计算方法习题集及答案
《计算方法习题集及答案》由会员分享,可在线阅读,更多相关《计算方法习题集及答案(26页珍藏版)》请在装配图网上搜索。
1、习题一1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何?数值方法是利用计算机求解数学问题近似解的方法2. 试证明 及 证明:(1)令即又即 设,不妨设,令即对任意非零,有下面证明存在向量,使得,设,取向量。其中。显然且任意分量为,故有即证。3. 古代数学家祖冲之曾以作为圆周率的近似值,问此近似值具有多少位有效数字?解:该近似值具有7为有效数字。4. 若T(h)逼近其精确值T的截断误差为其中,系数与h无关。试证明由所定义的T的逼近序列的误差为,其中诸是与h无关的常数。证明:当m=0时 设m=k时等式成立,即当m=k+1时 即证。习题2 1. 试构造迭代收敛的公式求解下列方程:(1)
2、; (2)。解:(1)迭代公式,公式收敛k012300.250.250980.25098(2), 局部收敛k0123456789101.51.3221.4211.3671.3971.3801.3901.3841.3871.3861.3862. 方程在附近有根,把方程写成三种不同的等价形式:(1),对应迭代公式;(2),对应迭代公式;(3),对应迭代公式。判断以上三种迭代公式在的收敛性,选一种收敛公式求出附近的根到4位有效数字。解:(1) 局部收敛(2) 局部收敛(3) 不是局部收敛迭代公式(1):0123456781.51.444441.479291.4569761.471081.462091
3、.467791.44161.466479101112131415161.46501.465931.46531.465721.465481.465631.4655341.465595迭代公式(2):k01234561.51.4811.4731.4691.4671.4661.4663. 已知在a,b内有一根,在a,b上一阶可微,且,试构造一个局部收敛于的迭代公式。解:方程等价于构造迭代公式令由于在a,b上也一阶可微 故上述迭代公式是有局部收敛性.4. 设在方程根的邻近有连续的一阶导数,且,证明迭代公式具有局部收敛性。证明:在邻近有连续一阶导数,则在附近连续,令则取则 时 有 从而 故 令 ,由定理
4、2.1知,迭代公式是有局部收敛性。5. 用牛顿法求方程在3,4中的根的近似值(精确到小数点后两位)。解: y次迭代公式k01233.53.643.633.636. 试证用牛顿法求方程在1,3内的根是线性收敛的。解:令 y次迭代公式故 从而 ,时,故,故牛顿迭代公式是线性收敛的7. 应用牛顿法于方程, 导出求立方根的迭代公式,并讨论其收敛性。解: 相应的牛顿迭代公式为迭代函数,则,习题31. 设有方程组(1) 考察用Jacobi法,Gauss-Seidal法解此方程组的收敛性;(2) 用Jacobi法及Gauss-Seidal法解方程组,要求当时迭代终止。解:(1) A是强对角占优阵。故用雅克比
5、法及高斯-塞德尔法解此方程均收敛。(2)雅克比法:,取初始向量,迭代18次有(i=1,2,3),高斯-塞德尔法:,取初始向量,迭代8次有(i=1,2,3),2. 设有方程组, ,迭代公式: , .求证由上述迭代公式产生的向量序列收敛的充要条件是.证明:迭代公式中的矩阵,由迭代收敛的充要条件知 即证。3. 用SOR方法解下列方程组(取松驰因子),要求.解:SOR方法 故,迭代初值k00.0000000.00000010.6000000-1.32000021.2720000-0.85440030.858240-1.07164841.071341-0.96426850.964293-1.017859
6、61.017857-0.99107170.991071-0.99776881.004464-0.99776890.997768-1.001116101.001116-0.999442110.999442-1.000279121.000279-0.999861130.999861-1.000070141.000070-0.999965150.999965-1.000017161.000017-0.9999914. 用选列主元高斯消去法求解方程组解: 解得 5. 用追赶法解三角方程组解:高斯迶元回代得 解为 6. 用三角分解法求解方程组解:系数矩阵三角分解为: 原方程可表为: 解 得 解 得7.
7、用选主元法去法计算下列行列式的值.解: 8. 设计算 .解: 习题四1. 给出概率积分的数据表:试用二次插值计算.X0.460.470.480.49f(x)0.48465550.49375420.50274980.5116683解:取插值节点: 2. 已知y=sinx的函数表X1.51.61.7sinx0.997490.999570.99166试构造出差商表,利用二次Newton插值公式计算sin(1.609)(保留5位小数),并估计其误差.解:由题意得如下差商表故 又 故:3. 设为互异节点(),求证(1) (2) 证明: 令 又 所以 故 原等式左边用二项式展开得: 由结论 得 即证4.
8、若,求和.解: 5. 证明两点三次Hermite插值余项是证明: 且 即 为的二阶零点 设 令 易知 又 由微分中值定理(Rolle定理),使得 进而 有三个零点,有两个零点,有一个零点,即 使得得 6. 构造适合下列数据表的三次样条插值函数S(x) X-1013Y-11331428解:已知 边界条件 即从而 解 得当 即 时故 同理,在及上均有 7. 用最小二乘法求一个形如的经验公式,使与下列数据相拟合X1925313844Y19.032.349.073.397.8解:依题意 故 正则方程为 解得 故拟合曲线为 习题51 试确定下面求积公式使其具三次代数精度.解:要公式有3次代数精度,需有
9、解得: 故求积公式为2 在区间上导出含五个节点的Newton-Cotes公式,并指出其余项及代数精度.解:当时,又 故当时,有求积公式 ()其中由Lagrange差值定理有:故余项对()至少有四次代数精度时 式()左边=右边= 时 故()式具有5次代数精度3 分别用复合梯形公式及复合Simpson公式计算, (取步长h=1/6).解:(1)用复合梯形公式 故 (2)用复合Simpson公式:4 用变步长梯形求积公式计算, (精确到).解:由 得:5 用Romberg算法计算积分, (精确到).解:由公式 得: 又即已经达到预定精度取6 试构造两点Gauss公式,并由此计算积分(精确到).解:
10、二次Lagendre多项式:Gauss点为由公式 得令 即 使得习题61 试用三种方法导出线性二步方法解:(1) Taylor展开法 线性k步公式为 得即得且(2) 数值积分法用矩形求积公式令(中矩形公式)即得:(3) 由隐式欧拉法得 由显示欧拉法得 代入得2 用Taylor展开法求三步四阶方法类,并确定三步四阶显式方法.解:线性k步公式为 ,在(6.17)中令 即 取。即 满足上述条件的多步方法即为一类三步四阶显示方法,令可得 方法即为3 形如的k阶方法称为Gear方法,试确定一个三步Gear方法,并给出其截断误差主项。解:线性k步公式为 由Gear法的定义知,三步Gear法满足方法为阶,故
11、有得:取得得三步Gear方法:其中 4 试用显式Euler法及改进的Euler法计算初值问题(取步长h=0.2)并比较两者的误差。解:步长 , 真解 显式法: 改进法: 显然改进的法误差小于法。5 给出线性多步法为零稳定的条件,并证明该方法为零稳定时是二阶收敛的.证明: 线性多步法 的相应多项式 多项式的两根为:,。 由判断零稳定的充要条件 根条件 知:此方法的零稳定的条件为 由于 , , 得: 当方法为零稳定时 ,从而,故 方法是二阶收敛的。6 给出题(6.5)题中时的公式的绝对稳定域.解: 6.5中当时,即为方法 其相应的差分方程的多项式为 令 ,即方法的绝对稳定域为 7 指出Heun方法
12、00001/31/3002/302/301/403/4的相容阶,并给出由该方法以步长h计算初值问题(6.45)的步骤.解:法 中对方法有 类似例将方法应用到得其中 上述步骤可按如下步骤完成:将原问题初值代入得出当前步的, 然后代入,得出,再以,作为第2个计算步的初值重复上述步骤可求出,依次类推即可求出原问题的相继数值序列.经验证方法满足由方法阶相容的充要条件知方法具有三阶相容阶。8 试述刚性问题的基本特征,并给出s级Runge-Kutta方法为A-稳定的条件.解: 刚性问题的基本特征即对于线性系统 有设A的特征值为,满足 级 单步方法用于实验方程 . 令由得 写成向量形式 记 则有 即 由得即由稳定性知方法稳定的充要条件是:稳定函数在上解析且,进一步由只可能在边界上去的极值的最大模原理,的边界即为虚轴,得法稳定的充要条件是:稳定函数在上解析,且满足,.
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。