货车车轮踏面损伤有限元分析

上传人:zhu****ng 文档编号:147337250 上传时间:2022-09-02 格式:DOC 页数:13 大小:1.21MB
收藏 版权申诉 举报 下载
货车车轮踏面损伤有限元分析_第1页
第1页 / 共13页
货车车轮踏面损伤有限元分析_第2页
第2页 / 共13页
货车车轮踏面损伤有限元分析_第3页
第3页 / 共13页
资源描述:

《货车车轮踏面损伤有限元分析》由会员分享,可在线阅读,更多相关《货车车轮踏面损伤有限元分析(13页珍藏版)》请在装配图网上搜索。

1、货车车轮踏面损伤温度场与应力场的有限元分析货车车轮踏面损伤温度场与应力场的有限元分析摘要:本文通过对21t轴重、120km/h的货车车轮在一次紧急制动过程中的温度场和应力场分布进行有限元模拟,探讨分析了温度场和应力场分布与货车车轮踏面损伤的关系,为车轮的热疲劳损伤机理研究提供了技术储备和参考。关键词:货车车轮,温度场,应力场,有限元模拟,热疲劳损伤。正文:提速和重载是提高铁路运输能力的有效措施,已成为铁路货车发展的趋势。我国货车目前制动方式仍然是踏面制动,列车车轮在强摩擦、高热负荷以及大轮轨作用力等恶劣条件下工作。列车在制动过程中,动能逐渐转变为制动装置产生的热能,对于采用踏面制动的高速重载铁

2、路货车,这样的制动过程非常严苛,由此产生的热疲劳损伤已成为车轮失效的主要形式之一。车轮经过多次制动后,会在车轮与铁轨的接触踏面上产生均匀分布的横向裂纹,周围会伴随剥离、掉块等现象。因此,在国家倡导货运列车提速的前提下,现有的踏面制动正面临的严峻的挑战,也对车轮的抗热损伤能力和疲劳寿命提出了更高的要求。由于热损伤和疲劳损伤都与车轮在紧急制动过程中的温度场和应力场分布有密切的关系,本文以21t轴重、120km/h的货运列车车轮为研究对象,拟结合具体货车车轮的结构,利用建模软件对其建模,通过有限元模拟其紧急制动过程中的温度场和应力场分布,并针对实际踏面损伤情况对其模拟准确性给予评估,为进一步研究车轮

3、的热疲劳损伤提供技术参考。1、车轮紧急制动温度场模拟货车车轮的轮径为840mm,轮辋内侧内径为710mm,轮毂孔直径为170mm,轮辋外径为273mm,理论重量351 kg。车轮材料为CL60,材料各项物热参数如下:弹性模量E =2.05105 MPa,泊松比=0.3,密度=7800 kg/m3,热膨胀系数=10.310-6-1,比热容c=470 J/(kgK),热传导率k =51W/(mK),对流换热系数h=40W/(m2K)。由于车轮是周向对称的结构,在考虑热流输入车轮踏面和车轮的热耗散时,可以认为在车轮的周向是无变化的,即温度场是轴对称的,因此,选取车轮的1/18进行分析,即取周向20的

4、模型。车轮的三维模型如图1。图1 车轮的三维模型1) 热流密度的确定:为简化问题,可以认为在高速行进过程中,踏面的温度在周向是均匀分布的,且热流输入也是均匀的。初速度为120km/h时,各项制动参数如表1所示。表1 制动参数制动初速度(km/h)轴重(t)减速度(m/s2)制动距离(m)闸瓦压力(kN)摩擦系数热量分配系数120210.5561000210.2780.91根据热流密度计算公式 (1-1)其中:闸瓦在踏面上扫过的面积;输入到车轮的热量分配系数;热生成功率。计算得热流密度 1考虑到车轮周围的空气流动状态较为简单,本模拟中,取对流换热系数=40W/(m2K),并忽略车轮的热辐射影响。

5、本次计算对车轮进行一次紧急制动,并在制动结束后空冷10分钟。2) 模型的网格划分、约束、对流换热面的确定将在SolidWorks中建好的模型导入ANSYS软件,进行网格划分。在热分析中选取Solid90单元,应力分析选择Solid186单元,网格大小8mm,踏面附近的网格为6mm,网格划分的结果如图2所示。图2 车轮模型的网格划分对于热分析,选取车轮的踏面为热流输入面,选取与空气接触的面,设置为对流换热面。如图3。图3 热流输入面(左)和对流换热面(右)在制动盘的剖切面上施加周向对称耦合,如图4。图4 在剖切面施加周向对称耦合对模型施加载荷,输入载荷命令流,设置输出每个子步选项,并开始计算。3

6、) 计算结果及分析图5、图6分别显示了制动结束时刻和制动结束空冷10分钟后的温度场分布。制动结束时刻的最高温度为224,冷却10分钟后,最高温度为97.5。图5 制动结束时刻(60s)的温度场分布图6 制动完毕冷却10分钟后的温度场分布分别取踏面上如图7所示的位置的节点,读取其制动过程中的最高温度,并绘制其制动过程中的节点温度变化曲线,如图8所示。图7 在车轮踏面上选取生成曲线的节点51243各点在制动过程中的最高温度如表2所示:表2 踏面上不同位置节点在制动过程中的最高温度节点编号12345温度()2013083152628712453图8 踏面不同位置节点在制动过程中的温度变化曲线3分别取

7、车轮径向上如图9所示的位置的节点,读取其制动过程中的最高温度,并绘制其制动过程中的节点温度变化曲线,如图10所示。图9在车轮径向上选取生成曲线的节点54321各点在制动过程中的最高温度如表3所示:表3 径向上不同位置节点在制动过程中的最高温度节点编号12345温度()3151671131109112345图10 径向不同位置节点在制动过程中的温度变化曲线综合以上的模拟结果,经过分析后可以得到如下结论:(1) 在整个制动过程中,温度的最高点都集中在闸瓦与车轮的接触摩擦面部位;(2) 随着制动过程的进行,货车的运行速度也在下降,闸瓦与车轮踏面的摩擦剧烈程度也发生着变化,导致制动过程的温度不是一直上

8、升,而是达到峰值后缓缓降低;(3) 踏面上,只有摩擦面与闸瓦接触的部位温度较高,其余部分的温度较低;(4) 车轮的温度是由踏面向轮轴位置逐渐降低的,越靠近轮轴位置,轮的温度越低,出现最高温度的时间也越晚。2、车轮紧急制动应力场模拟1)输入载荷的确定对于货车车轮在紧急制动过程中应力场的模拟,可以利用间接偶合法,将紧急制动全程车轮的温度场的模拟结果作为应力场的载荷,施加在模型的所有节点上,利用命令流,调用温度场计算结果文件(*.rth文件)中的节点温度值到结构分析中,并在结构分析时设置与热分析相对应的每一个载荷步,以确保耦合的正确性。2)结构约束的施加由于车轮与车轴是压装的,属于过盈装配,因此需要

9、在轮毂的内圈施加沿轴向和径向的零位移约束,即全约束。由于模型选取的是周角对称的1/18模型,需要在剖切面上施加对称耦合,以满足边界连续的条件。结构约束示意图如图11。图11 模型结构约束的施加方式3)计算结果及分析图12、图13分别显示了制动结束时刻和制动结束空冷10分钟后的应力场分布。制动结束时刻的最大应力为370MPa,冷却10分钟后,最大应力为126MPa。图14显示了制动过程中车轮中有最大应力值时刻(制动开始后的第25秒)的应力分布云图,最大应力值为460MPa。图12 制动结束时刻的应力场分布图13 制动空冷10分钟后的应力场分布图14 制动过程中出现最大应力时刻的应力场分布分别取如

10、图15所示的位置的节点,读取其制动过程中的最大热应力,并绘制其制动过程中的热应力变化曲线,如图16所示。54321图15 在车轮径向上选取生成应力曲线的节点12345图16径向上不同节点在制动过程中的Von Mises应力曲线综合以上的模拟结果,经过分析后可以得到如下结论:(1) 在整个制动过程中,随着踏面温度的迅速升高,成为车轮的最高温部位,有强烈的热膨胀,因此此过程应力值最大的点都在闸瓦与车轮的接触摩擦面部位;(2) 随着制动过程的进行,车轮踏面的热量逐渐传入车轮内部,使得踏面温度与轮辋和轮毂温度的差值缓缓减小,从而制动结束时,踏面的温度迅速下降,而使内部温度高于踏面,最大应力部位产生在车

11、轮踏面之下;(3) 踏面的最大热应力随着与内部的温度差的减小,也并不是一直递增的,而是达到峰值后缓缓下降;(4) 踏面附近较大的应力为周向的拉应力。3、踏面疲劳损伤分析通过对上述车轮紧急制动过程中的温度场和应力场的分析,可以看出车轮在制动过程中会由于温度变化产生较大的热应力,使得踏面附近极易发生屈服,而车轮原本存在的加工缺陷和热处理留下的参与应力与之相互作用,会促进热裂纹的萌生。在短时间的连续制动情况下,踏面会来不及降温而反复接受摩擦,使得温度不断上升,踏面附近由原本的无应力或残余的周向拉应力变为受到周向的压应力,而制动结束,温度降低后,踏面附近则会恢复到残余的周向拉应力状态,再次制动又会使周向受拉,如此往复循环,会产生低周疲劳,是车轮在服役时最严苛的服役状态,极易产生疲劳裂纹。因此可以推断,在货车的制动过程中,由于其温度场和应力场的分布特点,应该极力避免短时多次的快速制动2。参考文献1 郑红霞, 李智令, 刘玉军. 紧急制动下货车车轮温度场和应力场的数值仿真研究J, 鲁东大学学报, 2008, 24 (4) : 367371.2 彭莉, 谢基龙, 郑红霞. 大秦线全程制动条件下货车车轮温度及热应力场的数值模拟J, 北京交通大学学报, 2007, 31(1) : 3740.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!