生物化学0蛋白质的结构与功能

上传人:无*** 文档编号:149458596 上传时间:2022-09-07 格式:DOC 页数:50 大小:3.22MB
收藏 版权申诉 举报 下载
生物化学0蛋白质的结构与功能_第1页
第1页 / 共50页
生物化学0蛋白质的结构与功能_第2页
第2页 / 共50页
生物化学0蛋白质的结构与功能_第3页
第3页 / 共50页
资源描述:

《生物化学0蛋白质的结构与功能》由会员分享,可在线阅读,更多相关《生物化学0蛋白质的结构与功能(50页珍藏版)》请在装配图网上搜索。

1、单 元细目要点一、蛋白质的结构与功能1.氨基酸与多肽(1)氨基酸的结构与分类(2)肽键与肽链2.蛋白质的结构(1)一级结构概念(2)二级结构螺旋(3)三级和四级结构概念3.蛋白质结构与功能的关系(1)蛋白质一级结构与功能的关系(2)蛋白质高级结构与功能的关系4.蛋白质的理化性质蛋白质变性(内容来自:维基百科,自由的百科全书)(1)氨基酸的机构与分类:蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于

2、发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。蛋白质三维结构的三种显示方式。图中蛋白质为磷酸丙糖异构酶(triose phosphate isomerase)。左:显示全部原子,并以原子类型标色(碳原子为蓝绿

3、色,氧原子为红色,氮原子为蓝色);中:只显示主链构象,以二级结构类型标色(螺旋为紫色,折叠为黄色);右:显示“溶剂可及表面”,以残基类型标色(酸性氨基酸为红色,碱性氨基酸为蓝色,极性氨基酸为绿色,非极性氨基酸为白色)。不同层次的蛋白质结构蛋白质结构,从一级结构到四级结构蛋白质的分子结构可划分为四级,以描述其不同的方面: 一级结构:组成蛋白质多肽链的线性氨基酸序列。 二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为螺旋和折叠。 三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。 四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功

4、能的蛋白质复合物分子。 除了这些结构层次,蛋白质可以在多个类似结构中转换,以行使其生物学功能。对于功能性的结构变化,这些三级或四级结构通常用化学构象进行描述,而相应的结构转换就被称为构象变化。一级结构是通过共价键(肽键)来形成。生物体中,肽键的形成是发生在蛋白质生物合成的翻译步骤。氨基酸链的两端,根据末端自由基团的成分,分别以“N末端”(或“氨基端”)和“C末端”(或“羧基端”)来表示。定义不同类型的二级结构有不同的方法,234最常用的方法是通过主链原子之间的氢键的排列方式来判断的。而在蛋白质完全折叠的状态下,这些氢键可以得到稳定。三级结构主要是通过结构“非特异性”相互作用来形成。然而,只有当

5、蛋白质结构域通过“特异性”相互作用(如盐桥,氢键以及侧链间的堆积作用)固定到相应位置,所形成的三级结构才能稳定。对于细胞外周蛋白,二硫键起到了关键的稳定作用;而对于细胞内蛋白质,则很少出现二硫键,因为原生质中是还原环境,不利于二硫键的形成。5氨基酸结构参见:氨基酸 组成蛋白质的-氨基酸单位,又称为氨基酸残基。R表示残基的侧链。组成蛋白质的-氨基酸单位,又称为氨基酸残基。R表示残基的侧链。CO-R-N法则-氨基酸由一个所有氨基酸类型中都含有的共同部分(形成蛋白质的主链)和一个对每一类氨基酸都不同的侧链所组成。如右图所示,“C”原子连接着4个不同类别的原子或基团:一个氨基、一个羧基、一个氢原子(图

6、中略去氢原子)和一个条侧链(用“R”表示,以代表各种不同的氨基酸的侧链)。不完全符合这一特性的一个特例是脯氨酸,其C原子没有连接氢原子而是被侧链取代。由于连接着不同的4个基团,这就使氨基酸有了手性;但大多数蛋白质都是同一构型的(左手型的同手性)。由于甘氨酸没有侧链(或者说侧链为一个氢原子),因此没有手性。左手型的氨基酸可以用一个简单的“CORN”法则来记忆:以氢原子在前来看C原子,其他三个基团“CO-R-N”以顺时针方向排布。 侧链决定了20种-氨基酸的化学性质,具体如下表:残基名称三字母代码单字母代码相对丰度(%) E.C.分子量pKa6VdW体积()带电(C),极性(P),疏水性(H)丙氨

7、酸(Alanine)ALAA13.07167H精氨酸(Arginine)ARGR5.315712.5148C+天冬酰胺(Asparagine)ASNN9.911496P天冬氨酸(Aspartate)ASPD9.91144.591C-半胱氨酸(Cysteine)CYSC1.81038.386P谷氨酸(Glutamate)GLUE10.81284.5109C-谷氨酰胺(Glutamine)GLNQ10.8128114P甘氨酸(Glycine)GLYG7.85748组氨酸(Histidine)HISH0.71376.8118P,C+异亮氨酸(Isoleucine)ILEI4.4113124H亮氨酸(

8、Leucine)LEUL7.8113124H赖氨酸(Lysine)LYSK7.012911.1135C+甲硫氨酸(Methionine)METM3.8131124H苯丙氨酸(Phenylalanine)PHEF3.3147135H脯氨酸(Proline)PROP4.69790H丝氨酸(Serine)SERS6.08773P苏氨酸(Threonine)THRT4.610193P色氨酸(Tryptophan)TRPW1.0186163P酪氨酸(Tyrosine)TYRY2.21639.8141P缬氨酸(Valine)VALV6.099105H基于化学性质的不同,可以将20种天然氨基酸分成多个类别。

9、重要的影响因子是侧链带电性、亲/疏水性、大小等。不同侧链在水溶液环境中的相互作用在塑造和维持蛋白质结构中扮演着重要的角色。疏水性的侧链趋向于被包埋于蛋白质内部,形成疏水核心,稳定蛋白质结构;而亲水性的侧链则更多的是暴露于溶剂中。疏水性的残基包括亮氨酸、异亮氨酸、苯丙氨酸和缬氨酸以及疏水性相对较弱的酪氨酸、丙氨酸、色氨酸和甲硫氨酸。带电侧链对于蛋白质结构的稳定性也非常重要,通过不同带电侧链之间形成离子键可以稳定结构,而如果结构内部有未配对的带电侧链则会大大减弱结构的稳定性;此外,带电残基有很强的亲水性,通常位于蛋白质表面。带正电的残基有赖氨酸和精氨酸,有时组氨酸也带正电荷;带负电的残基为谷氨酸和

10、天冬氨酸。其余的氨基酸一般有带不同功能基团的较小的亲水侧链。如丝氨酸和苏氨酸侧链带羟基,谷氨酰胺和天冬酰胺带酰胺基。一些氨基酸具有特殊性质,如两个半胱氨酸之间能够通过侧链上的巯基共价连接而形成二硫键,脯氨酸为环状且构象比较固定,甘氨酸为最小氨基酸且构象最具可变性。肽键主条目:肽键两个氨基酸通过脱水形成肽键二面角和的图示。其中黄色部分显示的是肽平面,而R1和R2分别表示左右两个残基的侧链。两个氨基酸可以通过缩合反应结合在一起,并在两个氨基酸之间形成肽键。而不断地重复这一反应就可以形成一条很长的残基链(即多肽链)。这一反应是由核糖体在翻译进程中所催化的。肽键虽然是单键,但具有部分的双键性质(由C=

11、O双键中的电子云与N原子上的未共用电子对发生共振导致),因此C-N键(即肽键)不能旋转,从而连接在肽键两端的基团处于一个平面上,这一平面就被称为肽平面。而对应的肽二面角(肽平面绕N-C键的旋转角)和(肽平面绕C-C1键的旋转角)有一定的取值范围;一旦所有残基的二面角确定下来,蛋白质的主链构象也就随之确定。根据每个残基的和来做图,就可以得到Ramachandran图,由于形成同一类二级结构的残基的二面角的值都限定在一定范围内,因此在Ramachandran图上就可以大致分辨残基参与形成哪一类二级结构。下表列出了肽键与对应类型单键以及氢键键长的比较。肽键平均长度单键平均长度氢键平均长度(30)C

12、- C153 pmC - C154 pmO-H - O-H280 pmC - N133 pmC - N148 pmN-H - O=C290 pmN - Ca146 pmC - O143 pmO-H - O=C280 pm两个氨基酸通过脱水形成肽键二面角和的图示。其中黄色部分显示的是肽平面,而R1和R2分别表示左右两个残基的侧链。一级结构主条目:一级结构肽或蛋白质的氨基酸序列(或残基序列)被称为一级结构。残基的标号总是从蛋白质的氨基端(没有参与形成肽键)开始。蛋白质一级结构可以通过测定其对应的基因(更准确地说是开放阅读框架)的碱基序列来间接确定(参见翻译),但对于转录后修饰和翻译后修饰,如二硫键

13、形成、磷酸化和糖基化等(通常被认为是一级结构的组成信息),则无法通过这种翻译法来测定;此外,也可以通过埃德曼降解法或连续质谱来对蛋白质样品进行直接测序。蛋白质一级结构简图。编辑 二级结构主条目:二级结构早在1951年,第一个蛋白质结构解出前7年,鲍林和他的同事就利用已知的键长和键角提出了螺旋和折叠的结构。7螺旋和折叠都是将主链上的氢键供体和受体饱和的一种方式。这两个二级结构仅依赖于主链骨架,即所有氨基酸的共同部分,这就解释了为什么这两个二级结构频繁地出现于大多数的蛋白质结构中。随着越来越多的蛋白质结构得到解析,更多的二级结构被发现,如各类Loop和其他形式的螺旋。二级结构都有自己独特的几何构架

14、,即二面角和有特定的值,处于Ramachandran图的特定区域。二级结构还包括转角、Loop和其他一些不常见的二级结构元素(如310螺旋等)。除了有规则的二级结构以外,主链骨架的其他部分就被称为无规则卷曲。从侧面看一个螺旋,紫色细线表示氢键。从羧基端看一个螺旋。两条反平行的链所形成的折叠,虚线表示氢键,箭头表示从氨基端到羧基端的方向。三级结构主条目:三级结构二级结构元素通常被折叠为一个紧密形态,元素之间以各种类型的loop和转角相连。三级结构的形成驱动力通常是疏水残基的包埋,但其他相互作用,如氢键、离子键和二硫键等同样也可以稳定三级结构。三级结构包括所有的非共价相互作用(不包括二级结构),并

15、定义了蛋白质的整体折叠,对于蛋白质功能来说是至关重要的。编辑 四级结构主条目:四级结构四级结构是由两个或多个多肽链通过相互作用形成的结构。其中,单独的一条链就被称为亚基。亚基之间不一定要共价连接,但有一些亚基之间是通过二硫键来连接的。不是所有的蛋白质都有四级结构,许多蛋白可以以单体形式来发挥功能。四级结构的稳定性与三级结构处于同一水平。两个或多个亚基形成的复合物统称为多聚体(multimer),如果是两个亚基则称二聚体或二体(dimer),三个亚基称三聚体或三体(trimer),以此类推。如果多聚体为相同的亚基组成,则加上“同源(homo-)”作为前缀,反之则用“异源(hetero-)”,如同

16、源二聚体或异源三聚体。编辑 侧链构象赖氨酸侧链上的碳原子的命名残基侧链上的原子根据希腊字母表的顺序(、等)来命名,如C指的是对应残基上最接近羰基的碳原子,而C则是次接近的。C通常被认为是主链骨架的组成原子。这些原子之间的键对应的二面角则相应以1、2、3等来命名,如赖氨酸侧链上第一、二个碳原子(即C和C)之间共价键的二面角为1。侧链可以有多种不同的构象,每一种类型的残基都有几种比较稳定的侧链构象。8赖氨酸侧链上的碳原子的命名结构域、结构花样与折叠类型参见:结构域及结构花样 许多蛋白质都可以被分为多个结构组成单元,结构域就是这样一个组成单元。结构域一般可以自稳定,且常常独立进行折叠,而不需要蛋白质

17、其他部分的参与;很多结构域都有自己独特的生物学功能。很多结构域并不是一个基因或基因家族对应蛋白质的独特结构单元,而往往是许多类蛋白质的共同结构单元。结构域常常是以其生物学功能来命名,如“钙离子结合结构域”;或以几类最初发现此结构域的蛋白名称衍生而来,如PDZ结构域(最初发现于PSD95、DlgA和ZO-1这三个蛋白质)。由于结构域自身可以稳定存在,因此可以将不同来源的结构域通过遗传工程人为地结合在一起,形成杂合蛋白质。结构花样(structural motif)同样是一种结构组成单元,它是由几个二级结构的特定组合(如螺旋-转角-螺旋)所组成;这些组合又被称为超二级结构。结构花样往往还包含有长度

18、不同的loop区。折叠类型则指的是整体的结构排列类型,如螺旋束和桶。尽管真核生物体可以表达数万种不同的蛋白质,但对应的结构域、结构花样与折叠类型的数量却少得多。一种合理的解释是,这是进化的结果;因为基因或基因的一部分可以在基因组内被加倍或移动。也就是说,通过基因重组,一个结构域可以从相应蛋白质A移动到本不具有此结构域的蛋白质B上,而其发生的进化驱动力可能是由于该结构域对应的生物学功能趋向于被蛋白质B所利用。蛋白质折叠主条目:蛋白质折叠从一级结构到更高级结构的过程就被称为蛋白质折叠。一个序列特定的多肽链(折叠之前的蛋白质一般都被称为多肽链)一般折叠为一种特定构象(又称为天然构象);但有时可以折叠

19、为一种以上的构象,且这些不同构象具有不同的生物学活性。在真核细胞内,许多蛋白质的正确折叠需要分子伴侣的帮助。蛋白质折叠前后。结构分类参见:SCOP、CATH及FSSP 对蛋白质结构进行分类的方法有多种,有多个结构数据库(包括SCOP、CATH和FSSP)分别采用不同的方法进行结构分类。存放蛋白质结构的PDB数据库中就引用了SCOP的分类。对于大多数已分类的蛋白质结构来说,SCOP、CATH和FSSP的分类是相同的,但在一些结构中还有所区别。编辑 结构测定参见:X射线晶体学、核磁共振及冷冻电子显微学 专门存储蛋白质和核酸分子结构的蛋白质数据库中,接近90%的蛋白质结构是用X射线晶体学的方法测定的

20、。9X射线晶体学可以通过测定蛋白质分子在晶体中电子密度的空间分布,在一定分辨率下解析蛋白质中所有原子的三维坐标。大约9%的已知蛋白结构是通过核磁共振技术来测定的。9该技术还可用于测定蛋白质的二级结构。除了核磁共振以外,还有一些生物化学技术被用于测定二级结构,包括圆二色谱。冷冻电子显微技术是近年来兴起的一种获得低分辨率(低于5埃)蛋白质结构的方法,该方法最大的优点是适用于大型蛋白质复合物(如病毒外壳、核糖体和类淀粉蛋白纤维)的结构测定;并且在一些情况下也可获得较高分辨率的结构,如具有高对称性的病毒外壳和膜蛋白二维晶体。1011解析不同分辨率的蛋白质结构中可能出现的问题(X射线晶体学)分辨率(埃)

21、结构中可能出现的问题4.0单个原子坐标无意义3.0 - 4.0整体折叠可能是正确的,但很可能有错误存在。很多侧链摆放位置不正确。2.5 - 3.0整体折叠基本是正确的,除了位于结构表面的一些环状结构可能没有正确建模。长侧链的极性残基(Lys、Glu、Gln等)和小侧链残基(Ser、Val、Thr等)的侧链摆放位置有可能不正确。2.0 - 2.5与2.5 - 3.0类似,只是出现错误的情况更少。可以明显观察到水分子和小配基。1.5 - 2.0基本没有错误的侧链摆放位置,甚至一些小的错误也可以被检测到。整体折叠,包括位于结构表面的环状结构,基本不可能出现错误。0.5 - 1.5在这一分辨率下,一般

22、不会有结构错误。侧链异构体库和立体几何研究都是利用这一分辨率范围内的结构来进行的。近年来,随着结构基因组学的兴起,大量的蛋白质结构获得了测定,为研究蛋白质的作用机理提供了重要的结构信息。编辑 结构预测主条目:蛋白质结构预测测定蛋白质序列比测定蛋白质结构容易得多,而蛋白质结构可以给出比序列多得多的关于其功能机制的信息。因此,许多方法被用于从序列预测结构。 二级结构预测 三级结构预测 o 同源建模:需要有同源的蛋白三级结构为基础进行预测。 o Threading法。 o “从头开始”(Ab initio):只需要蛋白质序列即可进行结构预测。由于运算量大,需要有超级计算机来进行,或采用分布式计算,如

23、Rosettahome等。 四级结构预测:主要是预测蛋白质-蛋白质之间的相互作用方式。 编辑 相关软件与蛋白质结构相关的软件有很多,主要分为以下几类: 三维结构图形化显示。较为流行的有PyMOL、Rasmol、MolMol等。 三维结构解析。包括晶体结构解析、NMR结构解析和电镜结构解析。著名的软件包有CCP4和CNS等。 结构预测: 1. 二级结构预测,如JPred等。 2. 三级结构预测,如3D-PSSM等。 结构分析。这一类软件数量庞大,功能不同,各有特色,以下列出其中较为常用的一些功能和对应软件: 1. 查找相似结构或进行结构比较,如DALI; 2. 根据蛋白质三维结构,对其物理化学性

24、质进行分析,如用于静电势分布分析的APBS; 3. 对蛋白质三维结构的实验或理论模型进行检查以发现可能错误,如PROCHECK和WHAT_CHECK; 4. 分子动力学模拟,如GROMACS; 5. 蛋白质-蛋白质或蛋白质-配基之间相互作用分析,如InterPreTS。 更多软件可以在ExPASy Proteomics tools上查找。显示隐藏 查 论 编蛋白质过程蛋白质生物合成 翻译后修饰 蛋白质折叠 蛋白质导向 蛋白质降解(蛋白酶体)结构蛋白质结构 蛋白质结构域 超结构域模块类型蛋白质类型列表 蛋白质列表 膜蛋白 球状蛋白质(球蛋白、白蛋白) 纤维状蛋白研究蛋白质方法 蛋白质组生物化学家

25、族:蛋白质 核酸 糖类(糖蛋白、醇、苷) 脂类(酸/中、磷、甾、鞘、类) 氨基酸/中 核/中 四吡咯/中生化蛋白质:结构:膜、球 (酶、载、抗)、纤来自“http:/zh.wikipedia.org/wiki/%E8%9B%8B%E7%99%BD%E8%B4%A8%E7%BB%93%E6%9E%84”1个分类: 蛋白质结构1个隐藏分类: 优良条目 本页面最后修订于2011年4月4日 (星期一) 20:08。 蛋白质蛋白质是一种复杂的有机化合物,旧称“朊”1。蛋白质是由氨基酸分子呈线性排列所形成,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编

26、码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时

27、,蛋白质也是人们日常饮食中必需的营养物质,这是因为动物自身无法合成所有必需氨基酸;通过消化所摄入的蛋白质食物(将蛋白质降解为氨基酸),人体就可以将吸收的氨基酸用于自身的蛋白质合成。蛋白质这一概念最早是由瑞典化学家永斯贝采利乌斯于1838年提出,但当时人们对于蛋白质在机体中的核心作用并不了解。1926年,詹姆斯B萨姆纳揭示尿素酶是蛋白质,首次证明了酶是蛋白质。2第一个被测序的蛋白质是胰岛素,由弗雷德里克桑格完成,他也因此获得1958年度的诺贝尔化学奖。首先被解析的蛋白质结构包括血红蛋白和肌红蛋白的结构,所用方法为X射线晶体学;34该工作由马克斯佩鲁茨和约翰肯德鲁于1958年分别完成,他们也因此获

28、得1962年度的诺贝尔化学奖。肌球蛋白三维结构的飘带图,其主要由螺旋所构成。目录隐藏 1 历史 2 生物化学性质 3 合成 o 3.1 化学合成 4 降解 5 结构 6 功能 o 6.1 催化作用 o 6.2 信号传导和配基运输 o 6.3 结构蛋白 7 研究方法 o 7.1 蛋白质纯化 o 7.2 细胞内定位 o 7.3 蛋白质组学与生物信息学 o 7.4 结构预测与模拟 8 营养作用 9 参见 10 参考文献 11 外部链结 历史更多资料:分子生物学史在18世纪,安东尼奥弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够

29、使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家Gerhardus Johannes Mulder对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化

30、性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。目前,科学家可以从生物公司购买越来越多的各类纯蛋白质。著名化学家莱纳斯鲍林成功地预测了基于氢键的规则蛋白质二级结构,而这一构想最早是由威廉阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉

31、或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。5编辑 生物化学性质主条目:氨基酸和肽肽键的共振结构。氨基酸通过肽键连接在一起形成蛋白质聚合物。蛋白质结构中亮氨酸(肽键左侧)和丙氨酸(肽键右侧)通过肽键(用圈标出)连接在一起。其中,碳原子显示为绿色,氧原子为红色,氮原子为蓝色,并且没有显示氢原子。蛋白质是由不同的L型氨基酸所形成的线

32、性聚合物。目前在绝大多数已鉴定的天然蛋白质中发现的氨基酸有20种(参见标准蛋白氨基酸列表)。不过在自然界中还存在着一些特殊的氨基酸,例如在一种海洋寡毛纲小蠕虫Olavius algarvensis以及与之存在共生关系的细菌1(该细菌属于变形菌)中存在着高含量的硒代半胱氨酸(Selenocysteine),由原本为终止密码子的UGA编码,和吡咯赖胺酸(Pyrrolysine),由终止密码子UAG编码6。所有氨基酸都有共同的结构特征,包括与氨基连接的碳原子,一个羧基和连接在碳原子上的不同的侧链。但脯氨酸有着与这种基本结构不同之处:它含有一个侧链与氨基连接在一起所形成的特殊的环状结构,使得其氨基在肽

33、键中的构象相对固定。7 标准氨基酸的侧链是构成蛋白质结构的重要元素,它们具有不同的化学性质,因此对于蛋白质的功能至关重要。多肽链中的氨基酸之间是通过脱水反应所形成的肽键来互相连接;一旦形成肽键成为蛋白质的一部分,氨基酸就被称为“残基”,而连接在链的碳、氮、氧原子被称为“主链”或“蛋白质骨架”。由于肽键有两种共振态,具有一定的双键特性,使得相邻碳之间形成肽平面;而肽键两侧的二面角确定了蛋白质骨架的局部形态。由于氨基酸的非对称性(两端分别具有氨基和羧基),蛋白质链具有方向性。蛋白质链的起始端有自由的氨基,被称为N端或氨基端;尾端则有自由的羧基,被称为C端或羧基端。“蛋白质”、“多肽”和“肽”这些名

34、词的含义在一定程度上有重叠,经常容易混淆。“蛋白质”通常指具有完整生物学功能并有稳定结构的分子;而“肽”则通常指一段较短的氨基酸寡聚体,常常没有稳定的三维结构。然而,“蛋白质”和“肽”之间的界限很模糊,通常以20-30个残基为界。8“多肽”可以指任何长度的氨基酸线性单链分子,但常常表示缺少稳定的三级结构。肽键的共振结构。氨基酸通过肽键连接在一起形成蛋白质聚合物。蛋白质结构中亮氨酸(肽键左侧)和丙氨酸(肽键右侧)通过肽键(用圈标出)连接在一起。其中,碳原子显示为绿色,氧原子为红色,氮原子为蓝色,并且没有显示氢原子。合成主条目:蛋白质生物合成编码一个蛋白质氨基酸序列的基因的DNA序列每一种蛋白质都

35、有自己独特的氨基酸序列,而氨基酸序列的组成信息则由编码对应蛋白质的基因的核苷酸序列所决定。遗传密码是一套由三个核苷酸组成的密码子,每一种三个核苷酸的组合可以编码一种特定氨基酸,如mRNA上的AUG(在DNA中为ATG)编码甲硫氨酸。由于DNA含有四种核苷酸(A、T、C、G),所以对应的可能的密码子有444=64种;而标准氨基酸只有20种,因此有部分密码子是冗余的,即部分氨基酸可以由多个不同的密码子所编码。DNA中的基因首先在RNA聚合酶等蛋白质的作用下被转录为前mRNA。在大多数生物体中,前mRNA(或初始转录产物)要经过转录后修饰以形成成熟的mRNA,随后mRNA就可以经由核糖体被用作蛋白质

36、合成的模板。在原核生物中,mRNA可能可以在生成后被直接用于蛋白质合成,或者在离开类核后就结合核糖体。而在真核生物中,mRNA在细胞核中被合成,然后通过核膜被转运到细胞质中;在细胞质中,mRNA才可以被用于蛋白质合成。原核生物的蛋白质合成速率可以达到每秒20个氨基酸,要高于真核生物。9从一个mRNA模板合成一个蛋白质的过程被称为翻译。在翻译过程中,mRNA被一些蛋白质携带到核糖体上;然后核糖体在mRNA上从5端到3端寻找起始密码子(大多数情况下为AUG);找到起始密码子后,即核糖体上起始tRNA的反密码子与起始密码子配对后,翻译就可以开始进行;在起始密码子后,核糖体每一次阅读三个核苷酸(或一个

37、密码子),同样是通过携带对应氨基酸的tRNA上反密码子与密码子配对。其中,氨酰tRNA合成酶可以将tRNA分子与正确的氨基酸连接到一起。不断延长的多肽链通常被称为“新生链”。生物体中的蛋白质合成总是从N-端到C-端。合成的蛋白质的大小可以通过其含有的氨基酸数目或者其分子量(以道尔顿或千道尔顿,即kDa为单位)来衡量。酵母蛋白的平均长度为466个氨基酸或平均分子量为53kDa。8目前已知的最大蛋白质是肌联蛋白,它是肌肉中肌节的组分之一,其分子量为近3,000 kDa,含有近27,000个氨基酸。10编辑 化学合成除了生物合成外,一些小的蛋白质可以通过多种化学途径来合成,这些合成方法又被称为肽合成

38、,其依赖于有机合成技术,如化学连接来高通量生产肽。11化学合成允许在合成的肽链中引入非天然氨基酸,如加入荧光标记的氨基酸。12这些合成方法所合成的产物被大量应用于生物化学和细胞生物学实验。但是,化学合成无法有效合成残基数多于300的蛋白质,而且合成的蛋白质可能不具有天然的三级结构。大多数化学合成方法都是从C-端到N-端进行合成,刚好和生物合成反应的方向相反。编码一个蛋白质氨基酸序列的基因的DNA序列降解主条目:蛋白质降解参见:蛋白酶体 对于细胞来说,蛋白质降解有多种用途,包括去除分泌蛋白的N末端信号肽,对前体蛋白进行剪切以产生“成熟”蛋白等。细胞不需要的或受到损伤的非跨膜蛋白质一般由蛋白酶体来

39、进行降解,而真核生物的跨膜蛋白则通过内体运送到溶酶体(动物细胞)或液泡(酵母)中进行降解。13降解所生成的氨基酸分子可以被用于合成新的蛋白质。一些蛋白质可以发生自降解。此外,细胞中存在的大量蛋白酶(特别是溶酶体中),可以对外来的蛋白质进行降解,这也是一种细胞自我保护的机制。生物学实验中,也经常对蛋白质进行降解分析;例如在蛋白质组学中,利用蛋白酶对特定蛋白质进行降解,并对降解产物进行质谱分析而获得对应蛋白质的序列信息和修饰情况;此外,生物化学实验中,埃德曼降解法常被用于对蛋白质进行氨基酸序列分析。结构主条目:蛋白质结构三种显示蛋白质三维结构的方式。图中蛋白质为磷酸丙糖异构酶(triose pho

40、sphate isomerase)。左:显示全部原子,并以原子类型标色(碳原子为蓝绿色,氧原子为红色,氮原子为蓝色);中:只显示主链构象,以二级结构类型标色(螺旋为紫色,折叠为黄色);右:显示“溶剂可及表面”,以残基类型标色(酸性氨基酸为红色,碱性氨基酸为蓝色,极性氨基酸为绿色,非极性氨基酸为白色)。大多数的蛋白质都自然折叠为一个特定的三维结构,这一特定结构被称为天然状态。虽然多数蛋白可以通过本身氨基酸序列的性质进行自我折叠,但还是有许多蛋白质需要分子伴侣的帮助来进行正确的折叠。在高温或极端pH条件下,大多数蛋白质会失去它的天然状态,这一现象就称为变性。生物化学家常常用以下四个方面来表示蛋白质

41、的结构: 一级结构:组成蛋白质多肽链的线性氨基酸序列。 二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为螺旋和折叠。14 三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构,是单个蛋白质分子的整体形状。蛋白质的三级结构大都有一个疏水核心来稳定结构,同时具有稳定作用的还有盐桥、氢键和二硫键等。常常可以用“折叠”一词来表示“三级结构”。 四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子的形态。 细胞色素c的NMR溶液结构,显示了蛋白质的动态结构。蛋白质并不完全是刚性分子。许多蛋白质在执行生物学功能时可以在多个相

42、关结构中相互转换。在进行功能型结构重排时,这些相关的三级或四级结构通常被定义为不同“构象”,而这些结构之间的转换就被称为“构象变换”。例如,酶的构象变换常常是由底物结合到活性位点所导致。在溶液中,所有的蛋白质都会发生结构上的动态变化,主要表现为热振动和与其他分子之间碰撞所导致的运动。不同大小的蛋白质的分子表面。从左到右依次为:抗体(IgG)、血红蛋白、胰岛素、腺苷酸激酶和谷胺酰氨合成酶。蛋白质可以由三级结构的不同大致分为三个主要类别:球蛋白、纤维蛋白和膜蛋白。几乎所有的球蛋白都是水溶性的,许多酶都是球蛋白;纤维蛋白多为结构蛋白;膜蛋白常常作为受体或分子通道,是细胞与外界联系的重要介质。要了解特

43、定蛋白质的功能,获得其三级结构或四级结构可以提供重要的结构信息。目前用于蛋白质的原子分辨率结构测定的方法主要是X射线晶体学和NMR光谱学。冷冻电子显微学也可以提供超大蛋白质复合物(如病毒、核糖体等)的低分辨率结构信息。14而电子晶体学在一些情况下也可以提供较高分辨率的结构信息,特别是对于膜蛋白的二维晶体。15解析的结构(包括原子坐标和结构解析的相关信息)通常存放到蛋白质数据库(PDB),供全世界研究者免费下载。结构预测也可以为未知结构(实验结构)的蛋白质提供结构信息。功能蛋白质是细胞中的主要功能分子。8除了特定类别的RNA,大多数的其他生物分子都需要蛋白质来调控。蛋白质也是细胞中含量最为丰富的

44、分子之一;例如,蛋白质占大肠杆菌细胞干重的一半,而其他大分子如DNA和RNA则只分别占3%和20%。16在一个特定细胞或细胞类型中表达的所有蛋白被称为对应细胞的蛋白质组。蛋白质能够在细胞中发挥多种多样的功能,涵盖了细胞生命活动的各个方面:发挥催化作用的酶;参与生物体内的新陈代谢的调剂作用,如胰岛素;一些蛋白质具有运输代谢物质的作用,如离子泵和血红蛋白;发挥储存作用,如植物种子中的大量蛋白质,就是用来萌发时的储备;许多结构蛋白被用于细胞骨架等的形成,如肌球蛋白;还有免疫、细胞分化、细胞凋亡等过程中都有大量蛋白质参与。蛋白质功能发挥的关键在于能够特异性地并且以不同的亲和力与其他各类分子,包括蛋白质

45、分子结合。蛋白质结合其他分子的区域被称为结合位点,而结合位点常常是从蛋白质分子表面下陷的一个“口袋”;而结合能力与蛋白质的三级结构密切相关,因为结构决定了结合位点的形状和化学性质(即结合位点周围的氨基酸残基的侧链的化学性质)。蛋白质结合的紧密性和特异性可以非常高;例如,核糖核酸酶抑制蛋白可以与人的血管促生蛋白angiogenin以亚飞摩尔(sub-femtomolar,即1 M)angiogenin在两栖动物中的同源蛋白抗肿瘤核糖核酸酶(onconase)。非常微小的化学结构变化,如在结合位点的某一残基侧链上添加一个甲基基团,有时就可以几乎完全破坏结合;例如,氨酰tRNA合成酶可以分辨侧链结构

46、非常类似的缬氨酸和异亮氨酸,而这两种氨基酸的差别就在于异亮氨酸的侧链多出一个甲基。相同的蛋白质分子结合在一起就可形成同源寡聚体或多聚体,有些多聚体可以形成纤维;而这些形成纤维的蛋白质往往是结构蛋白,它们在单体状态下是球蛋白,通过自结合来形成刚性的纤维。蛋白-蛋白相互作用可以调控酶的活性和细胞周期中的各种进程,并可以使大型的蛋白质复合物得以形成,这样可以将参与同一生物学功能的分子结合到一起,从而提高其工作效率;而结合所诱导的蛋白构象变化对于复杂的信号传导网络的构建也是必不可少的。还有一些蛋白质(如膜蛋白)可以结合或者插入到细胞膜中。催化作用主条目:酶细胞中,酶是最被广泛了解和研究最多的蛋白质,它

47、的特点是催化细胞中的各类化学反应。酶的催化反应具有高度的专一性和极高的催化效率。酶在大多数与代谢和异化作用以及DNA的复制、修复和RNA合成等相关的反应中发挥作用。在翻译后修饰作用中,一些酶(如激酶和磷酸酶)可以在其底物蛋白质上增加或去除特定化学基团(如磷酸基团)。目前已知的酶催化的反应有约4000种。18酶可以极大地加速其所催化的反应;例如,与没有酶催化的情况相比,乳清酸核苷-5-单磷酸脱羧酶(orotate decarboxylase)的加速作用最高可达1017倍(形象地说,在没有酶的情况下完成反应需要七千八百万年,而存在酶的情况下反应只需18毫秒)。19结合于酶上,并在酶的作用下发生反应

48、的分子被称为底物。虽然酶分子通常含有数百个氨基酸残基,但参与与底物结合的残基只占其中的一小部分,而直接参与底物催化反应的残基则更少(平均为3-4个残基)。20这部分参与底物结合和催化的区域被称为活性位点。有一些酶需要结合一些小分子(辅酶或辅因子)才能够有效发挥催化作用。酶的活性还可以被酶抑制剂所抑制,或被酶激活剂所提高。编辑 信号传导和配基运输小鼠的抗霍乱抗体与一个糖分子抗原结合的复合物结构图。许多蛋白质都参与了细胞中和细胞间的信号转导。一些蛋白质,如胰岛素,作为细胞外蛋白质,可以将信号从一个细胞(合成这些蛋白质的细胞)传送到身体其他组织中的细胞。还有一些蛋白质,如属于膜蛋白的受体,可以结合细

49、胞外的信号分子来引发细胞内的生物化学反应;多数受体都有一个位于细胞外表面的结合域结合信号分子和一个位于细胞内的效应结构域(可能具有酶活性或可以发生构象变化以诱发与细胞内其他蛋白质的结合),两者之间通过跨膜域连接。抗体是适应性免疫系统中重要的组成蛋白质,其作用为结合抗原或机体中的其他外来物质,通过识别来引发免疫系统消除这些物质。抗体可以被分泌到细胞外环境中或锚合到特异性B细胞(即浆细胞)的细胞膜中。抗体和抗原之间存在很高的亲和力,使得抗体可以很快地识别抗原。在多细胞生物体中,配基运输蛋白能够结合特定的小分子并将它们运送到机体中的特定位置。这些蛋白质在运输的起点(配基往往具有较高的浓度)必须以高的

50、亲和力结合它们的配基,而在目的组织中(配基浓度较低)则必须释放所结合的配基。这就需要运输蛋白和所结合的配基之间有特定的亲和力。一个典型的例子是血红蛋白,它作用是将氧气从肺中运输到其他组织和器官中。21通道蛋白也是重要的物质运输蛋白,它们能够改变细胞膜的通透性,使得一些小分子和离子可以进出细胞。膜本身是疏水性的,极性或带电分子无法通过扩散作用穿过。作为跨膜蛋白的通道蛋白,含有可控制的内部通道,在一定条件下允许这些分子进出细胞。通道蛋白也有专一性,许多离子通道蛋白只选择性地对特定离子起作用;例如,钾离子和钠离子通道分别只识别钾离子或钠离子。22小鼠的抗霍乱抗体与一个糖分子抗原结合的复合物结构图。结

51、构蛋白聚合成链状的F型肌动蛋白结构蛋白能够形成相对更为刚性的生物组分。多数结构蛋白为纤维蛋白;例如,肌动蛋白和微管蛋白作为单体是球状可溶蛋白,但一旦多聚化便形成长的刚性纤维用于组成细胞骨架,以保持细胞的大小和形态。胶原蛋白和弹性蛋白是结缔组织(如软骨)中关键的组分,而角蛋白则存在于头发、指甲、羽毛、蹄和一些贝壳中。其他结构蛋白还包括马达蛋白,如肌球蛋白、运动蛋白和动力蛋白(dynein),它们能够产生动力。这些蛋白质对于细胞能动性(特别是精子的运动)、细胞内物质运输和细胞分裂都具有重要作用;2324它们也为肌肉收缩提供动力。25研究方法主条目:蛋白质研究方法蛋白质是被研究得最多的一类生物分子,

52、对它们的研究包括“体内”(in vivo)和“体外”(in vitro)。体外研究多应用于纯化后的蛋白质,将它们置于可控制的环境中,以期获得它们的功能信息;例如,酶动力学相关的研究可以揭示酶催化反应的化学机制和与不同底物分子之间的相对亲和力。而体内研究实验着重于蛋白质在细胞或者整个组织中的活性作用,从而可以了解蛋白质发挥功能的场所和相应的调节机制。编辑 蛋白质纯化主条目:蛋白质纯化为了进行in vitro研究,必须先将目的蛋白质从其他细胞组分中分离提纯出来。这一过程通常从细胞裂解开始(对于分泌性蛋白质的提纯则不需要裂解细胞),通过破坏细胞膜将细胞内含物释放到溶液中,从而获得含有目的蛋白质的细胞

53、裂解液。然后通过超速离心将细胞裂解液中膜脂和膜蛋白、细胞器、核酸以及含有可溶蛋白质的混合物。盐析法是一种较为常用的通过沉淀从裂解液中分离浓缩蛋白质的方法。基于目的蛋白质的化学性质(如分子量、带电情况和结合活性),可以利用不同的色谱法来进一步分离提纯蛋白质。纯化的程度可以用电泳(已知目的蛋白质的分子量)、光谱学(目的蛋白质具有独特的光谱学特征)或者酶活分析反应(目的蛋白质具有特定的酶活性)来衡量。对于天然蛋白质,可能需要一系列的纯化步骤才能获得纯度足以用于实验室应用的蛋白质。为了简化这一过程,通常采用基因工程的手段在目的蛋白质上添加一些化学特性,在不改变其结构和生物学活性的情况下使纯化过程更为简

54、单。通常是将含有特定氨基酸序列的“标签”连接在目的蛋白质的N-端或C-端。例如,含有连续多个组氨酸的序列,称为组氨酸标签(His-tag);将含有带组氨酸标签蛋白质的裂解液流过含有镍的亲和层析柱,组氨酸就可以与镍螯合从而结合在柱子上,而裂解液中其他蛋白质由于没有组氨酸标签而直接流出柱子,从而达到分离目的。26通过基因工程(即DNA重组)改造而获得的蛋白质被称为重组蛋白质。编辑 细胞内定位参见:蛋白质定位 带有绿色荧光蛋白标签的蛋白质在不同的细胞区室和细胞结构中的分布图。荧光以白色来显示。左边从上到下依次为,细胞核、内质网、质膜和线粒体;中间从上到下依次为,核小体、高尔基体、细胞质和微管;右边从

55、上到下依次为,核膜、溶酶体、中心体和微丝。in vivo的蛋白质研究常常专注于蛋白质在细胞中的合成和定位。虽然已经知道许多细胞内蛋白质是在细胞质中合成,而膜结合蛋白质或分泌性蛋白质是在内质网中合成,但蛋白质定位到特定细胞器或细胞结构的特异性是如何达到的,目前还不清楚。一些有助于获得特定蛋白质在细胞中定位的方法得到了发展,特别是用基因工程将目的蛋白质上连接上“报告者”(如绿色荧光蛋白),将这样的融合蛋白在细胞中表达后,就可以通过显微镜观察荧光来了解融合蛋白在细胞中的分布。27另一种常用的同样是基因工程的方法为定点突变。利用这一方法,研究者可以改变蛋白质序列,从而改变其结构、细胞内定位以及调控机制

56、;而这些改变可以在in vivo的情况下通过连接绿色荧光蛋白,或者在in vitro的情况下通过酶动力学的方法以及结合实验进行观察。编辑 蛋白质组学与生物信息学主条目:蛋白质组学和生物信息学在一定时间内一个细胞或一类细胞中存在的所有蛋白质被称为蛋白质组,研究如此大规模的数据的领域就被称为蛋白质组学,与基因组学的命名方式相似。蛋白质组学中关键的实验技术包括用于检测细胞中大量种类蛋白质相对水平的蛋白质微阵列技术,和用于系统性研究蛋白-蛋白相互作用的双杂交筛选技术。此外,还有探究所有组分之间的可能的生物学相互作用的相互作用组学,以及系统性地解析蛋白质结构,并揭示其中的可能的折叠类型的结构基因组学。目

57、前各类数据库中含有许多种类的生物体的大量的基因组和蛋白质组数据,包括人类基因组的数据;要对这些数据进行分析已获得有用的信息,就需要用到近来来发展起来的新兴学科生物信息学。生物信息学的发展使得现在研究者可以通过序列比对有效地鉴定相关生物体的同源蛋白质。利用序列信息推导工具(sequence profiling tool)可以对更特异地对序列进行分析,如限制酶图谱、针对核酸序列的开放阅读框架分析以及二级结构预测。利用特定软件,如ClustalW,可以从序列信息中可以构造出系统树并进行进化分析。生物信息学的研究领域包括集合、注释和分析基因组和蛋白质组数据,这就需要应用计算技术于生物学问题,如基因识别

58、和支序分类。编辑 结构预测与模拟参见:蛋白质结构预测及分子动力学 作为结构基因组研究的互补,蛋白质结构预测的目标是发展出有效的能够提供未知结构(未通过实验方法得到)蛋白质的可信的结构模型。目前最为成功的结构预测方法是同源建模;这一方法是利用序列相似的蛋白质(已知结构)的结构作为“模板”。而结构基因组的目标正是通过解析大量蛋白质的结构来为同源建模提供足够的模板以获得剩余的未解析的同源蛋白结构。从序列相似性较差的模板计算出精确的结构模型对于同源建模法还是一个挑战,问题在于序列比对准确性的影响,如果能够获得“完美”的比对结果,则能够获得精确的结构模型。28许多结构预测方法已经被用于在蛋白质工程领域,

59、在这些方法的帮助下,研究者们设计出一些新型的蛋白质折叠类型。29更为复杂的结构计算是预测蛋白质分子之间的相互作用,需要应用分子对接法和蛋白-蛋白相互作用预测。利用分子动力学的方法可以模拟蛋白质的折叠和结合过程。通过分布式计算,如FoldingHome计划,为分子动力学模拟注入了活力。小的螺旋蛋白结构域,如绒毛蛋白的头部30和HIV辅助蛋白31已经成功地在计算机中(in silico)被模拟。将分子动力学和量子力学相结合的方法已经被用于探索视网膜色素分子的电子态32编辑 营养作用大多数微生物和植物能够合成所有20种标准氨基酸;动物则由于缺乏某些氨基酸合成途径中特定氨基酸合成反应所需的关键酶,如从

60、天冬氨酸生成赖氨酸、甲硫氨酸和苏氨酸的合成反应第一步中发挥催化作用的天冬氨酸激酶,而只能合成部分氨基酸。因此,动物必须从食物中获取这些自身无法合成的氨基酸。16一个生物体所无法合成而需从食物中获取的氨基酸被称为必需氨基酸。如果环境中存在所需氨基酸,微生物能够直接摄取这些氨基酸,而下调其自身的合成水平,从而节省了原来需要用于合成反应的能量。动物所摄取的氨基酸来源于食物中所含的蛋白质。摄入的蛋白质通过消化作用而被降解,这一过程通常包括蛋白质在消化系统的酸性环境下发生变性,变性后的蛋白质被蛋白酶水解成氨基酸或小段的肽。随后这些降解片断就可以被吸收。部分吸收后的氨基酸被用于蛋白质的合成,其余的则通过糖

61、异生作用被转化为葡萄糖或进入三羧酸循环进行代谢。蛋白质的营养作用在饥饿环境下显得特别重要,此时机体可以利用自身的蛋白质,特别是肌肉中的蛋白质,来产生能量以维持生命活动。33蛋白质/氨基酸也是食物中重要的氮源.人体所需蛋白质在许多食物中都含量丰富,如动物肌肉、乳制品、蛋、豆类、榖类和蕈类等。人体中蛋白质缺乏可以导致全身浮肿、皮肤干燥病变、头发稀疏脱色、肌肉重量减轻、免疫力下降等。34食物中的蛋白质有时会引起过敏反应。显示隐藏 查 论 编基因表达遗传学入门经典中心法则:DNA RNA 蛋白质 扩充中心法则(RNA RNA、RNA DNA、蛋白质 蛋白质)遗传密码转录(转录因子、RNA聚合酶、启动子) 原核转录 / 古菌转录 / 真核转录转录后修饰(hnRNA、5端加帽、RNA剪接、多腺苷酸化)翻译(核糖体、tRNA) 原核翻译 / 古菌翻译 / 真核翻译翻译后修饰基因表达调控表观遗传学调节(基因组印记等) 转录调控转录后调控(P体、可变剪接、miRNA等)翻译调控翻译后调控(磷酸化、酶解等)显示隐藏 查 论 编蛋白质过程蛋

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!