简易频谱分析仪

上传人:m**** 文档编号:144881083 上传时间:2022-08-28 格式:DOC 页数:12 大小:380.50KB
收藏 版权申诉 举报 下载
简易频谱分析仪_第1页
第1页 / 共12页
简易频谱分析仪_第2页
第2页 / 共12页
简易频谱分析仪_第3页
第3页 / 共12页
资源描述:

《简易频谱分析仪》由会员分享,可在线阅读,更多相关《简易频谱分析仪(12页珍藏版)》请在装配图网上搜索。

1、简易频谱分析仪2005 年电子大赛二等奖作者:国防科技大学 李楠 刘亮 李俊摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成 本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。 人机接口使用1

2、28x64液晶和4x4键盘。本系统运行稳定,功能齐全,人机界面友好。关键字: SPCE061A 简易频谱分析仪一、方案论证频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一 :模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图 1.1:图 1.1 模拟外差式频谱仪原理框图图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个

3、频率分量在混频器中产生差频信号),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。方案二:数字式频谱分析仪数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1

4、.2:图 1.2 数字式频谱仪组成框图按照对信号处理方式的不同,数字式频谱仪可分为以下三种:(1) 基于FFT技术的数字频谱仪:这种频谱仪利用快速傅里叶变换可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换 器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。FFT技术的数字式频谱分析仪在速度上明显超过传统的模拟式频谱分析仪,能够进行实时分析。但由于FFT所 取的是有限长度,运算的点数也是有限的,因此,实现高扫频宽度和高频率分辨率需要高速A/D转换器和高速数字器件的配合。(2) 基于数字滤波法的数字式频谱仪 这种频谱

5、仪原理上等同于模拟频谱仪中的并行滤波法或可调滤波法,通过设置多个窄带带通数字滤波器,或是中心频率可变的带通数字滤波器,提取信号经过数字滤波器的幅度值,实现测量信号频谱的目的,该方法受到数字器件资源的限制,无法设置足够多的数字滤波器,从而无法实现高频率分辨率和高扫频宽度。(3) 基于外差原理的数字式频谱仪数字式外差原理是把模拟外差式频谱分析仪中的各模块利用数字可编程器件实现,其原理框图如图1.3:图 1.3 基于外差原理的数字式频谱仪原理框图信号经高速 A/D 采集送入处理器,通过硬件乘法器与本地由 DDS 产生的本振扫频信号混频,变频后信号不断移入低通数字滤波器,然后提取通过低通滤波器的信号幅

6、度,根据当前频率和提取到的幅度值,即可以绘制当前信号频谱图。该方案利用数字器件实现传统方式上的外差式扫频仪,不但提高了速度,同时还可以对频谱信息实现存储和分析。理论上,只要数字滤波器的阶数足够高,频率分辨率可以做到很小,相比 FFT 数字频谱仪方案和数字滤波法,系统中只要使用一个固定截止频率的低通滤波器,消耗资源少,同时可以省去大容量的存储器,这就在保证系统精度 的前提下提高了系统集成度,节省了宝贵的片内资源。鉴于系统要求基于超外差原理设计频谱分析仪,权衡超外差频谱仪的模拟方案与数字方案,本系统采取方案二中的数字外差法方案。二、详细软硬件设计系统采用XILINX VIRTEX-II 100万门

7、的FPGA,将本振扫频,混频,放大,低通滤波,提取峰值等工作全部数字化实现。控制方面,由凌阳单片机SPCE061A作为控制核心,实现人机接口和最后频谱图的模拟示波器显示,系统构成框图如图2.1:图 2.1 数字外差式频谱仪系统构成框图1 、硬件设计(1 ) 信号采集电路系统要求输入信号有效值20mV 5mV,输入阻抗为50Q,对于这种小信号,首先需要经过前级放大才能避免误差和干扰,前端运放采用高速运放THS4501, 370MHz单位增益带宽,差分输出,按照芯片数据手册建议,反馈电阻选取5.1K,此时前级增益为10倍。A/D选用TI公司的10位高速模/数转换器AD5102, AD5102为低功

8、耗CMOS、1.8V单电源供电、1V峰峰值输入、65MSPS模/数转换器,数据总线为10位并行三态输出,AD5102采用差分输入,可以有效抑制共模噪声。信号采集部分硬件电路图见图2. 2 。L3 -if2-口 一 F 亠一K-.图 2.2 前端采集系统电路图(2)控制核心设计控制核心采用凌阳16位单片机SPCE061A,实现数据处理、与FPGA通讯、人机交互以及示波器控制。SPCE061A丰富的中断源、可编程的I/O 口及友好的调试环境为我们的设计提供了方便。凌阳单片机SPCE061A内部结构图如图2.3:半片人H岀建H7d|1DL?ADCICE EH-RAMX冈_.32管耳尋期带人启竭口FL

9、ASH ROM旺电 ttK豐楼収j机2畫HU fitS即拧制IQA19-Dft HPIt.gif?a fftfB jnSPICESOi-j 犯歧DAGIfl讯_心氐图 2.3 凌阳内部结构图(3) 运算核心设计本系统以XILINX 100万门FPGA Virtex-II为作为运算核心,它除了内含大量可配置逻辑模块(CLB),输人输出模块(IOB)逻辑资源和布线资源外,还具有以下特点:a) 内部时钟速度可达420MHz,且具有丰富的全局时钟资源和数字时钟管理模块(DCM),可以获得较小的时钟抖动。b) 具有为算术运算而特别设计的硬件结构,如18 bitxl8 bit嵌入式硬件乘法器、快速进位链等

10、。c) 包含丰富的模块化 RAM。这些特点简化了逻辑设计,缩短了设计时间,为实现高速、实时DSP处理提供了极大的便利。(4) 示波器显示部分设计X-Y轴信号输出采用速度为10MHz的TLC7528双路D/A转换器,由凌阳单片机SPCE061A控制,电路图如图2.4:英刖4 gild KriJ I-. Kk-dCiSDEilivcoDSID3=iSTNDEMSTSD35DEidREF.-lD3?RFS.JiREFS RF33图 2.4 示波器控制电路考虑到输出的谱线较为陡峭的情况,为避免因为运放摆率过小,显示时造成拖尾现象,选用压摆率为12V/us的运放LF356。(5)供电设计 电源系统是影响

11、系统稳定性的重要因素。由于系统上的器件要求供电有1.5V,1.8V,3.3V,5V,12V等多种电压,电源系统采用了多路独立供电的方式, 1.5V/1.8V/3.3V都由专用电源芯片TPS54613独立供电,5V由7805/7905提供, 12V由7812/7912提供。同时,由于整个系统主要有高速的数字器件组成。系统在工作中,数字器件会在电源和地上引入大量的脉冲干扰。对于高精度小信号的A/D转换器,为了保证采样精度, 要求采样A/D的电源和地的噪声很小。解决方案是通过n型滤波隔离数字部分和模拟部分供电,同时对数字地与模拟地实现布线隔离,并且通过电感把两部分地单点连接。 电路图如图2.5:数字

12、供电模拟供电图2.5 n型网络供电部分硬件电路图见图 2.6。图 2.6 供电部分硬件电路图2、软件设计(1)单片机部分 软件开发平台:操作系统 Windows Xp sp2开发环境 软件流程图如图 2.7 所示:图 2.7 单片机软件流程(2) FPGA 部分软件开发平台:操作系统 Windows Xp sp2开发环境 XILINX System Generator 6.3 XILINX ISE 6.3 MATLAB 6.5 综合工具 Synplify Pro 7.6 仿真环境 ModleSim 6.5Se调试工具 ChipScope 6.3本系统FPGA软件设计采用Xilinx提供的DSP

13、设计工具System Generator。首先利用System Generator对需要的操作进行数字的描述,然后得出算法的硬件实现。System Generator设计的流程包括以下几个步骤:(1)用数学语言来描述算法;(2)在设计环境中实现算法,开始时用双精度;(3)把双精度算法转换成固定点算法;(4)把设计翻译成有效的硬件。Simulink提供了一个可以创建和仿真动态系统的可视化的环境,System Generator以一个被称为Xilinx blockset块包含在MATLAB/Simulink库里,并且SystemGenerator作为一个软件把Simulink模型翻译成一个硬件可执

14、行的模型。System Generator把在Simulink中定义的系统参数对应成硬件实现时的实体、构造体、输入输出口、信号和属性。此外,System Generator自动地为FPGA的综合,HDL仿真和实现工具生成命令档。System Generator设计流程如图2.8所示: inulinkS 岀VHDL 屈孤艾件图2.8 SG设计流程经过前级数据调理的输入信号与扫频信号在混频器Mult中相乘后,频谱被搬移到零频和2频率处。将该信号经过FIR低通滤波器滤除2频率处的频率分量。扫频源需要输出的频率经过单片机计算得到相对应得DDS相位累加值,通过Gateway In1送入DDS模块。锁存信

15、号经过Gateway In2输入FPGA,其上升沿将Gateway In1输入的相位累加值锁存到DDS中的相位累加值寄存器中。此时DDS模块将会输出对应频率的扫频信号。检波模块Convert用于将零频附近的信号的最大峰值提取出来,经过Gateway Out发送回单片机。三、测试说明1、单频信号的频谱测试输入信号为单频信号,有效值20mV mV,在10KHz至30MHz范围内测试信号中心频率,并观察示波器显示谱线位置。表 3.1 单频信号的频谱测试信号源输出频率10KHz500KHz1MHz5MHz10MHz30MHz实测频率10KHz500K1000K5005K10000K30005K2、调幅

16、信号的频谱测试输入信号为调幅信号,有效值 20mV5mV,调制度30%,调制信号频率为20kHz;在10KHz至30MHz范围内测试信号中心频率,并观察示波器显示频谱图。表 3.2 调幅信号的频谱测试信号源输出频率10KHz500KHz1MHz5MHz10MHz30MHz实测频率10 KHz510 KHz1010 KHz5010 KHz9995 KHz29995KHz3、调频信号的频谱测试输入信号为调频信号,有效值20mVmV,调频波频偏为20KHz,调制信号频率为1KHz,在10KHz至30MHz范围内测试信号中心频率,并观察示波器显示频谱图。表 3.3 调频信号的频谱测试信号源输出频率10

17、KHz500KHz1MHz5MHz10MHz30MHz实测频率5K 495K995 KHz 5010 KHz 9990 KHz 30010KHZ4、信号识别准确度测试输入信号依次为等幅信号,调幅信号,调频信号,有效值20mVmV,调幅波调制度30%,调频波频偏为20KHz,调制信号频率为1KHz,在10KHz至30MHz范围内测试信号识别准确性。表 3.4 调频信号的频谱测试信号源输出频率10KHz500KHz1MHz5MHz10MHz30MHz准确度正确正确正确正确正确正确5、测试结果分析本系统在10KHz到30MHz的频率范围内,可准确测定待测信号中心频率和识别信号调制类型,示波器图像显示清晰,谱线位置准确,达到预期设计要求。四、结语本系统利用SPCE061A单片机控制系统的运行和数据处理,在FPGA内部完成数字混频,数字滤波等DSP算法,实现了软件超外差技术,达到了题目要求的设计指 标。但是可以看出,本系统比较复杂,对各个模块的利用率不是很高,有些模块是可以直接利用的,比如10位的A/D转换器是SPCE061A的现有资源,但是作品中用了一 个专门的模块;并且涉及到了 FPGA 的设计,虽然值得发扬,实际上却增加了设计的难度,在短短的几天竞赛里面,没有直接利用一些现成的模块实现方便,从而也影响了整个作品的质量。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!