构,开关处于开状态。 分子整流器。分子整流器的设想于1974年由aviram和ratner提出1。他们指出由有机电子给体和受体桥连而成的分子耦合在两个金属电极之间时,其i-v曲线与通常的电子整流器相类似。即一种在有机电子给体(d)和受体(a)之间有饱和键(桥)连接的非对称分子夹在两个电极之间,在合适的电压下,电子从a到d传输顺利,而从d到a的传输需要大得多的电压,从而可能具有整流效应。1993年,ashwell等人利用lb膜技术以有机材料做成只有几个分子厚的薄层,只允许电流单方向流动,从实验上证明了这种整流器的本质来源于分子作

34、用31。 分子器件的制作离不开一系列新技术的发展,其中主要包括:stm技术、lb(langmuir-blodgett)膜技术、自组装技术、有机分子束外延技术。stm微细加工的物理过程有:通过力的作用、粒子束诱导效应、势垒扰动。stm能够对单个原子进行控制操作,可以剪裁分子乃至合成新的功能分子。lb技术是一种人为控制特殊吸附的方法,它将具有脂肪链疏水基团的双亲分子溶于挥发性溶剂中,通过控制表面压,溶质分子在气/液界面形成二维排列的有序单分子膜即langmuir膜(l膜)。再将单分子膜转移到固体基板上,可组建成单分子或多分子膜即lb膜。自组装技术(图1.1)是一种基于化学反应的特性吸附,是分子通过

35、化学键相互作用自发吸附在固/液或气/固界面而形成的热力学稳定和能量最低的有序膜。它有利于形成有序的单层或多层超薄分子膜,并赋予其优良的物理化学性质,在分子级有序膜方面明显优于研究比较成熟的lb技术。有机分子外延(ombe)技术,是在超高真空条件下生长有机或者半导体材料的技术。它的优点在于无需对材料进行修饰,外延层的厚度可控,基片及环境的清洁度可达到原子级,在沉积超薄膜的过程中能够原位实时地监控膜的结构生长情况。此外,广泛应用的还有:电场辅助组装技术、微流体技术、力学可控劈裂结技术、交叉导线隧穿结技术、纳米电极制作技术等等。五组: 针对二组的发言(对纳米机器人医生外部供电不合理)提出疑问:我查阅

36、的资料中,2006年重庆研制出的纳米机器人就是外部充电且一次性的。它进入人体内可以拍摄影像、检查疾病,16小时左右电耗完,被人体排出。它可以代替医生做一些手术。当然,你们组所说的纳米机器人已比它高级,可以通过生物能等方式供电。但并不代表纳米机器人外部供电不合理。另外一位同学发言主要将“纳米碳酸钙的研究与应用”这个例子和同学们进行了分享: 首先,纳米碳酸钙的研发具有很大的实用性。我走访了研究所的一些叔叔阿姨,他们告诉我如果碳酸钙这种常见的化学物质能够细小到纳米级别,那么这种新型材料将可以广泛应用到塑料、纸张、油漆、涂料行业并表现出性能优异、强度大、节省原料等优良的特点,从而制造出更加精小耐用的材

37、料,为要求不断提高的材料制造业注入新鲜的血液。 纳米碳酸钙本身还具有极大的经济效益。如果碳酸钙能够缩小到纳米级别,那么其售价将由原来的50元/吨上涨至3000元/吨,为企业创造出良好的经济效益,这也将很有可能成为一向很好的研究领域,并具有广阔的市场前景。 另外清华大学强湍流炭化工艺或北京化工大学超重力炭化法反应罐将能够很好地应用于纳米碳酸钙的开发和研制,这也进一步证明了纳米科技在中国已经有了很广泛的应用,这是一个非常好的现象,我在讨论课上也提出希望中国人能够将这条路执着的走下去,在科技领域中取得更大的成就,而不是永远让外国人独占纳米科技的龙头,这也是我们最美好的希望。 另外在讨论课上我也积极加

38、入了小组的讨论活动,为小组的展示出谋划策,取得了不错的效果。在我们小组成员共同认真阅读费恩曼演说之后,我们从操作性、可视性两个方面将全文分成了三个层次,每个层次从纳米科技的优越性与可行性两个方面进行了概括和陈述。总的来说,费恩曼的演说从纳米字的书写到阅读,再到其应用以及原子的排列问题。 第三部分:总结发言 一组: 费曼演说给科学研究领域开启了一扇新的大门即纳米科技。费曼的许多构想在现在成为了现实,有的构想还需我们继续探索研究。不过,我个人对其中的一些想法的可行性上有些怀疑,比如由蒸发法缩小制造,感觉可行性很低,因为要制造的东西十分微小,对蒸镀的量和均匀程度要求都会比较高,才可以做出想要的元件,

39、而想要用此种方法做出符合要求的元件感觉还是比较困难的。关于用物理方法去合成化学物质个人认为可行性也不是很高。因为各种化学物质的结合有着化学键的存在,直接用物理方法操纵原子进行合成可能会遇到各种问题,同时需要考虑各种力的作用,而且化学物质的作用也不仅仅是体现在几个分子上,而是需要大量分子在一起才有使用价值,用物理方法想要大量合成某种物质也是一个难题。纳米科技作为一个新生的研究领域需要投入更多的探索,在费曼构想的基础上不断去探索更底层的丰富,在原子甚至在原子之下的夸克层面进行更多的研究。同时,纳米科技作为一种科学技术必然有其消极的影响,因此,在探索研究过程中我们应科学理性地应用纳米技术,尽量减少其

40、不良影响。二组: 假说中也有一些不是很赞同的东西。比如说在最后的部分费恩曼认为操控原子“可以做化学合成”,我并不是很赞同这种说法。首先,我也认同使用stm可以操控原子并进行拼接,应该说在适当的条件下进行几个原子的组合是没有什么问题的,但是这同时也是非常困难的。我们都知道原子间的结合成分子要有合理的取向并且要释放能量等,可以看出这需要比较苛刻的条件。但是如果我们用操控原子的方法来进行化学合成,那么我们就需要许许多多的分子,那个数量级(1mol=6*1023)远非人力的合成甚至(我认为)机器的合成也是做不到的。所以我认为即使是特定的化学研究也不会使用这种方法来合成特定物质。三组: 费恩曼此次演讲的

41、题目叫做底层的丰富。不可否认,微观世界确实有很多未知的东西等待我们去发掘。同时我们应该想到,费恩曼的设想还仅仅是停留在纳米级,而如今,我们已经发现有比原子更小的微粒夸克,也就是说,我们的研究可能向着更加微小、更加“底层”的方向深入。但是,我们也应该清醒地意识到,并不是所有的研究都是有意义的或者有益的。例如纳米技术的发展可能会使得人类的生活产生更多担忧,因为那些原来很细小很微不足道的东西都可能变成能要人命的机器人。同时,往细微处的探究很可能不是无止境的,而是有极限的。当种种局限性摆在眼前时,这个领域的发展就可能受制。不过,我们也不应该抱着太功利的想法去从事研究工作。正如费恩曼在演讲最后提出的:“

42、buthavesomefun。”如果怀着兴趣去研究,而不是功利地时刻思考着研究的经济价值或者应用价值,那么我们就有理由相信,在“底层研究”的道路上,人类还能走得更远。四组: 1、费恩曼的演说对现代科学技术发展有很好的启示作用,演说中很多设想都具有实际操作的意义,我们应当以极大的热情投入对微观世界的研究。 2、也有人提出纳米技术的发展是弊大于利的,因为随着纳米技术的发展极有可能被恐怖分子利用如:制造某种只针对个人的毒药投放的水循环系统中就可以在不危害别人的情况下神不知鬼不觉地杀死特定人,或者可能引发伦理道德问题,人类对待科学技术的发展还是应当持审慎态度,时刻保持清醒的头脑意识到科学是把双刃剑。

43、3、纳米科技的发展远不如费恩曼预想的那样发展的非常迅速,而是相对而言以一种比较慢的方式前进,我们在对未来保持乐观的同时,应当理性对待科学技术的发展。五组: 由于费恩曼发表演讲的时代距离我们已经比较遥远,所以当时他所提出的一些构想在现在看来有些不尽合理,但费恩曼的演讲为我们打开了一扇微观世界的大门,顺着费恩曼的指引,我们前方的道路逐渐清晰起来。今天我们对于纳米的认识更加深刻,我们能看到的也就比费恩曼更多,但不可否认的是,在当时的世界,费恩曼能提出关于纳米技术的如此深入的构想的确值得我们学习。 第二篇:纳米科技与能源纳米科技与能源 就像毫米、微米一样,纳米是一个尺度概念,是一米的十亿分之一,并没有

44、物理内涵。当物质到纳米尺度以后,大约是在1100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法做了超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。纳米技术的内涵非常广泛,它包括纳米材料的制造技术,纳米材料向各个领域应用的技术(含高科技领域),在纳米空间构筑一个器件实现对原子、

45、分子的翻切、操作以及在纳米微区内对物质传输和能量传输新规律的认识等等。 而能源则更加重要,“能源”这一术语,过去人们谈论得很少,正是两次石油危机使它成了人们议论的热点。能源是整个世界发展和经济增长的最基本的驱动力,是人类赖以生存的基础。自工业革命以来,能源安全问题就开始出现。在全球经济高速发展的今天,国际能源安全已上升到了国家的高度,各国都制定了以能源供应安全能源全为核心的能源政策。在此后的二十多年里,在稳定能源供应的支持下,世界经济规模取得了较大增长。但是,人类在享受能源带来的经济发展、科技进步等利益的同时,也遇到一系列无法避免的能源安全挑战,能源短缺、资源争夺以及过度使用能源造成的环境污染

46、等问题威胁着人类的生存与发展。纳米技术能够产生具有独特性质的物质,可推动可再生能源的发展和利用。预计在最近几年内,人类将在能源,尤其是可再生能源方面,取得重大突破。人们将会利用更安全的核电站,更高效的太阳能电池;风能、太阳能、海洋能在我们的生活中将得到更广泛的应用。但是,这些目标的实现都离不开科学,尤其是新材料方面的重大突破。科学家们关于新材料的设想越来越明晰了。他们以纳米为单位来设计新材料(1纳米等于十亿分之一米)。在这样小的尺寸上,新材料可以拥有自己特性,这些属性可以提供理想的功能,特别是把新材料制成复合材料时,它们的功能就更加强大了。最近一系列研究表明纳米技术在能源领域拥有广阔潜力。纳米

47、材料在太阳能电池中的应用 太阳能电池具有方便、无污染和不需燃料等优点,考虑到环境保护、能源的可持续发展和应用等因素,太阳能电池将成为未来社会能源结构中的主要成员。据悉,太阳能行业媒体于2008年6月中旬发布预测,在假定太阳能电池生产年增长率为20%的前提下,认为太阳能电池成本可望到2020年降低至低于1美元/瓦,到2030年降低至低于0.5美元/瓦。纳米晶太阳电池因其制作工艺简单,原材料便宜,生产成本低(仅为硅基成本的五分之一到十分之一);适合在非直射光、多云等弱光线条件下,以及光线条件不足的室内条件下运用;可以使用柔性基底等优点受到了科学家和工业界的青睐。与植物进行光合作用的场所叶绿体结构相

48、比,纳米晶太阳电池具有相似的结构。它的纳米晶半导体网络结构相当于叶绿体中的类囊体,起着支撑敏化剂染料分子、增加吸收太阳光的面积和传递电子的作用;敏化功能材料相当于叶绿体中的叶绿素,起着吸收太阳光光子的作用。和光合作用一样,基于半导体纳米材料电极的太阳电池构成了由太阳光驱动的分子电子泵。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电技术的地面应用研究已经经历了近30年之久,制约其发展的主要因素是系统的价格太高,目前最为广泛应用的是硅系列太阳能电池,为了降低成本,兼顾光电转换效率,各国学者都在致力于各种太阳能电池的探索研究,其中,纳米材料在太阳能电池中的应用即纳米晶体

49、化学太阳能电池已经成为人们关注的热点。北京大学2002年5月22日公开的cn1350334纳米晶膜太阳能电池电极及其制备方法,涉及一种纳米晶膜太阳能电池电极及其制备方法,以宽禁带半导体纳米晶膜为基底,在该基底表面吸附一层金属离子,再在金属离子吸附层上吸附光敏化剂。通过金属离子的表面修饰,改善电极的光电转换性能,提高太阳能电池的光电转换效率。与单纯tio2相比,基于金属离子修饰tio2纳米晶太阳能电池的光电转化效率提高于514,可作为电极广泛应用于太阳能领域。纳米tio2太阳能电池有着可以与传统固态光伏电池相媲美的高光电转换率,加之价格低廉,使这种电池具有广阔的前景和潜在的商业价值。虽然此类太阳

50、能电池还存在一些问题,仍需进一步深入研究。但是,纳米太阳能电池以其高效低价无污染的巨大优势挑战未来,随着研究推进,这太阳能电池应用前景广阔无限。 氢能源与新兴纳米储氢材料 氢能源是一种清洁的可再生能源。由于氢能源与新兴纳米储氢材料氢能源与新兴纳米储氢材料:传统的储氢材料和储氢技术达不到氢燃料电池电动车实用要求,储氢问题已成为氢能源应用中最急需解决的关键问题。对于好的储氢材料,储氢的可逆性和稳定性是至关重要的。若吸附氢后swcns的稳定性过低,其结构将遭到破坏。若稳定性过高,将不利于可逆地释放氢。lu和scudder等将一端半敞开的swcns称为单壁扶手椅,将氢化时能沿管的一侧开裂的形象地称为拉

51、链碳纳米管。他们用从头计算法计算了氢原子在这些纳米管上的化学吸附。计算结果表明,在管的外部氢吸附的结合能远大于管的内部,并且预言,对于小的扶手椅纳米管,在一侧选择性的位点上只要两排吸附的氢原子就能通过c-h键的形成而打破纳米管上的最近的c-c键,导致拉开纳米管壁的拉链。对于大的扶手椅和拉链纳米管在对抗拉链的开裂中是相对稳定的。在管的内部吸附的氢原子不破坏纳米管的c-c键。这种氢引起的纳米管的破裂或者“拉开拉链”不但被理论上预言,而且实验上也已观察到。理论和实验上的研究都表明了,与具有更小直径的swcns相比较时,直径越大的纳米管具有越小的曲率限制而整个具有更低的反应活性,因此对于由氢化引起的蚀

52、刻(破裂)具有更大的抵抗力。nikitin和li等的研究显示,在样品1中一旦碳纳米管达到30%的氢化度,另外的氢处理就引起swcns膜的蚀刻。t2样品的情形是相当不同的,他们的结果表明,在样品中的swcns用适度的h处理时不分解。此外,已经证明具有半导性质的swcn在用氢等离nikitin和li等2的结果表明,t1子体处理下比具有金属性质的更稳定。和t2swcn样品在氢处理下具有不同的行为:对于t1样品30%的氢化就能使纳米管具有随后材料蚀刻的不稳定性,而对于t2样品几乎100%的氢化的纳米管也是稳定的。他们注意到纳米管的直径分布对于t1样品,其平均直径在1.6nm左右,而对于t2样品是在2.

53、0nm左右。这种平均直径的差别可能是观察到的t1和t2样品蚀刻情形的差异的理由之一。他们实验中的直径为2.0nm左右的swcns不但具有最高的质量比和储氢容量,并且吸氢是可逆的,吸氢后在室温下是稳定性的。可以说,这些swcns已经具备了储氢材料应该有的优越性能。物理和化学方法储氢,需昂贵的设备。而碳纳米材料可以提供一种有效而清洁的储氢方式。这种材料如果用于燃料电池汽车中的储氢材料,可以有效避免空气污染或排放温室气体。人们很早就知道,某些固体材料(如金属氢化物等)在室温条件下可以储存少量的氢(约为自重的1%-2%)。有些金属氢化物可储存更多的氢(为其自重的5%-7%)但所需的储氢温度极高,250

54、甚至更高。然而,碳纳米管和纳米纤维即使在室温下也能很好的吸收氢,每个颗粒都是一个微小的吸氢“海绵”。这种材料就有广阔的应用前景,可用来制造燃料电池汽车中的氢容器。添加燃料时只需将汽车驶入加油站,将空的氢容器注满氢即可。美国再生能源实验室的赫宾是该领域的带头人,他认为主要与碳纳米材料的表面结构有关。麻省理工学院的德雷斯尔豪斯及其同事所从事的研究支持这一观点,并将其成果发表在近期的科学上。美国能源部的计算结果表明,碳材料只要储存其自重6.5%的氢,就可使燃料电池汽车具有实用价值(设定两个加油站间的距离是500公里,即310英里)。我国科学家也正在积极系统地研究纳米碳管的储氢、吸波和场发射特性,力争

55、使碳纳米管材料和器件实用化。 纳米材料将广泛应用到新能源领域 透过玻璃纳米复合透明材料太阳能电池也可应用到建筑物,如在窗户上。德国弗劳恩霍夫研究所机械材料研究员正在寻找合适的透明材料。这些材料也将利用计算机模型来探索原子结构并来模拟电子运行模式。来自德国研究所的沃尔夫冈柯纳说,传导材料和透明材料的良好结合可能会产生完全透视电子。复合材料的纳米结构也能使较轻的材料拥有很大的机械强度。复合材料,例如以光纤玻璃和碳纤维合成的塑料树脂,已经广泛应用在生产制造业,用来生产汽车和飞机等。但是,通过控制纤维生产过程中的方向,可以产生变形复合材料,这种材料在一定条件下能够改变自身形状。这种变化可以来自外部控制

56、,也可以是自发产生的,例如,对温度、压力、和速度引发的变化。在英国的布里斯托尔大学先进复合材料创新和研究中心进行的研讨会透露,这种变形复合材料可以用于生产能效更高的风电和潮汐发电的涡轮叶片。一种双稳态复合材料能够快速改变其空气动力状况,这也将有助于消除刀片上不需要的压力。这将提高其效率,延长叶片的使用寿命,并且改善发电系统。变形复合材料意味着潮汐发电机可以制得更小,在商业上更具竞争力。依这种方式,材料科学上的些许变化将为可再生能源创造远大前程。 纳米材料用于清洁能源 人类在享受汽车带来的便利的同时,也不得不忍受汽车尾气造成的空气污染,而全球变暖和油价高起更让寻找替代能源成了迫切的要求。太阳能汽

57、车、氢燃料电池汽车、油电混合动力汽车应运而生。尽管它们正在获得越来越多的认可,却依然不尽如人意。根据比奇的计算,使用特制的发动机和同等体积的金属燃料,一辆轿车的行驶距离是普通汽油动力汽车的3倍。而且由于燃烧的是金属燃料,它几乎没有污染,也就是说没有二氧化碳、氮氧化物,也没有灰尘和煤烟。这种金属燃料甚至还可以被循环使用。只要将用过的纳米颗粒放到氢气环境下进行加热,它们就会再次成为可用的燃料。沉甸甸、冷冰冰的铁块中居然蕴藏着能量,而且还能被点燃。不过,既然汽车可以用各种各样的燃料比如甲烷、煤粉以及火药作为动力来源,那么它为何就不能以金属作为燃料呢。事实上,正常状态下的铁是不能被用做燃料的,但是当铁

58、块被加工成纳米级的微粒时,它就具有了很高的反应活性,将其点燃会释放出大量能量。金属燃料优点多多:虽然这样设计出的发动机与常规汽车发动机很像,但它不会产生二氧化碳、氮氧化物或有害微粒。这些复合物通常在高温燃烧中产生,而比奇等人通过控制簇的大小,已经可以将金属的燃烧温度降到525度。他们接下来的工作是寻找燃烧的速度、温度和效率三者间的平衡。尽管相对于氢燃料而言,金属是一种紧凑的燃料,但它却有一个明显的缺点重量。一个行驶距离等效5升油箱的铁燃料箱重约100公斤,比普通油箱重两倍多。并且由于金属燃料燃烧后废物不会被排放到空气中,在整个行驶过程中车重都不会减轻,这也增加了运输的成本。不过金属燃料的优势还

59、是很明显的。除了环保外,金属燃料还具有携带方便、储存安全、体积小的优点。在减轻重量方面,也有可提升的空间。如果使用铝纳米颗粒来替代铁的话,同样重量的燃料可以得到4倍的能量,如果使用硼的话,可以得到6倍的能量。虽然这两种材料都比铁贵铝的价格是铁的15倍,但从另一个角度来考虑,由于金属燃料不会被消耗,可以循环使用的,真正的使用成本在于将金属氧化物还原为燃料的过程,而这一过程中各种金属燃料的转化成本差异不大,所以金属燃料本身的价格并不会影响使用成本。 总之,纳米能源材料研究正在起步。在纳米材料领域,纳米能源材料是最活跃和最具有发展前途的研究领域之一。核研院利用多年在纳米材料研究领域积累的经验和条件,

60、瞄准国际前沿,正在积极筹建纳米能源与环境材料研究平台,计划以敏化纳米晶体tio2太阳能电池、燃料电池纳米电极材料和高效储氢材料等作为突破口,在能源材料学科建设上走出特色之路,当纳米材料和能源结合起来会产生无限的生机,我认为将来纳米材料在能源方面会有更大的应用。 电力工程学院 热能与动力工程11-3班韩韬学号:17115957 第三篇:纳米科技的论文纳米科学与技术 摘要纳米技术是当今世界最有前途也是世界上最热的的决定性技术。本文简要地概述纳米尺度的四种效应:小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,它们使得纳米微粒在磁、光、电、敏感等方面呈现常规材料不具备的特性。科学家们利用纳米技术

61、制作纳米材料,并将纳米材料按照材料的四种形态分为纳米颗粒型材料、纳米固体材料、纳米膜材料和纳米磁性液体材料。现今纳米科学技术蓬勃发展,在世界上取得众多的举世瞩目的科技成果。本文还将就纳米科技在力学、磁学、电学、光学、催化、敏感性能以及生物医学方面的应用进行论述,并针对“纳米尺度的四种效应”、“几种典型的纳米材料”和“纳米科技的应用”的心得体会进行简要的介绍。 关键词:纳米尺度的效应、纳米材料、纳米科技的应用心得体会 1纳米尺度的四种效应 当颗粒的尺寸大小缩小到1100nm的时候,我们把这种微粒叫做纳米粒子,也叫做超微颗粒,而此时的纳米微粒具有四种比较特殊的效应:小尺寸效应、表面效应、量子尺寸效

62、应和宏观量子隧道效应。 1.1小尺度效应 当超细微粒的尺寸与光波波长、电子的德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,其内部晶体周期性边界条件将被破坏的现象叫做小尺寸效应。 关于小尺度效应的一个有趣的现象是金银铁等金属以及金属以外的材料被制成超细粉末时它们的颜色一律都是黑色的。这个现象是1984年德国物理学家格莱特研究超细粉末时发现的。这是因为当材料的颗粒尺寸变小到小于光波的波长(110-7m左右)时,它对光的反射能力变得非常低,大约低到小于1%,我们见到的纳米材料便都是黑色的了。 1.2表面效应 表面效应是指纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。

63、由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有很高的活性,极不稳定,很容易与其他原子结合。实验证明,当纳米粒子的粒径接近于0时表面原子相对于全部原子数的比例将接近于100%。之后随着纳米粒子的粒径的逐渐增大,表面原子数占全部原子数的比例也逐渐减小(见图1)。这也就是说,纳米粒子的粒径越小,它的表面效应就越显著。例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应等。 1.3量子尺度效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级出现准连续变为离散能级(能带理论)的现象和纳米半导体微粒存在不连续的最高被占据分子轨道(价带)和最低未被占据的分子轨道能级(导带),能隙变宽现象均称为量子尺寸效应。 当物质为固体时,它由无数的原子构成,每个单独原子的能级就合并成能带由于电子数目很多,能带中能级的间距很小,看作是连续的。但是对于介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能级;能级间的间距随颗粒尺寸减小而增大(见图2),这可以解释固体的时候可以导电而变成纳米粒子的时候却成了绝缘体的现象和解释大块金属、半

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!