锅炉双冲量控制系统的设计

上传人:xins****2008 文档编号:137709227 上传时间:2022-08-18 格式:DOC 页数:21 大小:442KB
收藏 版权申诉 举报 下载
锅炉双冲量控制系统的设计_第1页
第1页 / 共21页
锅炉双冲量控制系统的设计_第2页
第2页 / 共21页
锅炉双冲量控制系统的设计_第3页
第3页 / 共21页
资源描述:

《锅炉双冲量控制系统的设计》由会员分享,可在线阅读,更多相关《锅炉双冲量控制系统的设计(21页珍藏版)》请在装配图网上搜索。

1、辽 宁 工 业 大 学 课 程 设 计 说 明 书 (论文)辽 宁 工 业 大 学过程控制系统课程设计(论文)题目:锅炉双冲量控制系统的设计院(系): 电气工程学院 专业班级: 测控081 学 号: 080301026 学生姓名: 宁雪 指导教师: 霍春宝 起止时间: 2011.12.00-2011.12.00 本科生课程设计(论文)课程设计(论文)任务及评语院(系):电气工程学院 教研室:测控技术与仪器学 号26、56学生姓名专业班级设计题目锅炉双冲量控制系统的设计课程设计(论文)任务设计任务:锅炉汽包水位控制的任务是使给水量适应锅炉的蒸发量,并保证汽包中的水位在工艺规定的范围内。在锅炉给水

2、控制中,汽包水位是被控参数,而引起汽包水位变化的主要扰动是锅炉的蒸汽流量。其中蒸汽是负荷,它随用户需要而变化,给水流量作为可调参数。试设计锅炉汽包水位控制系统。设计要求:1、确定控制方案并绘制原理结构图、方框图;2、选择传感器、变送器、控制器、执行器,给出具体型号和参数;3、确定控制器的控制规律以及控制器正反作用方式;4、若设计由计算机实现的数字控制系统应给出系统硬件电气连接图及程序流程图;5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。技术参数:1 控制范围:45%75%H ; 2 控制精度:1% ; 3 最大偏差:3%H;工作计划1、布置任务,查阅资料,理解掌

3、握系统的控制要求。(2天,分散完成)2、确定系统的控制方案,绘制原理结构图、方框图。(1天,实验室完成)3、选择传感器、变送器、控制器、执行器,给出具体型号和参数。(2天,分散完成)4、确定控制器的控制规律以及控制器正反作用方式。(实验室1天)5、上机实现系统的模拟运行、答辩。(3天,实验室完成)6、撰写、打印设计说明书(1天,分散完成)指导教师评语及成绩平时: 论文质量: 答辩: 指导教师签字: 总成绩: 年 月 日注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘 要锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工业锅炉安全、稳定运行的重要指标,保证水位控制在给定范围

4、内,对于提高蒸汽品质、减少设备损耗和运行损耗、确保整个网络安全运行具有重要意义。模糊控制是建立在人工经验基础之上的,它能将熟练操作员的实践经验加以总结和描述,并用语言表达出来,得到定性的、不精确的控制规则,不需要被控对象的数学模型。模糊控制易于被人们接受,构造容易,鲁棒性和适应性好。本文分析了汽包水位对象的动态特性,介绍传统的控制方式。由于锅炉水位控制系统的调节器输入端常加有两个输入量,极易引起水位控制偏差,本文提出了如何消除水位偏差的方法,即辅助信号自消方法。根据双冲量水位调节系统控制水位误差,设计采用了双冲量PID串级控制方式采用辅助信号蒸汽流量和给水流量对消方法消除水位偏差。根据锅炉控制

5、现状,提出了参数自整定模糊控制规则,设计了二输入三输出自适应模糊PID控制器对汽包水位进行控制,克服了传统控制方式的控制效果不精确和参数难以调整等缺点。利用MATLAB对传统PID控制系统和双冲量自适应模糊PID控制系统仿真,结果表明后者的自适应能力更强,抗干扰能力和鲁棒性更好,保证水位的稳定。关键词:汽包水位; 双冲量; 串级系统; PID控制; 模糊控制目 录第1章 绪论11.1 锅炉工作过程简介11.2 产品设计的意义2第2章 方案论证32.1 系统实现功能32.2 系统方案论证32.3 气包水位串级双冲量调节系统图52.4 前馈调节介绍6第3章 仪表选型83.1 调节阀的选择83.2

6、控制仪表的选择83.3 控制器设计93.4 变送器选择103.5 执行器的选择12第4章 系统分析及参数整定134.1 给水控制系统分析及整定134.2 锅炉双冲量控制的总体结构及仿真13第5章 课程设计总结16参考文献1716第1章 绪论1.1 锅炉工作过程简介锅炉是一种承受一定工作压力的能量转换设备.其作用就是有效地把燃料中的化学能转换为热能,或再通过相应设备将热能转化为其它生产和生活所需的能量形式,长期以来在生产和居民生活中都起很重要的作用。锅炉是工业过程中不可缺少的动力设备,锅炉的任务是根据外界负荷的变化,输送一定质量(汽压、汽温)和相应数量的蒸汽。它所产生的蒸汽不仅能够为蒸馏、化学反

7、应、干燥等过程提供热源,而且还可以作为风机、压缩机、泵类驱动透平的动力源。锅炉是由“锅”和“炉”两部分组成的。“锅”就是锅炉的汽水系统,如图1.1所示。由省煤器3、汽包4、下降管8、过热器5、上升管7、给水调节阀2、给水母管1及蒸汽母管6等组成。锅炉的给水用给水泵打入省煤器,在省煤器中,水吸收烟气的热量,使温度升高到本身压力下的沸点,成为饱和水然后引入汽包。汽包中的水经下降管进入锅炉底部的下联箱,又经炉膛四周的水冷壁进入上联箱,随即又回入汽包。水在水冷壁管中吸收炉内火焰直接辐射的热,在温度不变的情况下,一部分蒸发成蒸汽,成为汽水混合物。汽水混合物在汽包中分离成水和汽,水和给水一起再进入下降管参

8、加循环,汽则由汽包顶部的管子引往过热器,蒸汽在过热器中吸热、升温达到规定温度,成为合格蒸汽送入蒸汽母管。1燃烧室燃料空气2345678图1.1锅炉的汽水系统“炉”就是锅炉的燃烧系统,由炉膜、烟道、喷燃器、空气预热器等组成。锅炉燃料燃烧所需的空气由送风机送入,通过空气预热器,在空气预热器中吸收烟气热量,成为热空气后,与燃料按一定的比例进入炉膛燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽。然后经过过热器,形成一定的过热蒸汽,汇集到蒸汽母管。具有一定压力的过热蒸汽,经过负荷设备调节阀供负荷设备使用。与此同时,燃烧过程中产生的烟气,其中含有大量余热,除了将饱和蒸汽变成过热蒸汽外,还预热锅炉给水和空

9、气,最后经烟囱排入大气。经上介绍,锅炉系统的主要包括燃烧系统、送引风系统、汽水系统及辅助系统等。1.2 产品设计的意义锅炉汽包水位控制是维持锅筒水位在允许的范围内,使锅炉的给水量适应锅炉的蒸发量。由于锅炉的水位受到负荷变化的影响,因此当锅炉用汽量变化时,通过给水调节系统保持锅炉的水位正常是保证锅炉安全运行的重要条件。水位过高或过低,都是不允许的。水位过高会影响汽水分离器的正常工作,严重时会导致蒸汽带水增加,使过热器管壁结垢,造成工业事故,同时锅炉出口蒸汽带水过多还会使过热蒸汽温度产生急剧变化。水位过低,则会破坏正常水循环,危及水冷壁受热面的安全。一般要求锅筒水位维持在设计值75100mm范围内

10、。通过以上分析,锅炉水位的控制是十分必要的,随着自动化水平的不断提高,设计一款简单、方便的过程控制系统来对水位进行自动控制及处理也显得十分必要。 第2章 方案论证2.1系统实现功能通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。2.2 系统方案论证2.2.1 串级控制介绍过热器出口蒸汽温度串级控制系统的方框图如下图所示。采用两级调节器,这两级调节器串在一起,各有其特殊任务,调节阀直接受调节器1的控制,而调节器1的给定值受到调节器2的控制,形成了特有的双闭环系统,由副调节器调节器和减温器出口温度形成的闭环称为副环。由主调节器和主信号出口

11、蒸汽温度,形成的闭环称为主环,可见副环是串在主环之中。图2.1 过热蒸汽温度串级调节系统原理图调节器2称主调节器,调节器1称为副调节器。将过热器出口蒸汽温度调节器的输出信号,不是用来控制调节阀而是用来改变调节器2的给定值,起着最后校正作用。串级系统是一个双回路系统,实质上是把两个调节器串接起来,通过它们的协调工作,使一个被控量准确地保持为给定值。通常串级系统副环的对象惯性小,工作频率高,而主环惯性大,工作频率低。为了提高系统的控制性能,希望主副环的工作频率相差三倍以上,以免频率相近时发生共振现象面破坏正常工作。串级控制系统可以看作一个闭合的副回路代替了原来的一部分对象,起了改善对象特征的作用。

12、除了克服落在副环内的扰动外,还提高了系统的工作频率,加快过渡过程。串级控制由于副环的存在,改善了对象的特性,使等效副对象的时间常数减小,系统的工作频率提高。同时,由于串级系统具有主、副两只控制器,使控制器的总放大倍数增大,系统的抗干扰能力增强,因此,一般来说串级控制系统的控制质量要比单回路控制系统高。在炉温过热蒸汽温度控制系统中,为了获得更好的控制精度,所以采用串级控制系统以得到良好的控制特性。2.2.2 串级控制方案论证串级控制是随着工业的发展,新工艺不断出现,生产过程日趋强化,对产品质量要求越来越高,简单控制系统已不能满足工艺要求的情况下产生的。图2.2 串级控制系统方框图由上图可知,主控

13、制器的输出即副控制器的给定,而副控制器的输出直接送往控制阀。主控制器的给定值是由工艺规定的,是一个定制,因此,主环是一个定值控制系统;而副控制器的给定值是由主控制器的输出提供的,它随主控制器输出变化而变化,因此,副环是一个随动控制系统。串级控制系统中,两个控制器串联工作,以主控制器为主导,保证主变量稳定为目的,两个控制器协调一致,互相配合。若干扰来自副环,副控制器首先进行“粗调”,主控制器再进一步进行“细调”。因此控制质量优于简单控制系统。串级控制有以下优点1、由于副回路的存在,减小了对象的时间常数,缩短了控制通道,使控制作用更加及时;2、提高了系统的工作频率,使振荡周期减小,调节时间缩短,系

14、统的快速性增强了;3、对二次干扰具有很强的克服能力,对客服一次干扰的能力也有一定的提高;4、对负荷或操作条件的变化有一定的自适应能力。一般来说,一个设计合理的串级控制系统,当干扰从副回路进入时,其最大偏差将会较小到控制系统的 ,即便是干扰从主回路进入,最大偏差也会缩小到单回路控制系统的 。但是,如果串级控制系统设计得不合理,其优越性就不能够充分体现。因此,串级控制系统的设计合理性十分重要。 2.3 气包水位串级双冲量调节系统图图2.3中所示的双冲量调节系统,汽包水位是被控变量,是主冲量信号,蒸汽流量和给水流量是辅助冲量信号。系统将蒸汽流量和给水流量前馈到汽包水位调节系统中去,一旦蒸汽流量或给水

15、流量发生波动, 不是等到影响到水位才进行调节,而是在这两个流量改变之时就能通过加法器立即去改变调节阀开度进行校正,故大大提高了水位这个被调参数的调节精度。图2.3中所示的串级控制系统有一个明显的特点:在结构上有两个闭环。一个环在里面,称之为副环或副回路,在控制过程中起着“粗调”的作用;一个环在外面,称之为主环或主回路,用来完成“细调”任务,以最终保证被调量满足工艺要求。在串级控制系统中,主调节器和副调节器的任务不同,主调节器的任务是校正水位偏差。副调节器的任务是用以消除给水压力波动等因素引起的给水流量的自发性扰动以及当蒸汽负荷改变时迅速调节给水流量,以保证给水流量和蒸汽流量平衡。主调节器具有自

16、己独立的设定值,它的输出作为副调节器的设定值,而副调节器的输出信号则送到执行机构去控制生产过程。这样,当负荷变化时,水位稳定值是靠主调节器来维持的,并不要求进入副调节器的蒸汽流量信号的作用强度按所谓“静态配比”来进行整定.恰恰相反,在这里可以根据对象在外扰下虚假水位的严重程度来适当加强蒸汽流量信号的作用强度,从而改变负荷扰动下的水位控制品质。图2.3 汽包水位双重量调节系统框图2.4 前馈调节介绍比较前馈系统,反馈系统的最大缺点是在干扰作用下,必须形成偏差,才能进行调节(或偏差即将形成)那么能否在干扰作用发生后,在未影响被控变量时,就开始调节,使被控变量保持不变。而前馈系统是按干扰进行调节的开

17、环调节系统,在干扰发生后,被控变量未发生变化时,前馈控制器根据干扰幅值,变化趋势,对操纵变量进行调节,来补偿干扰对被控变量的影响,使被控变量保持不变的方法。图 2.4 前馈系统方框图其中GPD表示干扰通道对象特性,GPC表示控制通道对象特性,Gff表示前馈控制器传函。根据不变性原理,即被控变量与干扰量绝对无关,或被控变量对干扰完全独立,则,即 所以即=干扰通道对象特性控制通道对象特性上式的负号表示控制通道与干扰通道作用相反。所以前馈控制器传函由控制通道对象特性和干扰通道对象特性决定。2.4.1 串级前馈调节系统为克服调节阀的变差(滞环),阀前后压差变化,引起阀和流量变化(如蒸汽压力变化)增加一

18、个流量付环,其目的在于通过设置副变量来提高对主变量的控制质量,由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响,同时系统对负荷改变时有一定的自适应能力。图2.5 串级前馈系统模型图2.6 串级前馈控制系统方框图串级前馈模型传递函数: 综上两种调节系统的比较,我们可以看出,采用串级前馈调节具有更大的优势,故在在此设计方案中,采用串级前馈的控制方式来对其进行控制。第3章 仪表选型3.1 调节阀的选择在本系统中,调节阀是系统的执行机构,是按照控制器所给定的信号大小和方向,改变阀的开度,以实现调节流体流量的装置。调节阀的口径的大小,直接决定着控制介质流过它的能力。为了

19、保证系统有较好的流通能力,需要使控制阀两端的压降在整个管线的总压降中占有较大的比例。调节阀的开、关形式需要考虑到以下几种因素:1、生产安全角度:当气源供气中断,或调节阀出故障而无输出等情况下,应该确保生产工艺设备的安全,不至发生事故;2、保证产品质量:当发生控制阀处于无源状态而恢复到初始位置时,产品的质量不应降低;3、尽可能的降低原料、产品、动力损耗;4、从介质的特点考虑。综合以上各种因素,在锅炉过热蒸汽控制系统中,调节阀选择气开阀。调节阀的流量特性的选择,在实际生产中常用的调节阀有线性特性、对数特性和快开特性三种,在本系统中调节阀的流量特性选择线性特性。阀门定位器的选用,阀门定位器是调节阀的

20、一种辅助装置,与调节阀配套使用,它接受控制器来的信号作为输入信号,并以其输出信号去控制调节阀,同时将调节阀的阀杆位移反馈到阀门定位器的输入端而构成一个闭环随动系统,阀门定位器可以消除阀膜头和弹簧的不稳定以及各运动部件的干摩擦,从而提高调节阀的精度和可靠性,实现准确定位;阀门定位器增大了执行机构的输出功率,减少了系统的传递滞后,加快阀杆的移动速度;阀门定位器还可以改变调节阀的流量特性。3.2 控制仪表的选择控制仪表的主要类型大致分为电动或气动,电动I型、II型、III型,单元组合仪表或是基地是仪表等。常用的控制仪表有电动II型、III型。在串级控制系统中,选用的仪表不同,具体的实施方案也不同。电

21、动III型和电动II型仪表就其功能来说基本相同,但是其控制信号不相同,控制II型典型信号为,而电动III型仪表的典型信号为,此外。III型仪表较II型仪表操作、维护更为方便、简捷,同时III型仪表还具有完善的跟踪、保持电路,使得手动切换非常方便,随时都可以进行切换,且保证无扰动。所以在本设计中选用电动III型仪表。由电动III型仪表构成的串级控制系统的基本方案有如下两种:图3.1 方案1结构框图该方案中采用了两台控制器,主、副变量通过一台双笔记录仪进行记录。由于副控制器输出的是,而控制阀只能接受气压信号,所以在副控制器与控制阀之间设置了一个电气转换器。图3.2 方案2结构框图该方案较于上一方案

22、多设置了一个主控-串级控制切换开关,可以根据不同情况使控制系统工作于主控方式和串级控制方式下。在本设计中采用第二种方式将可以控制系统更好的工作,得到更稳定的控制输出。3.3 控制器设计由上文论述可知,系统的控制结构选择串级控制。 3.3.1控制器控制规律选择在串级控制中,主变量直接关系到产品的质量或生产的安全,所以主变量一般要求不得有余差,而对副变量的要求一般都不很严格,允许有一定的波动和余差。从串级控制的结构上看,主环是一个定制系统,主控制器起着定值控制作用,为使其稳定,主控制器通常选用比例积分控制器,对于本系统由于控制通道容量之后较大,为克服容量滞后,选用比例积分微分控制器作为主控制器。副

23、环是一个随动系统,它的给定值随主控制器输出的变化而变化,为了加快跟踪,副控制器一般不带积分作用。若副控制器有微分作用,一旦主控制器航五输出稍有变化,控制阀就将大幅度变化,这对控制系统很不利,故副控制器只选用比例控制器。3.3.2控制器正反作用选择对于串级控制系统,主、副控制器正、反作用的选择顺序应该是先副后主。副控制器的正、反作用要根据副环的具体情况决定,而与主环无关。为了使副环回路构成一个稳定的系统,副环的开环放大系数的符号必须为“负”,即副环内所有各环节放大倍数符号的乘积应为“负”。在本设计中随着调节阀的开度增加,减温水量增加,副对象即减温器后端蒸汽温度会降低,所以调节阀对副对象的作用为“

24、负”;而调节阀为气开阀,即其控制作用为“正”,所以负调节器的控制作用应为负作用。主控制器的正、反作用要根据主环所包括的各个环节的情况来确定,同时可将副回路视为一放大倍数为“正”的环节来看待,因为副回路是以随动系统。这样只要根据主对象与主变送器放大倍数的符号及整个主环开环放大倍数的符号为“负”的要求,就可以确定主控制器的正、反作用。在本系统中,主对象的放大倍数为的符号为“正”,所以主控制器应选“负”作用。3.4变送器选择3.4.1 温度变送器的选择热电偶作为温度传感元件,能将温度信号转换成电动势(mV)信号,配以测量毫伏的指示仪表或变送器可以实现温度的测量指示或温度信号的转换。具有稳定、复现性好

25、、体积小、响应时间较小等优点、热电偶一般用于500C以上的高温,可以在1600C高温下长期使用。热电阻也可以作为温度传感元件。大多数电阻的阻值随温度变化而变化,如果某材料具备电阻温度系数大、电阻率大、化学及物理性能稳定、电阻与温度的关系接近线性等条件,就可以作为温度传感元件用来测温,称为热电阻。热电阻分为金属热电阻和半导体热敏电阻两类。大多数金属热电阻的阻值随其温度升高而增加,而大多数半导体热敏电阻的阻值随温度升高而减少。铂铑10铂热电偶传感器测温范围在01600,WRP型铂铑10铂热电阻性能可靠、耐高温、抗氧化,可长期工作在01600环境下。本系统选择PCT/TT系列温度变送器。PCT/TT

26、系列温度变送器有很好的性价比,解决所有温度测量问题,变送器精确,耐用,可靠。为了满足所有工业标准,对于不同的介质提供大量的测量配置。PCT/TT系列提供二类温度变送器,PCT/TT100用100A级,铂金电阻式热探测器输入,PCT/TT1000用1000A级,铂金电阻式热探测器输入。变送器在二线制系统中产生4-20mA的线性输出。变送器的输入电源可以是7-35V的直流电,非稳压,并且极性不敏感。3.4.2 流量变送器的选择本系统选择电磁流量计TI046D,法拉第电磁感应定律指出,导体在磁场中运动时会产生感应电压。在电磁仪表中,流动介质相当于运动的导体。与流速成比例的感应电压用两个测量电极检出并

27、传送到放大器。流体体积根据管道直径进行计算,恒定磁场由交变极性的开关直流电流产生。工作原理如图3.3所示图3.3 电磁流量计原理图Ue = B L vQ = A vUe = 感应电压B = 磁感应强度(磁场)L = 电极间距V = 流速Q = 体积流量A = 管道截面积该流量计电源为3-30V的直流电,测量范围0.01 10 m / s,输出可选择电流输出或脉冲输出。在本系统中选择电流输出,其大小为4 - 20 mA。 3.5 执行器的选择执行器位于控制回路的最终端,因此,又称为最终元件。执行器直接与被控介质接触,在高低温、高压、腐蚀性、粉尘和爆炸性环境运行时,执行器的选择尤为重要。控制器的动

28、作是由调节器的输出信号通过各种执行机构来实现的,在由电信号作为控制信号的控制系统中,目前广泛使用的是以下三种控制方式:1 按动力来源分,有气动和电动两大类;2 按动作极性分,有正作用和反作用两大类;3 按动作特性分,有比例和积分两大类。本系统采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电动调节阀的型号为QSVP-16K。具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性强、操作方便等优点。电源为单相220V,控制信号为4-20mA或1-5VDC,输出为4-20mADC的阀位信号,使用和校正非常方便。第4章 系统分析及参数整定 4.1给水控制

29、系统分析及整定根据串级双冲量给水控制系统的工作原理, 对主回路和副回路分别进行分析整定。4.1.1 副回路的分析和整定根据串级控制系统的分析整定方法, 应将副回路处理为具有近似比例特性的快速随动系统, 以使副回路具有快速消除内扰及快速跟踪蒸汽流量的能力。用试探的方法选择副调节器的比例带,以保证内回路不振荡为原则。在试探时,给水流量反馈装置的传递函数可设置为任意数值,以得到满意的比例带值。如果传递函数以后需要改变,则应相应地改变比例带值,使传递函数与比例带的比值保持为试探时的值,以保证内回路的稳定性。因为调节通道放大系数较大,副调节回路可等效为反馈回路的倒数。4.1.2 主回路的分析和整定在主回

30、路中, 如果把副回路近似看作为比例环节, 则主回路等效为一个单回路控制系统。如果以给水流量W 作为被控对象的输入信号, 水位变送单元的输出为输出信号, 可以把主调节器与副回路两者看作为等效主调节器。主回路仍按单回路系统的整定方法整定, 如通过试验方法求取主回路被控对象的阶跃响应曲线,并由曲线求得参数, 再按响应曲线法中给定的公式计算等效调节器的整定参数。4.2 锅炉双冲量控制的总体结构及仿真通过前述各方面的分析,我们可以作出锅炉水位控制的结构图如图4.1所示。图4.1 锅炉水位前馈串级控制结构图其中前述G1(s)和G2(s)分别为控制回路的扰动通道的传递函数,、别为蒸汽流量、给水流量和汽包水位

31、测量器件的传递系数,、分别为蒸汽流量和给水流量的分压系数,、分别为执行机构和阀们的特性系数,回路Cc(s)采用PID控制以快速消除给水扰动,外回路采用预测PID来抑制蒸汽扰动,其算法为:当忽略蒸汽扰动和给水扰动时,系统的传递函数可以表示为如下: =取工程书中广泛采用的参数对设计进行模拟仿真, ,预测PI控制器的比例系数,内回路控制器取纯比例控制,为了便于比较控制效果,在考虑了扰动抑制性能后,取,由以上所取的数值,可得控制系统仿真图如图4.2所示。图4.2 采用广义参数的系统仿真图 由图可以看出,经过PPID控制系统控制的锅炉水位输出的超调量有所减小,在蒸汽扰动作用下,水位波动范围也减小了,达到

32、了控制的目的。第5章 课程设计总结锅炉是典型的复杂热工系统,锅炉燃烧过程控制有许多被控量和控制变量,这些变量互相关联,要对其建立一个精确的数学模型相当困难。汽包水位是锅炉安全运行的重要参数之一,本文采用的PID控制方式在锅炉水位的自动调节中参数是固定不变,在稳定的工况下可以投入自动,应用PID控制对汽包水位进行控制。本设计中的PID控制方法对锅炉水位进行的控制,通过比较前馈调节系统和串级前馈系统的优缺点,最终选用了串级前馈调节系统参与整个控制,内循环采用PID控制快速消除了控制通道的给水扰动,外回路采用的PID方法克服了蒸汽扰动的影响,并通过采用广泛的工程参数进行仿真,可以看出用此系统可以有效的控制锅炉汽包水位。参考文献1 司士辉过程控制M工业出版社,20032 彭军过程控制技术M西安电子科技大学出版社,20033 陈杰,黄鸿过程控制技术M北京:高等教育出版社,20034 胡乾斌,李光斌,李玲MTALAB原理与应用M华中科技大学出版社,20025 楼然苗,李光飞MTALAB设计实例M北京航空航天大学出版社,20037 朱定华,戴汝平单片微机原理与应用M清华大学出版社,20038 张青春.基于PID的锅炉温度检测系统设计.淮阴工学院硕士学位论文.2010:20-259胡华.锅炉模糊控制理论 D.杭州:浙江大学,2008.1

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!