毕业论文基于霍尔传感器的转速测量设计

上传人:沈*** 文档编号:149434517 上传时间:2022-09-07 格式:DOC 页数:35 大小:1.99MB
收藏 版权申诉 举报 下载
毕业论文基于霍尔传感器的转速测量设计_第1页
第1页 / 共35页
毕业论文基于霍尔传感器的转速测量设计_第2页
第2页 / 共35页
毕业论文基于霍尔传感器的转速测量设计_第3页
第3页 / 共35页
资源描述:

《毕业论文基于霍尔传感器的转速测量设计》由会员分享,可在线阅读,更多相关《毕业论文基于霍尔传感器的转速测量设计(35页珍藏版)》请在装配图网上搜索。

1、南京大学毕业论文题 目基于霍尔传感器的转速测量设计摘 要在工程实践中,经常碰到需要测量转速的场合,而单片机作为一款性价比很高的微控制器在测速系统有着广泛的应用。首先,本文叙述了单片机测量转速的系统构成及转速测量的几种常用方法。其次,介绍了一种基于89C51单片机的电动机测速系统,该系统利用霍尔传感器产生脉冲信号,通过定时算法程序,将转速结果实时显示出来。最后,对测量指标进行了分析、比较并提出改进方案。关键词:单片机;转速测量;霍尔传感器AbstractAbstract(外语专业的需要)In engineering practice, often need to measure the rota

2、tional speed, micro controller and microcontroller as a very high price is widely used in the velocity measurement system. Firstly, this paper describes several methods of measuring speed and speed measurement system. Secondly, introduces a kind of motor speed measurement system based on 89C51 MCU,

3、the system by Holzer sensor generates a pulse signal, through the timing algorithm procedures, will speed results in real time display. Finally, analyzed the measurement indexes, and put forward the improvement scheme.Keywords: singlechip ; tachometric survey ; speed 目 录目 录摘 要IABSTRACT(外语专业的需要)II第一章

4、 绪论11.1课题的背景11.2课题的目的及意义11.3设计思路与内容1第二章 基于单片机的转速测量原理32.1转速的测量原理32.2转速的测量方法32.2.1测频法“M法”32.2.2测周期法“T法”42.2.3测频测周法M/T法52.3误差和精度分析52.3.1“M法”测量误差分析52.3.2“T法”测量误差分析62.3.3“M/T法”测量误差分析6第三章 霍尔传感器测转速系统的单元电路介绍83.1单片机的介绍83.2霍尔传感器选型103.3开关霍尔传感器的性能分析103.4系统显示电路介绍123.4.1 74HC595的介绍123.4.2 数码管介绍13第四章 电路的硬件设计154.1设

5、计的方框图154.2程序流程图164.2单元电路的设计174.2.1单片机主控电路设计174.2.2脉冲产生电路设计184.2.3按键电路设计194.2.4数码管结构和显示原理204.3电路的整机原理图的设计(分析工作原理)21第五章 软件设计235.1单片机转速程序设计思路及过程235.1.1单片机程序设计思路235.1.2单片机转速计算程序235.1.3二-十进制转换程序245.2程序设计26第六章 总结与展望27致 谢28参考文献2929第一章 绪论第一章 绪论1.1课题的背景在直流电机的多年实际运行的过程中,机械测速电机不足之处日益明显,其主要表现为直流测速电机DG中的炭刷磨损及交流测

6、速发电机TG中的轴承磨损,增加了设备的维护工作量,也随着增加了发生故障的可能性;同时机械测速电机在更换炭刷及轴承的检修作业过程中,需要将直流电动机停运,安装过程中需要调整机械测速电机轴与主电机轴的同轴度,延长了检修时间,影响了设备的长期平稳运行。随着电力电子技术的不断发展,一些新颖器件的不断涌现,原有器件的性能也随着逐渐改进,采用电力电子器件构成的各种电力电子电路的应用范围与日俱增。因此采用电子脉冲测速取代原直流电动机械测速电机已具备理论基础,如可采用磁阻式、霍尔效应式、光电式等方式检测电机转速。经过比较分析后,决定采用测速齿轮和霍尔元件代替原来的机械测速电机。霍尔传感器作为测速器件得到广泛应

7、用。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。霍尔效应这种物理现象的发现,虽然已有一百多年的历史,但是直到20世纪40年代后期,由于半导体工艺的不断改进,才被人们所重视和应用。我国从70年代开始研究霍尔器件,经过20余年的研究和开发,目前已经能生产各种性能的霍尔元件,霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特点。1.2课题的目的及意义在实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法

8、,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 这次设计内容包含知识全面,对传感器测量发电机转速的不同的方法及原理设计有较多介绍,在测量系统中能学到关于测量转速的传感器采样问题,单片机部分的内容,显示部分等各个模块的通信和联调。全面了解单片机和信号放大的具体内容。进一步锻炼我们在信号采集,处理,显示发面的实际工作能力。1.3设计思路与内容计算转速公式: n=60/NTc (r/min)其中,N是内部定时器的计数值,为三字节,分别由TH0,TL0,VTT构成;Tc为时基

9、,由于采用11.0592M的晶振,所以Tc不在是1um,而是12M/11.0592M约为1.08um,带入上面公式,即可得到转速的精确计算公式: N=60*11059200/12N=55296000/N再将55296000化为二进制存入单片机的内存单元。下面我们将介绍除数是如何获得的:单片机的转速测量完成,定时器T0作为内部定时器,外部中断来的时候读取TH0,TL0,并同时清零TH0、TL0,使定时器再次循环计内部脉冲。此外,对于低速情况下,我们还要设定一个软件计数器VTT,当外部中断还没来而内部定时器已经溢出,产生定时器0中断时,增加VTT,作为三字节中的高字节。三字节组成除数,上面的常数为

10、四字节,所以计算程序实际上就是调用一个四字节除三字节商为两字节(最高转速36000r/min足够)的程序。为数码管能够显示出来,需将二进制转换为十进制,在将十进制转换为非压缩BCD码后,才能调用查表程序,最后送显示。传感器的定子上有2 个互相垂直的绕组A 和B, 在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢,霍尔元件HA 和HB 的激励电机分别与绕组A 和B 相连,它们的霍尔电极串联后作为传感器的输出。图1.1霍尔转速传感器的结构原理图图1.2霍尔转速传感器的结构原理图第二章 基于霍尔单片机的转速测量原理第二章 基于单片机的转速测量原理2.1转速的测量原理转速是工程中应用非常广泛的

11、一个参数,而随着大规模及超大规模集成电路技术的发展,数字测量系统得到普遍应用,利用单片机对脉冲数字信号的强大处理能力,应用全数字化的结构,使数字测量系统的越来越普及。在测量范围和测量精度方面都有极大的提高。转速的测量方法有很多,由于转速是以单位时间内的转速来衡量的,所以本文采用霍尔元器件测量转速。霍尔器件是有半导体材料制成的一种薄片,其长为l,宽为b,厚度为d。若在垂直于薄片方向(即沿厚度d的方向)施加外磁场,在沿长为l的方向的两端面加外电场,则其内部会有一定的电流通过。由于电子在磁场中运动,所以将受到一个洛仑兹力,其大小为: F=qVB,式中:F为洛伦兹力;q为载流子电荷,V为载流子运动速度

12、,B为磁感应强度。 由于受洛伦兹力,电子的运动方向轨迹将发生偏移,在霍尔元器件薄片的两个侧面分别产生电兹积聚或电荷过剩,形成霍尔电场。在霍尔器件两个侧面间形成的电位差为霍尔电压,其大小为: U=RBI/d式中:R为霍尔常数,I为控制电流。设K=R/d,它称为霍尔器件的灵敏系统,表示该霍尔元件在单位磁感应强度和单位控制电流下输出霍尔电动势的大小。若控制电流保持不变,则霍尔感应电压将随外界磁场强度而变化。根据这一原理,可将一块永久磁钢固定在电动机转轴上转盘的边沿,转盘随被转轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔元件,电机旋转时,霍尔元件受到磁钢所产生的磁场影响,故可输出脉冲信号,其频

13、率和转速成正比,测出霍尔元器件输出的脉冲周期或频率即可计算出转速。2.2转速的测量方法2.2.1测频法“M法”在一定测量时间T内,测量脉冲发生器产生的脉冲数m1来测量转速。如图2-1所示:2-1“M”法测量转速脉冲设在时间T内,转轴转过的弧度数为X,则的转速n可由下式表示。 (2-1) 转轴转过的弧度数X,可用下式所示 (2-2)将(2-1)式代入(2-2)式,得转速n的表达式为: (2-3)-转速单位:(转/分)-定时时间单位:(秒)2.2.2测周期法“T法”转速可以用两脉冲产生的间隔宽度Tp来决定。如图2-2所示: 图2-2 “T”法脉宽测量Tp通过定时器测得。定时器对时基脉冲(频率为fc

14、)进行计数定时,在TP内计数值若为m2,则计算公式为: (2-4)即: (2-5)-为转轴转一周脉冲发生器产生的脉冲数。-为硬件产生的基准时钟脉冲频率单位Hz。-转速单位:(转/分)。-时基脉冲。2.2.3测频测周法M/T法所谓测频测周法,即是综合了“T”法和“M”法分别对高、低转速具有的不同精度,利用各自的优点而产生的方法,精度位于两者之间。如图2-3所示。图2-3 “M/T”法定时/计数测量转速计算如下:设高频脉冲的频率为fc,脉冲发生器每转发出P个脉冲,由式(2-2)和(2-5)可得M/T法转速计算公式为:-转速值。单位:(转/分)。-晶体震荡频率。单位Hz。-输入脉冲数,反映转角。-时

15、基脉冲数。2.3误差和精度分析2.3.1“M法”测量误差分析由转速公式: 给出因定时时间和输入脉冲不能保证严格同步,以及在T内能否正好测量外部脉冲的完整周期个数,所以m1可能产生一个脉冲的量化误差,故转速变化:(2-7)其相对误差为: (2-8) (2-9) (2-10)-相对误差。-加入一个脉冲后的转速值。-误差。由(2-10)式可知,随转速n增大而减小,因此,这种方法适合于高速测量,当转速越低,产生的误差会越大。2.3.2“T法”测量误差分析因m1的量化误差也是1个脉冲,故引起的转速变化也可以由下式给出: (2-11)其相对误差为: (2-12)所以由(2-12)式可知,随转速减小而减小。

16、因此,这种方法适合于低速测量,转速增高,误差增大。2.3.3“M/T法”测量误差分析由其测量原理可知。输入计数脉冲和计数定时值在理论上是严格同步的,因此,在理论上,m1(定时器的计数值)不考虑误差,由于实际启动是由程序来控制的(系统应采取由输入计数脉冲来同步),故可能会产生一个脉冲的量化误差,因而,转速变化为: 其相对误差为: (2-13)由上式可知:这种转速测量方法的相对误差与转速n无关,只与晶体振荡产生的脉冲有关,故可适合各种转速下的测量。保证其测量精度的途径是增大定时时间T,或提高时基脉冲的频率fc。因此,在实际操作时往往采用一种称变M/T的测量方法,即所谓变M/T法,在M/T法的基础上

17、,让测量时间Tc始终等于转速输入脉冲信号的周期之和。并根据第一次的所测转速及时调整预测时间Tc,兼顾高低转速时的测量精度。第三章 霍尔传感器测转速系统的单元电路的介绍第三章 霍尔传感器测转速系统的单元电路介绍3.1单片机的介绍本设计采用STC89C51芯片,芯片采用40脚双列直插式封装,32个I/O口,芯片工作电压3.85.5V,工作温度070C(商业级),工作频率可高达30MHz,芯片的外形和引脚见下图(2)图3-1 STC89C51引脚图STC89C51 是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。使用高密度非易失性存储器技术制造,与工业80C51

18、 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在线系统可编程Flash,使得STC89C51为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。 STC89C51具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位 定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,STC89C51可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电

19、保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。8 位微控制器 8K字节在系统可编程 Flash。P0P3口结构,第一功能、第二功能请参考数据手册(STC89C51数据手册下载地址www.mcu-)。其基本结构框图如图3.1,包括:一个8位CPU;4KB ROM;128字节RAM数据存储器;26个特殊功能寄存器SFR; 4个8位并行I/O口,其中P0、P2为地址/数据线,可寻址64KB ROM或64KB RAM;一个可编程全双工串行口;具有5个中断源,两个优先级,嵌套中断结构;两个16位定时器/计数器; 一个片内震荡器及时钟电路;STC89C51系

20、列单片机中HMOS工艺制造的芯片采用双列直插(DIP)方式封装,有40个引脚。STC89C51单片机40条引脚说明如下:(1)电源引脚。V正常运行和编程校验(8051/8751)时为5V电源,V为接地(2)I/O总线。P- P(P0口),P- P(P1口),P- P(P2口),P- P(P3口)为输入/输出引线。(3)时钟。XTAL1:片内震荡器反相放大器的输入端。XTAL2:片内震荡器反相放器的输出端,也是内部时钟发生器的输入端。(4)控制总线。由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。值得强调的是,P3口的每一条引脚均可独立定义为第一功能的输入输出或第二

21、功能。如表3.1所示。P3口引脚及线号引脚第二功能P3.0 (10)RXD串行输入口P3.1 (11)TXD串行输出口P3.2 (12)INT0外部中断0P3.3 (13)INT1外部中断1P3.4 (14)T0定时器0外部输入P3.5 (15)T1定时器1外部输入P3.6 (16)WR外部数据存储器写脉冲P3.7 (17)RD外部数据存储器读脉冲表3.1 P3口线的第二功能定义:STC89C51单片机的片外总线结构:地址总线(AB):地址总线宽为16位,因此,其外部存储器直接寻址为64K字节,16位地址总线由P0口经地址锁存器提供8位地址(A0至A7);P2口直接提供8位地址(A8至A15)

22、。数据总线(DB):数据总线宽度为8位,由P0提供。控制总线(CB):由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。3.2霍尔传感器选型霍尔效应自1879年被美国物理学家爱德文霍尔发现至今已有100多年的历史,但直到20世纪50年代,由于微电子学的发展,才被重视和开发,现在,已发展成一个品牌多样的传感器产品族,并得到广泛的应用。霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用OH137的霍尔传感器。3.3开关霍尔传感器的性能分析OH137霍尔开关电路是为了适用客户低成本高性能要求开发生产的系列产品,其应用领域广泛,性能可靠稳定。电

23、路内部由反向电压保护器、电压调整器,霍尔电压发生器,差分放大器,史密特触发器和集电极开路输出级组成,能将变化的磁场讯号转换成数字电压输出。产品特点:产品一致性好、灵敏度可按照客户要求定制、电路可和各种逻辑电路直接接口可实现功能:无触点开关、位置检测、速度检测、流量检测典型应用领域:直流无刷电机、家用电器、缝纫设备、纺织机械、编码器、安全报警装置等自动化控制领域极限参数:(TA=25)电源电压VCC4.5-24V 输出负载电流IO25mA工作温度范围TA -4085 贮存温度范围TS -55150电特性:TA=25参 数符号测试条件量 值单位最小典型最大电源电压VCC4.5-24V输出低电平电压

24、VOLVcc=4.5V, RL=2K,BBOP-200400mV输出漏电流IOHVout=Vccmax,BBRP-0.110A电源电流ICCVCC=Vccmax OC开路-35mA输出上升时间trVcc=12V, RL=820, CL=20pF-0.121.20S输出下降时间tfVcc=12V, RL=820, CL=20pF-0.141.40S磁特性: (VCC=4.524V) 1mT=10GS参 数符号量 值单 位最小典型最大工作点BOP-18mT释放点BRP2-mT回 差BH6-8mT表3.2 产品性能分析图3-2管腿说明:1.电源 2. 地 3.输出使用注意:1)安装时要尽量减小施加到

25、电路外壳或引线上的机械应力。2)焊接温度要低于260,时间小于3秒。3)电路为OC输出,需要在1、3腿(电源与输出)之间加一上拉电阻。上拉电阻的阻值与工作电压、通过电路的电流有关。测试电路:VoutVcc=5VRLRL=820CL=20 pFCL: 图3-3图3-4功能方框图:REGmAMPPin1.VCCPin3.VoutPin2.GND磁电转换特性BHBRPBOPBVOHVOL03.4系统显示电路介绍3.4.1 74HC595的介绍74HC595是硅结构的CMOS器件, 兼容低电压TTL电路,遵守JEDEC标准。74HC595是具有8位移位寄存器(如图2-8 工作时序)和一个存储器,三态输

26、出功能。 移位寄存器和存储器是分别的时钟。 数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。 移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。它的管脚分布和各管脚功能如图2-9所示。图3-5 管脚分布和管脚功能图3-6 74HC595工作时序3.4.2 数码管介绍数码管按发光二极管单元连接方式分为共阳极数码管和共阴

27、极数码管。共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。当某一字段的阴极为高电平时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。当某一字段的阳极为低电平时,相应字段就不亮。原理如图2-10所示。共阳极共阴极图3-7 数码管第四章 电路的硬件设计第四章 电路的硬件设计4.1设计的方框图系统由传感器、信号预处理电路、处

28、理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。 处理器采用STC89C51单片机,显示器采用8位LED数码管动态显示。系统原理框图如图2.1所示:图4.1转速测量系统原理框图系统软件主要包括测量初始化模块、信号频率测量模块、浮点数算术运算模块、浮点数到BCD码转换模块、显示模块、按键功能模块、定时器中断服务模块。系统软

29、件框图如图2.2所示。图4.2 系统软件框图4.2程序流程图开程序流程图始初 始 化计算程序BCD码转换非压缩BCD转换显 示 程 序返 回 4.2单元电路的设计图4.3硬件电路4.2.1单片机主控电路设计系统选用 STC89C51 作为转速信号的处理核心。STC89C51 包含 2 个16位定时/计数器、4K8 位片内 FLASH 程序存储器、4个8位并行I/O口。16 位定时/计数器用于实现待测信号的频率测量。8位并行口P0、P2用于把测量结果送到显示电路。4K8 位片内FLASH程序存储器用于放置系统软件。STC89C51与具有更大程序存储器的芯片管脚兼容,如:89C52(8K8 位)或

30、 89C55(32K8 位),为系统软件升级打下坚实的物质基础。STC89C51最大的优点是:可直接通过计算机串口线下载程序,而无需专用下载线和编程器。STC89C51单片机是在一块芯片中集成了CPU、RAM、ROM、定时器/计数器和多功能I/O口等一台计算机所需要的基本功能部件。其基本结构框图如图3.1,包括:一个8位CPU;4KB ROM;128字节RAM数据存储器;21个特殊功能寄存器SFR; 4个8位并行I/O口,其中P0、P2为地址/数据线,可寻址64KB ROM或64KB RAM;一个可编程全双工串行口;具有5个中断源,两个优先级,嵌套中断结构;两个16位定时器/计数器; 一个片内

31、震荡器及时钟电路;STC89C51系列单片机中HMOS工艺制造的芯片采用双列直插(DIP)方式封装,有40个引脚。STC89C51单片机40条引脚说明如下: (1)电源引脚。V正常运行和编程校验(8051/8751)时为5V电源,V为接地端。(2)I/O总线。P- P(P0口),P- P(P1口),P- P(P2口),P- P(P3口)为输入/输出引线。(3)时钟。XTAL1:片内震荡器反相放大器的输入端。XTAL2:片内震荡器反相放器的输出端,也是内部时钟发生器的输入端。(4)控制总线。 由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。值得强调的是,P3口的每一

32、条引脚均可独立定义为第一功能的输入输出或第二功能。如表3.1所示。STC89C51单片机的片外总线结构:地址总线(AB):地址总线宽为16位,因此,其外部存储器直接寻址为64K字节,16位地址总线由P0口经地址锁存器提供8位地址(A0至A7);P2口直接提供8位地址(A8至A15)。数据总线(DB):数据总线宽度为8位,由P0提供。控制总线(CB):由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。4.2.2脉冲产生电路设计LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件

33、下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。LM358的封装形式有塑封8引线双列直插式和贴片式。特性:内部频率补偿 直流电压增益高(约100dB) 单位增益频带宽(约1MHz) 电源电压范围宽:单电源(330V)双电源(1.5一15V) 低功耗电流,适合于电池供电 低输入偏流 低输入失调电压和失调电流 共模输入电压范围宽,包括接地 差模输入电压范围宽,等于电源电压范围 输出电压摆幅大(0至Vcc-1.5V)如图3.2所示,信号预处理电路为系统的前级电路,其中霍尔传感元件b,d为两电源端,d接正极,b接负极;a,c两端为输出

34、端,安装时霍尔传感器对准转盘上的磁钢,当转盘旋转时,从霍尔传感器的输出端获得与转速率成正比的脉冲信号,传感器内置电路对该信号进行放大、整形,输出良好的矩形脉冲信号,图中LM358部分为过零整形电路使输入的交变信号更精确的变换成规则稳定的矩形脉冲,便于单片机对其进行计数。图4.4信号预处理电路4.2.3按键电路设计通过软件设置按键开关功能: 按 K0清零、复位按K1显示计时时间按K2显示计数脉冲数此按键电路为低电平有效,当无按键按下时,单片机输入引脚P1.0、P1.1、P1.2、P1.3端口均为高电平。当其中任一按键按下时,其对应的P1端口变为低电平,在软件中利用这个低电平设计其功能。软件中还设

35、置了按键防抖动误触发功能,软件中设置定时器1 50ms中断一次,每次中断都对按键进行扫描,如果扫描到有按键按下,则延迟10ms,再次进行键扫描,若仍有按键按下,则按键为真,并从P1口读取数据,低电平对应的即为有效按键,如图4.5所示。4.2.4数码管结构和显示原理图4.6为数码管的引脚接线图,实验板上以P0口作输出口,经74LS244驱动,接8只共阳数码管S0-S7。表3.2为驱动LED数码管的段代码表为低电平有效,1-代表对应的笔段不亮,0-代表对应的笔段亮。若需要在最右边(S0)显示“5”,只要将从表中查得的段代码64H写入P0口,再将P2.0置高,P2.1-P2.7置低即可。设计中采用动

36、态显示,所以其亮度只有一个LED数码管静态显示亮度的八分之一。表4.1 驱动LED数码管的段代码数字dpecgbfa十六进制P0.7P0.6P0.5P0.4P0.3P0.2 P0.1P0.0共阴共阳010110111B74810001010014EB210101101AD523100111019D624000111101EE15100110119B64610111011BB4470001010115EA810111111BF409100111119F60图4.6数码管这里设计的系统先用 6 位LED数码管动态显示小型直流电机的转速。当转速高于六位所能显示的值(999999)时就会自动向上进位显

37、示。4.3电路的整机原理图的设计(分析工作原理)霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l、。若在垂直于薄片平面(沿厚度 )方向施加外磁场,在沿方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:式中:f洛仑磁力, 载流子电荷, 载流子运动速度, 磁感应强度。这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差称为霍尔电压。霍尔电压大小为: (mV) 式中:霍尔常数, 元件厚度, 磁感应强度, 控制电流设 , 则=(mV)为霍尔器件的灵敏系数(mV/

38、mA/T),它表示该霍尔元件在单位磁感应强度和单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度反向时,霍尔电动势也反向。图2.3为霍耳元件的原理结构图。若控制电流保持不变,则霍尔感应电压将随外界磁场强度而变化,根据这一原理,可以将两块永久磁钢固定在电动机转轴上转盘的边沿,转盘随被测轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔元件,转盘随轴旋转时,霍尔元件受到磁钢所产生的磁场影响,输出脉冲信号。传感器内置电路对该信号进行放大、整形,输出良好的矩形脉冲信号,测量频率范围更宽,输出信号更精确稳定,已在工业,汽车,航空等测速领域中得到广泛的应用。其频率和转速成正比,测出脉冲的周期或频

39、率即可计算出转速图4.7转速测量系统安装图 图4.8信号处理模块原理图第五章 软件设计第五章 软件设计5.1单片机转速程序设计思路及过程单片机测量转速可以分为若干模块,然后在主程序中调用各个模块。5.1.1单片机程序设计思路计算转速公式: n=60/NTc (r/min)其中,N是内部定时器的计数值,为三字节,分别由TH0,TL0,VTT构成;Tc为时基,由于采用11.0592M的晶振,所以Tc不在是1um,而是12M/11.0592M约为1.08um,带入上面公式,即可得到转速的精确计算公式: N=60*11059200/12N=55296000/N再将55296000化为二进制存入单片机的

40、内存单元。下面我们将介绍除数是如何获得的:单片机的转速测量完成,定时器T0作为内部定时器,外部中断来的时候读取TH0,TL0,并同时清零TH0、TL0,使定时器再次循环计内部脉冲。此外,对于低速情况下,我们还要设定一个软件计数器VTT,当外部中断还没来而内部定时器已经溢出,产生定时器0中断时,增加VTT,作为三字节中的高字节。三字节组成除数,上面的常数为四字节,所以计算程序实际上就是调用一个四字节除三字节商为两字节(最高转速36000r/min足够)的程序。为数码管能够显示出来,需将二进制转换为十进制,在将十进制转换为非压缩BCD码后,才能调用查表程序,最后送显示。5.1.2单片机转速计算程序

41、开 始由于本次设计的系统要实现的功能是将霍尔传感器的信号送到单片机的外部中断口,再对周期方波进行内部计数,调用计算程序把转速测出来。可以说是核心部分,流程图如图所示:被除数初始化读取定时值返 回调用除法程序 图51 计算程序流程图计算程序中又再次调用了除法程序,这里的除法为四字节除三字节商为两字节,除法的程序的编程思想可以和手工计算的除法相似,比较减法的思想,流程图如图5-3所示具体程序见附录。5.1.3二-十进制转换程序除 法计算程序计算出来的数据为二进制,存到50H、51H单元中以便发送程序中调用传送数据到计算机,计算机可识别二进制,然而,我们需要在LED上显示,查表程序需要拆分的BCD码

42、,所以二进制必须先转换成BCD后才能拆分。这里介绍将(R2R3)中的16位二进制数转换为压缩BCD码十进制整数送R4、R5、R移位次数 计数器被除数左移1位被除数 除数上商1,减去除数上商0计数器减1计数器=0?返回图52除法程序流程图按照数制转换方法可以画出流程图开始0-R4、R5、R616-R72*(R4R5R6)+C - R4R5R6(十进制运算)返 回图 53双字节整数二翻十程序流程图单片机显示部分可以用来显示计算出来的数据的。在程序设计中,在AT89C51RAM存贮器中的四个显示缓冲器单元30H34H,分别存放着由计算出来的转速的BCD码进行拆分后的非压缩BCD码数据,AT89C51

43、的P1口扫描输出总是只有一位为低电平、其它位为高电平,AT89C51的P0口相应位的显示数据的段数据,使该位显示出一个字符,其它们为暗,依次地改变P1口输出为低高的位,P0口输出对应的段数据,5位LED显示器就显示出由缓冲器中显示数据所确定的字符。显示部分程序分为两部分:十进制BCD转换成非压缩BCD码;查表程序显示数据。双字节整数拆分程序流程图如图5-5开 始高字节R4送30HR5与 0F0H相与交换后送31HR5与0FH相与后送32HR6与 0F0H相与交换后送33HR6与0FH相与后送34H返 回图 54双字节整数拆分程序流程图5.2程序设计根据以上设计思路和各个模块的流程图即可编写出本

44、次毕业设计的程序,注意其中各个模块间的参数传递以及堆栈指针等问题,程序设计的任务即可完成,写出初始的程序,再进行上机调试,这些我们将具体在下章中加以详细叙述。 开始 30H-R0,表首地址-DPTR,(R1)=0FEH(R0)赋值给AA+DPTR赋值给P0(R1)=P1,(R1)=A,RL AINC R0 ,A=(R1)(R1)=0DFH?结束图 55显示程序流程图第六章 总结与展望第六章 总结与展望好长时间没有这么系统地设计过系统。通过这次设计,让我对整个设计从初期到完工有了个总体的把握。由于平时只是做些功能模块的设计,不用考虑所用资源对后面工作的影响。而这次不同,这次是个完整的工程,所有资

45、源都是有限的,你得为后面的工作留好足够多的资源,要不就不能完成任务。所以就得去查一些有关设计方面的资料。最后我得说,我得感谢这次设计,因为它让我学到的不仅是理论实践知识,还有对工作的态度和团队合作的那种默契。让我即将毕业走向社会之前有了一次完美的考验。总之,在这次综合大考验中,我无形中学到了不少东西。无论是知识还是与同学的合作方面,我都有很多感受,当然这些成绩的取得和指导老师的帮助是分不开的。致 谢在论文完成之际,我首先向关心帮助和指导我的指导老师张守峰表示衷心的感谢并致以崇高的敬意!张老师在整个毕业设计过程中,给与我细心的指导,在学习中给了我极大的帮助和教诲。在论文工作中,遇到了诸多问题,一

46、直得到张老师的亲切关怀和悉心指导,使我顺利完成了该论文,张老师以其渊博的学识、严谨的治学态度、求实的工作作风和他敏捷的思维给我留下了深刻的印象,我将终生难忘。在这里再一次向他表示衷心的感谢,感谢他为学生营造的浓郁学术氛围,以及学习、生活上的无私帮助! 值此论文完成之际,谨向张老师致以最崇高的谢意!在学校的学习生活即将结束,回顾两年多来的学习经历,面对现在的收获,我感到无限欣慰。为此,我向热心帮助过我的所有老师和同学表示由衷的感谢!特别感谢我的班主任老师张老师对我的学习和生活所提供的大力支持和关心!还要感谢一直关心帮助我成长的室友宋建华、郝财政!在我即将完成学业之际,我深深地感谢我的家人给予我的

47、全力支持!最后,衷心地感谢在百忙之中评阅论文和参加答辩的各位专家、教授!参考文献参考文献1王军政 电液伺服阀控马达速度闭环数字控制系统的应用研究J.北京理工大学报.2001.9(3):29312王煜东 传感器应用电路400例M.北京:中国电力出版社. 20083刘保录 基于单片机的电机综合参数测试仪设计J.仪器仪表学报2002.21(2):794冯夏勇,宾鸿赞 微机转速测量常用方法与精度分析J.电子与自动化1995.46(2):32335何立民MCS-51系列单片机应用系统设计系统配置与接口M.北京:北京航空航天大学出版社.19906.孙涵芳,徐爱卿 单片机原理及应用M.北京:北京航空航天大学出版社.1996.47 王知平 基于89C51的转速测量系统设计A.东南大学硕士论文.20058何立民 单片机应用文集社M.北京:北京航空航天大学出版.19929朱家建 单片机与可编程控制器M.北京:高等教育出版社199810刘清河 汽车电子组合仪表的研究A.哈尔滨工业大学硕士论文.200311纪宗南 单片机外围器件实用手册-输入通道器件分册M.北京:北京航空航天大学出版社199812平凡单片机13肖兰,马爱芳 电机与拖动M.中国水利出

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!