合肥学院浮头式换热器设计

上传人:痛*** 文档编号:133291268 上传时间:2022-08-09 格式:DOCX 页数:35 大小:315.11KB
收藏 版权申诉 举报 下载
合肥学院浮头式换热器设计_第1页
第1页 / 共35页
合肥学院浮头式换热器设计_第2页
第2页 / 共35页
合肥学院浮头式换热器设计_第3页
第3页 / 共35页
资源描述:

《合肥学院浮头式换热器设计》由会员分享,可在线阅读,更多相关《合肥学院浮头式换热器设计(35页珍藏版)》请在装配图网上搜索。

1、合腮摩配HefeiUniversity化工机械与设备课程设计题目:浮头式换热器的机械设计系别:化学材料与工程系班级:姓名:学号:组别:组员:教师:化工设备机械课程设计任务书一、设计题目浮头式换热器的设计二、设计目的在给定工艺条件与化工原理设计的基础上,把所学相关专业知识综合运用,巩固和强化有关机械课程的基本理论和基础知识。三、设计任务参数名称壳程管程设计压力(MPa)1.81.0操作压力(MPa)0.250.2设计温度(C)17090操作温度(C)125/70(进口/出口)25/40(进口/出口)流量(Kg/h)25000-物料(-)间二甲苯溶液水程数(个)1自定四、设计内容1.根据传热参数进

2、行换热器的选型和校核;2. 对换热器主要原件进行结构设计和强度和强度校核,封头、法兰、管板、支座;3. 设计结果汇总;4. 设计装配图和重要的零件图设计评述五、人员安排2-3人一组六、进度安排包括筒体、前端封头管箱、外头盖3-4天完成主体设计计算,第5-6天第1-2天内查找资料,完成概述等相关撰写,第提交文字说明并绘制。第1第22.12.22.32.42.5第33.13.23.33.43.53.6目录3.3.1 章概述0章工艺计算2设计条件2核算换热器传热面积2初算换热器传热面积2校核平均温差5校核换热面积6压力降的计算6管程压力降6壳程的压力降7换热器壁温计算8换热管壁温计算8圆筒壁温的计算

3、9本章小结9章换热器结构设计与强度计算10壳体与管箱厚度的确定10壳体和管箱材料的选择10圆筒壳体厚度的计算10管箱厚度计算10开孔补强计算12壳体上开孔补强计算12外头盖开孔补强计算13换热管15换热管的排列方式15布管限定圆DL错误!未定义书签。排管15换热管束的分程16换热管与管板的连接16管板设计17管板与壳体的连接17管板计算17管板重量计算22折流板23折流板的型式和尺寸23折流板排列23折流板的布置23折流板重量计算24法兰与垫片24固定端法兰与垫片25外头盖法兰与浮头垫片26接管法兰型式与尺寸27第4章换热器的安装、试车与维修28安装28场地和基础28安装前的准备28地脚螺栓和

4、垫铁28其他要求28试车28维护28总结29参考文献30第1章概述换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重的30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备,其中板式、螺旋板式、板翅式

5、以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种,换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。分程隔板可将管程及壳程介质分成多程,以满足工艺需要。管壳式换热器主要有固定管板式,U型管式和浮头式换热器。针对固定管

6、板式与U型管式的缺陷,浮头式作了结构上的改进,两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力。浮头式换热器的优点还在于方便拆卸,清洗方便,对于管子和壳体间温差大、壳程介质腐蚀性强、易结垢的情况很能适应。其缺点在于结构复杂、填塞式滑动面处在高压时易泄露,这使其应用受到限制,适用压力为:I.OMpa6.4Mpa。换热器(热交换器)是将热流体的部分热量传递给冷流体的设备,换热器按传热方式的不同可分为混合式(混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器)、蓄热式(蓄热

7、式换热器是利用冷、热流体交替流经蓄热室中的蓄热体(填料)表面,从而进行热量交换的换热器)和间壁式(随间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广)三类。在我国换热器的制造技术远落后于外国,由于制造工艺和科学水平的限制,早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。随着制造工艺的发展,逐步形成一种管壳式换热器,它不仅单位体积具有较大的传热面积,而且传热效果也较好,长期以来在工业生产中成为一种典型的换热器。在我国随着经济快速发展的同时,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断

8、涌现。为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。完善的换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维修;(4)经济上合理。所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系数指提高流体和传热之间的传热系数。其主要方法归结为下述两个原理:温度边界层减勃和调换传热面附近的流体。因此最近十几年来,强化传热技术受到了工业界的广泛重视,得到了十分迅速的发展,凝结是工业中普遍遇到的另一种相变换热过程,凝结换热系数很高,但经过强化措施还可以进一步提升换热效率。1.管外凝结换热的强化(1)冷却表面的

9、特殊处理(2)冷却表面的粗糙化(3)采用扩展表面2.管内凝结换热的强化(1)扩展表面法(2)采用流体旋转法(3)改变传热面形状按照设计要求,在结构的选取上,为了增大温差校正系数,采用了1-4型,即一个壳程两个管程。首先,通过换热计算确定换热面积与管子的根数初步选定结构。然后按照设计的要求以及一系列国际标准进行结构设计,在结构设计时,要考虑许多因素,例如传热条件、材料、介质压力、温度、流体性质以及便于拆卸等等。之后对有些部件用ANSYS进行了强度校核并进行对其优化设计。由于时间和资料有限,本人的认识也不够全面,在设计过程中可能还存在许多问题,望老师们给予批评和指正。第2章工艺计算在换热器设计中,

10、首先应根据工艺要求选择适用的类型,然后计算换热所需要的传热面积。工艺设计中包括了热力设计以及流动设计,其具体运算如下所述:2.1设计条件介质水间二甲苯溶液入口温度(C)25125出口温度(C)4070质量流量(Kg/h)-25000密度(kg/m3)998864比热容kj/(kgC)4.1831.70导热系数W/(mC)0.5990.167黏度mPas1.0050.611压力(MPa)1.81.02.2核算换热器传热面积2.2.1初算换热器传热面积2.2.1.1传热计算(热负荷计算)热负荷:QrnicCpcJ-TciihCphThi-几。Cpc,Cph式中:mc,mh冷热流体的质量流量,J/(

11、kgk);冷流体的进、出口温度,k;冷热流体的定压比热,J/(kgk);ThiTho热流体的进、出口温度,理论上,Qc=Qh,实际上由于热量损失,Qc丰Qh,通常热负荷应该取max(Qc,Qh)。这里按理论设计计算。25000Qh二gCph(Thi-入。)=-6004.183125-70=1597.67KW故Q=1597.67KW2.2.1.2有效平均温差:tm的计算ti为较小的温度差,.也为较选取逆流流向,这是因为逆流比并流的传热效率高。其中大的温度差。选=70-254C因为2,故采用对数平均温度差,则=t2-85-45.85In45=62.89(2-3)2.2.1.3按经验值初选总传热系数

12、:t2=12)408查表选得K估=490W/(tf.C);初算出所需的传热面积AQK估=tm1.6010649062.89=51.85m2考虑到所用传热计算式的准确程度及其他未可预料的因素,(2-4)应使所选用的换热器具有换热面积A留有裕度10%-25%,故有:A=1.2A=1.251.85=62.22m22.2.1.4 总传热系数K的校验管壳式换热换热器面积是以传热管外表面为基准,则在利用关联式计算总传热系数也应以管外表面积为基准,因此总传热系数K的计算公式如下:(2-5)丄二丄Rs。旦尺2旦KaoAwdmdjqdj式中:K总传热系数,W/(tf-K);a、a分别为管程和壳程流体的传热膜系数

13、,w/(tf-K);Rsi、Rso分别为管程和壳程的污垢热阻,tfK/w;ddo、dm分别是传热管内径、外径及平均直径,m;心传热管壁材料导热系数,W/(tf-K);b传热管壁厚,m。221.6管程流体传热系数其计算过程如下:初选管内流体(冷却水)的流速Ui=4mc26.5=1.80m/s9940.0148du”.214=5029771.1510,可知流体处于湍流状态;41741037145仗=4.80i0.6217当流体在管内流动为过渡流的时候,对流传热系数可先按湍流的公式计算,:;=0.023Re0.8Pr0.4di=0.0230.6217502970.84.80.4=7726.96.2W

14、/(怦.K);2.2.1.7壳程流体传热系数a其计算过程如下:换热器内需装弓形折流板,根据GB151-1999可知,折流板最小的间距一般不小于圆筒内直径的1/5,且不小于50mm,故根据浮头式换热器折流板间距的系列标准,可取折流板间距咕二300mm。因为壳体选择为卷制圆筒,根据GB150-1999可知壳体内径Di=DNYOOmm。d管间流速Uo是根据流体流过管间最大截面积As计算:As二lbDi(1-)Pt其中:do管外径,即25伽,Pt为换热管中心距,此时选择换热管在管板上的排列方式为正方形排列,因为这样便于机械清洗,查GB151-1999得Pt=32mm。0.0252As=0.30.6(1

15、0.0393m20.032mh2.02c.c,uo-84.8m/s:hAs0.6060.0393d1.27p2dedo-do1.270.03220.025-0.025=0.027;同时:deUo?o0.0270.204864Re=0.61110=7788.7PCp巴Pr=7010361110二6.220.167故可用Kern法求:-o,即:o0.550.4:。=0.023RePrde0.62170804-0.02237788.76.220.027=1827.38W/m.K冷与亠都已经算出,而dmdid2-3322mm2b=2.5mm,Rsi=Rs=0.5210Jm2K/W,同时查钢管壁热导率为

16、w=46.SW/mK,则有1K=1bdod0d0Rso*Rs宁T:owdmdi:idi二11Q5210.25O.2505210.250.0251927.3846.90.02250.027726.960.02=562.5W/mK故Kt鬻九125,合适。2.2.2校核平均温差与平均温差有关参数的计算如下:热流体的温降冷流体的温升几-Th_125-70Teo_TCi40-25冷流体的温升_Tco-Tci两流体最初温差Thi-Tci40-25125-70=0.15;根据R、P值,查温度校正系数图可得温度校正系数宇-0.980.8,因此有效平均温度差为::tm-Otm=0.9862.89=54.09C2

17、23校核换热面积实际传热面积:1.60106523.654.09=56.41m2校核:A_A62.22-56.41二00.1030Ao56.41I为了保证换热器的可靠性,一般应使换热器的实际面积A二“.101.20)A,由上可知所选换热器面积满足要求。2.3压力降的计算流体流经换热器因流动引起的压力降,可按管程压降和壳程压降分别计算。2.3.1管程压力降管程压力降有三部分组成,可按下式进行计算:Pi=(Pl:Pr)FtNpNs:PnNs其中:.巾l流体流过直管因摩擦阻力引起的压力降,Pa;Pr流体流经回弯管中因摩擦阻力引起的压力降,Pa;巾n流体流经管箱进出口的压力降,Pa;Ft结构校正因数,

18、无因次,对::/:252.5mm的管子,取为1.4;对:,:鬥92mm的管子,取为1.5;Np管程数;Ns串联的壳程数。其中,八Pl、:Pr、八Pn的计算式如下:人-h/Ui、Pj2化U2卩L肓(亍)卩r=3(十)Pn5(宁)di2;2;2;式中:ui管内流速,m/s;di管内径,m;l管长,m;i摩擦系数,无量纲,可由下式求取;:?i管内流体密度,kg/m。36由于Re=50297,在Re=310310范围内,故可采用下面公式求取:i =0.0122707543=0.01227。豎.0135iRe0.38502970.38所以pL=0.0135竺(4用)詡8910.022paPr=3(994

19、)=48312pa994O.82=1.5()=24152paip=(0.0489+0.00483)x1.4x4x1+0.00241汇1=0.56842Mpa5经查,可知每台换热器合理的压力降为O.35-1.810Pa,由此可知上述压力降符合要求。2.3.2壳程的压力降当壳程装上折流板后,流体在管外流动为平行流和错流的耦合。尽管管束为直管,但流动却变得复杂化。由于制造安装公差不可避免地存在间隙,因而会产生泄漏和旁流,而流体横向冲刷换热管引起的旋涡,也使流动变得更加复杂。由于流动的复杂性,要准确地分析影响这种复杂流动的各种因素,精确地计算压力降是相当的困难。下面通过埃索法来计算:卩。=(:P:P2

20、)FsNs式中:卩1流体横过管束的压力降,Pa;1p2流体通过折流板缺口的压力降,Pa;Fs壳程压力降的结垢修正系数,无因次,对液体可取1.15;对气体可取1.0。其中:u2-._2lbUo巾=FfnJNb1)20卩2二(3.5、/?;式中:F管子排列方法对压力降的修正系数,对三角形排列F-0.5。对正方形排列F=0.3,对转置正方形排列F=0.4;fo壳程流体摩擦系数,当Re500时,f。=5.0Re228;nc横过管束中心线的管子数,对三角形排列n1.N7;对正方形排列nc19小;uo按壳程流通截面Ao计算的流速,m/s;其中:A=lb(Dj-ncd)=IbQ-1.19、N;do)=0.3

21、(0.6-1.19、2220.025)=0.047m2m644因此uoh0.171m/sPhAo9187.047fo=5.07788.7亠228=0.65nc-1.19N?-1.19.22-17.73Nb=!01T=_-1=18.6,取整为19。lb0.3p=38(3.孑0.30.6)8642L_711200.1则有:28640.1712P=0.30.6517.7320873.5Pa2:po=(873.51200.1)1.1532可知此时的压力降在合理范围之类。2.4换热器壁温计算2.4.1换热管壁温计算符号说明:以换热管外表面积为基准计算的总传热系数,W/(mC);rd污垢热阻,m2C/w;

22、Tm,tm分别为热、冷流体的的平均温度,C;T,To分别为热流体的进、出口温度,C;ti,to分别为冷流体的进、出口温度,C;Vtm流体的有效平均温差,C;王以换热管外表面积为基准计算的给热系数,W/(mC)o热流体侧的壁温:1tth二Tm-、(心)厶垢hf6(需52伏)沁二63.29oC冷流体侧的壁温:ttc=垢*(丄*de)*c=37.5523.6(-0.5210)62.897726.96=16.12C比Mtth+ttc63.29+16.122 所以ttthtc39.71C2ts二97.5Co2.4.2圆筒壁温的计算由于圆筒外部有良好的保温层,故壳体壁温取壳程流体的平均温度:2.5本章小结

23、热力计算最主要的环节是冷、热流体的热流量计算以及换热系数的校核和传热面积的核算。冷、热流体的热流量考虑外界因素实际上是不相同的,但本毕业设计只考虑理想状态下的相同情况。首先根据已知冷、热流体的状态参数分别计算热流量,然后再根据冷、热流体的特性初选换热系数,根据所选换热系数来估算换热面积。考虑到所用传热计算式的准确程度及其他未可预料的因素,应使所选用换热器的换热面积A留有裕度,一般在10%-25%之间。最后再根据公式:t-so佥磴a核算总传热系数。核算合适后再计算有效传热面积。流体流经换热器因流动会引起的压力降。由于管程和壳程互不相连,可以分别计算压强降。最后进行核算,所核算的压强降必须在所设计

24、换热器所能承受最高工作压力范围之内。第3章换热器结构设计与强度计算在确定换热器的换热面积后,应进行换热器主体结构以及主要零部件的设计和强度计算,主要包括壳体和封头的厚度计算、材料的选择、管板厚度的计算、浮头盖和浮头法兰厚度的计算、开孔补强计算,还有主要构件的设计(如管箱、壳体、折流板、拉杆等)和主要连接(包括管板与管箱的连接、管子与管板的连接、壳体与管板的连接等),具体计算如下。3.1壳体与管箱厚度的确定根据给定的流体的进出口温度,选择设计温度为125C;设计压力为1.8Mpa。3.1.1壳体和管箱材料的选择由于所设计的换热器属于常规容器,并且在工厂中多采用低碳低合金钢制造,故在此综合成本、使

25、用条件等的考虑,选择16MnR为壳体与管箱的材料。16MnR是低碳低合金钢,具有优良的综合力学性能和制造工艺性能,其强度、韧性、耐腐蚀性、低温和高温性能均优于相同含碳量的碳素钢,同时采用低合金钢可以减少容器的厚度,减轻重量,节约钢材。3.1.2圆筒壳体厚度的计算焊接方式:选为双面焊对接接头,100%无损探伤,故焊接系数=1;根据GB6654压力容器用钢板和GB3531低温压力容器用低合金钢板规定可知对16MnR钢板其C1=0;C2=2mm。=125假设材料的许用应力tMpa(厚度为616mm时),壳体计算厚度按下式计算为:、PcDj2.5汇600一tc!6.1mm2k1-P2X25汉1-2.5

26、c设计厚度、d=C2二6*12=8.1mm;名义厚度dGC2-8.102=10mm查其最小厚度为8mm,则此时厚度满足要求,且经检查,亠没有变化,故合适。3.1.3管箱厚度计算管箱由两部分组成:短节与封头;且由于前端管箱与后端管箱的形式不同,故此时将前端管箱和后端管箱的厚度计算分开计算。3.1.3.1 前端管箱厚度计算前端管箱为椭圆形管箱,这是因为椭圆形封头的应力分布比较均匀,且其深度较半球形封头小得多,易于冲压成型。此时选用标准椭圆形封头,故久=1,且同上Cl=0C2二2mm,则封头计算厚度为:KPcD20.5?c12.560021251-0.52.5=6.03mm设计厚度d-hC2=6.0

27、32=8.03mm;名义厚度、nh二、dhGC2=8.0302二10mm经检查,没有变化,故合适。查JB/T47462002钢制压力容器用封头可得封头的型号参数如下:表格3-1DN600标准椭圆形封头参数DN(mm)总深度H(mm)内表面积A(m2)容积(m3)圭寸头质量(血)6001750.43740.035334.6短节部分的厚度同封头处厚度,为10mm。3.1.3.2后端管箱厚度计算由于是浮头式换热器设计,因此其后端管箱是浮头管箱,又可称外头盖。外头盖的内直径为700mm,这可在浮头盖计算”部分看到。选用标准椭圆形封头,故久=1,且同上G=0;C2=2mm,则计算厚度为:KPcD2匕丨门

28、-0.5九12.570021251-0.52.5=7.04mm设计厚度、dh二、hC2二7.042=9.04mm;名义厚度nh二、dhGC2=9.0402=10mm:-f经检查,-没有变化,故合适。查JB/T47462002钢制压力容器用封头可得封头的型号参数如下:表3-2DN700标准椭圆形封头参数DN(mm)总深度H(mm)内表面积A(m)容积(m3)土寸头质量(如7002000.58610.054541.3表格3-2DN700标准椭圆形封头参数3.2开孔补强计算在该台浮头式换热器上,壳程流体的进出管口在壳体上,管程流体则从前端管箱进入,而后端管箱上则有排污口和排气口,因此不可避免地要在换

29、热器上开孔。开孔之后,出削弱器壁的强度外,在壳体和接管的连接处,因结构的连接性被破坏,会产生很高的局部应力,会给换热器的安全操作带来隐患。因此此时应进行开孔补强的计算。由于管程与壳程出入口公称直径均为150mm,按照厚度系列,可选接管的规格为1598,接管的材料选为20号钢。3.2.1壳体上开孔补强计算3.2.1.1 补强及补强方法判别:1、补强判别:根据GB表8-1,允许不另行补强的最大接管外径是-89mm,本开孔外径为159密码,因此需要另行考虑其补强。2、开孔直径d=di+2C=150+22=154mmDi/2=300mm,满足等面积法开孔补强计算的适用条件,故可用等面积法进行开孔补强计

30、算。3.2.1.2 开孔所需补强面积计算:、丨86强度削弱系数frn=0.688mmkI125接管有效厚度it=:nt-C=8-2=6mm开孔所需补强面积按下式计算:2A2et(1-fr)=1546.126.16(1-0.688)=962.2mm有效补强范围1、有效宽度B:2d=2154二208d2、n2、nt=15421028=190=308mm2、有效高度:外侧有效高度h1为:h=min35.1mm头际外伸长度=200mm内侧有效高度h2为:h2=mindZnt二154一4.5=35.1mm_实际内伸长度-0mm0mm321.4有效补强面积1、壳体多余金属面积:壳体有效厚度:飞-C=1-2

31、=8mmm则多余的金属面积A1为:A1=(B-d)(、e一)一2et(e一)(1一fr)=(308-154)(8-6.1)-26(8-6.1)(1-0.688)=285.5mm2、接管多余金属面积:接管计算厚度:.Pcdin-Pc2.51502.2mm2861-2.5接管多余金属面积A2:A2=A2h=2h1:;et-tfr2h:;et-C2fr=235.1(6-2.2)0.68802=178.2mm3、接管区焊缝面积(焊脚取为6mm)1A3=266=36mm24、有效补强面积:Ac=A1A2A3=285.5178.236=500mm322外头盖开孔补强计算外头盖上的排污口与排气口接管材料也为

32、20号钢,选用规格为328,主要是通过采用厚壁接管进行补强。3.2.2.1 开孔所需补强面积其开孔直径dh=dj2C=1622=20mm强度削弱系数86125=0.688mm接管有效厚度-(3t=nt-C=8-2二6mm开孔所需补强面积:Ah=dh+2礬et(1frh)=207.0427.046(1-0.688)2=139mm3.222有效补强范围1、有效宽度:=max2dh=2汉20=40mmdh-2、hn2、hnt=2021028=56mm二56mm2、有效高度:外侧有效高度h1为:hidn=v2252.5,材料选为20号钢。3.3.1换热管的排列方式换热管在管板上的排列有正三角形排列、正

33、方形排列和正方形错列三种排列方式。如图3-1所示。各种排列方式都有其各自的特点:正三角形排列:管外流体湍流程度高;正方形排列:易清洗;正方形错列:可以提高给热系数。(1)正三角形排列(2)正方形排列估)正方形错列图表1换热管排列方式在此,选择正方形排列,主要是考虑这种排列便于进行机械清洗。查GB151-1999可知,换热管的中心距S=32mm,分程隔板槽两侧相邻管的中心距为44mm;同时,由于换热管管间需要进行机械清洗,故相邻两管间的净空距离(S-d)不宜小于6mm。3.3.2布管限定圆DL布管限定圆Dl为管束最外层换热管中心圆直径,其由下式确定:Dl二Di(bb2b)查GB151-1999可

34、知,b=5,b仁3,bn=12,故b2=bn+1.5=13.5,则Dl=600-(3513.5)=578.5mm。3.3.3排管排管时须注意:拉杆应尽量均匀布置在管束的外边缘,在靠近折流板缺边位置处布置拉杆,其间距小于或等于700mm。拉杆中心至折流板缺边的距离应尽量控制在换热管中心距的(0.51.5)3范围内。多管程换热器其各程管数应尽量相等,其相对误差应控制在10%以内,最大不能超过型=叫Nmin(max)100%相对误差计算:NcpoooooooooooooooOOOOOOOOOOQOOO00000000()0000000其中:Ncp各程的平均管数;Nmin(max)各程中最小或最大的管

35、数。实际排管如下所示:00()00OOOOOOOOO00000000000ooooooooooooooo/000000(000000ooooooooooo0000()000000()00图表2管子排布由图3-2可知,经过实际排管后发现,每个管程的布管数目分别是38,56,56,38,而各管程的平均管数为47,因此可知各程管数的相对误差是:NcpNmin(max)4738N-100%100%Ncp4752-47100%=19%:20%473.3.4换热管束的分程在这里首先要先提到管箱。管箱作用是把从管道输送来的流体均匀地分布到换热管和把管内流体汇集在一起送出换热器,在多管程换热器中管箱还起改变流

36、体流向的作用。由于所选择的换热器是4管程,故管箱选择为多程隔板的安置形式。而对于换热管束的分程,为了接管方便,采用平行分法较合适,且平行分法亦可使管箱内残液放尽。3.3.5换热管与管板的连接换热管与管板的连接方式有强度焊、强度胀以及胀焊并用。强度胀接主要适用于设计压力小w4.0Mpa;设计温度w300C;操作中无剧烈振动、无过大的温度波动及无明显应力腐蚀等场合。除了有较大振动及有缝隙腐蚀的场合,强度焊接只要材料可焊性好,它可用于其它任何场合。胀焊并用主要用于密封性能要求较高;承受振动和疲劳载荷;有缝隙腐蚀;需采用复合管板等的场合。在此,根据设计压力、设计温度及操作状况选择换热管与管板的连接方式

37、为强度焊。这是因为强度焊加工简单、焊接结构强度高,抗拉脱力强,在高温高压下也能保证连接处的密封性能和抗拉脱能力。3.4管板设计管板是管壳式换热器最重要的零部件之一,用来排布换热管,将管程和壳程的流体分隔开来,避免冷、热流体混合,并同时受管程、壳程压力和温度的作用。由于流体只具有轻微的腐蚀性,故采用工程上常用的16MnR整体管板。3.4.1管板与壳体的连接由于浮头式换热器要求管束能够方便地从壳体中抽出进行清洗和维修,因而换热器固定端的管板采用可拆式连接方式,即把管板利用垫片夹持在壳体法兰与管箱法兰之间。3.4.2管板计算符号说明:Ad在布管区范围内,因设置隔板槽和拉杆结构的需要,而未能被换热管支

38、承的面I积,mm2,对正方形排列,A=nS(5-S);n隔板槽一侧的排管根数;S换热管中心距;Sn隔板槽两侧邻管的中心距;At管板布管区面积,mm2;对多管程正方形排列换热器,A=nS;A管板布管区内开孔后的面积,2Amm;根换热管管壁金属的横截面积,2mm-DG固定端管板垫片压紧力作用中心圆直径,mm;根据所选的垫片的尺寸,且选择其压紧面型式为GB150表9-1的1a,可知密封面宽度N665-625l_b=2=2=10mm6.4mm.则b=2.5叭=2.53疋怖=8mm6.4mm故Dg=665-28=649mm.Dt-一管板布管区当量直径,Dt=mmd换热管外径,mm;Ep设计温度时,管板材

39、料的弹性模量,Mpa;Pd-管板设计压力,Mpa;Ps-壳程设计压力,Mpa;Pt-管程设计压力,Mpa;q换热管与管板连接拉脱力,Mpa;qi许用拉脱力,查GB151,Mpa;nap-一系数,A1;-一管板计算厚度,mm;t-一换热管管壁厚度,mm;n管板刚度削弱系数,一般可取值;-一管板强度削弱系数:,一般取-0.4Mpa;Ef设计温度时,换热管材料的弹性模量,Mpa;Gwe系数,按K3P和1“查GB151图24;EtnaKt管束模数,Mpa;KtLDt;K管束无量纲刚度,KKtMpa;L换热管有效长度(两管板内侧间距)mml换热管与管板胀接长度或焊脚高度,mm;n换热管根数;PdPa无量

40、纲压力,31.5七frPc当量压力组合;PAt系数,DG;1换热管轴向应力,Mpa;7Cr换热管稳定许用压应力,Mpa;7I设计温度时,管板材料的许用应力,Mpa;匕丨一一设计温度时,换热管材料的许用应力,Mpa;管板厚度计算过程如下:342.1 管板名义厚度计算Ad=2AdAd=21332(44-32)101332(44-32)-13824mm223 A=18832213824=20633614疋252A=206336-188114098.54丁223142224 a(d:-di2)(25-202)=176.625mm24na=188176.625=332055:33205.5114098.

41、5=0.29142063363.14=512.7mm?t512.7649-0.791丁12655查GB150可知巳九6210Mpa,Ep5810Mpa;Kt1.6210533205.5(6000-502)512.7=1778.3Mpa式中L应为换热管的有效长度,但由于管板厚度尚未计算出,暂估算管板厚度为进行试算,待管板厚度算出再用有效长度核算,L二5-2“-2(管端伸出长度50mm)Kt1778.350.41.5810=0.0281;Kt13=0.03当中的匕Cr的计算如下:Cr=3.1421.62105V245=114.2i=0.25,d2(d-2j=0.25252(25-22.5)2=8.

42、0;查GB151-1999可知lcr=2lb=60同时由于前面换热管的材料选为20号钢,故匕t=86Mpa1cri2Cr752114.2=82.2Mpa:A=86Mpa由于此时不能保证Ps与pt在任何时候都同时作用,则取Pd=2.5Mpa;故P12=0.22;根据=1.36和1:t=1.26查GB151图可知C=0.55,Gwe=1.9则管板计算厚度为:二CDt,Pa=0.55512.7,0.048=61.8mm;管板的名义厚度应不小于下列三部分之和,即、n-MAX(、,、min)MAX(Cs,hJMAX(Ct,d)圆整-MAX(61.8,25)MAX(2,0)MAX(2,4)圆整=61.8+

43、2+4圆整=68mm式中Cs和Ct分别是指壳程、管程的腐蚀裕量;而h1是指壳程侧管板结构槽深,为0;h2是指管程隔板槽深,为4mm。此时应根据得到的管板名义厚度,重复以上步骤,使得管子有效长度对应于管板厚度。L二L0-2、:n-2(管端伸出长度)=6000-268-21.5=5861mmKt1.6210533205.55861512.7-1790.2Mpa1790.25=0.02830.41.5810K3Pa2=1.39,查图可知C=0.54,Gwe92,则=0.54512.7i0.048=60.8mm-160.824圆整=68mm;3.4.2.2换热管的轴向应力换热管的轴向应力在一般情况下,

44、应按下列三种工况分别计算:1、壳程设计压力Ps=2.5Mpa,管程设计压力Pt=:Pc=Ps-Pt(1:)=Ps=2.5Mpa1A=可.|Pc-(Ps-Pt)丘GweP-A一1206336(2.5-2.51.9)0.291114098.5=-21.1Mpa明显地,fcrIcr;2、管程设计压力A=2.5Mpa,壳程设计压力Ps=0:Pc=Ps-Pt(11)=0-2.5(10.291)3.23Mpac-(Ps-吩Gwe10.291(-3.232.5206336114098.51.9)二-18.4Mpa明显地,二t:=86Mpa;3、壳程设计压力ps与管程设计压力Pt同时作用:Pc=Ps-Pt(1

45、:)=2.5-2.5(10.291)=-0.73Mpa-t1AtBPc(Ps-Pt)Gwe卩-Al_1(-0.73)0.291-2.5Mpa明显地,!r。由以上三种情况可知,换热管的轴向应力符合要求。342.3 换热管与管板连接拉脱力二dl21X176.6253.14?25;3.5=13.5Mpa式中l=h+|3=1.5+2=3.5mm其中:ll换热管最小伸出长度,查GB151-1999可知ll=1.5mm;l3最小坡口深度,I=2mm;许用拉脱力小OR4586=43Mpa;明显地,q*lqL3.4.3管板重量计算管板有固定管板以及活动管板,两者的重量计算分别如下所示:3.4.3.1 固定管板

46、重量计算八I/ZGZ图表3固定管板625232665268-32:卜785010二3142.981077850104-183kg3.4.3.2 活动管板重量计算:383图表4活动管板3.147_92.38107850104(3-24)-147kg3.5折流板设置折流板的目的是为了提高壳程流体的流速,增加湍动程度,并使管程流体垂直冲刷管束,以改善传热,增大壳程流体的传热系数,同时减少结构,而且在卧式换热器中还起支撑管束的作用。常见的折流板形式为弓形和圆盘一圆环形两种,其中弓形折流板有单弓形,双弓形和三弓形三种,但是工程上使用较多的是单弓形折流板。在浮头式换热器中,其浮头端宜设置加厚环板的支持板。

47、3.5.1折流板的型式和尺寸此时选用双弓形折流板这样可造成液体的剧烈扰动,增大传热膜系数。为方便选材,可选折流板的材料选为16MnR,由前可知,弓形缺口高度为150mm,折流板间距为300mm,数量为19块,查GB151-1999可知折流板的最小厚度为5mm,故此时可选其厚度为6mm。同时查GB151-1999可知折流板名义外直径为DN-4.5二6004=.5mgn53.5.2折流板排列该台换热器折流板排列示意图3-5所示:图表5折流板3.5.3折流板的布置一般应使管束两端的折流板尽可能靠近壳程进、出口管,其余折流板按等距离布置。靠近管板的折流板与管板间的距离I应按下式计算:丄B2丄1592汇

48、8丨72)-(b-4)=(283)-(68-4)=290.5mm22(3-25)其中:L1壳程接管位置的最小尺寸,mm;b管板的名义厚度,mm;B2为防冲板长度,若无防冲板时,B2应为接管的内径,mm;3.5.4折流板重量计算符号说明如下:Q折流板质量,kg;Da折流板外圆直径,;2Af折流板切去部分的弓形面积,Af=DaC,mm2,C系数,由ha/Da查表求取;ha折流板切去部分的弓形高度,mm;dl管孔直径,mm;d2拉杆孔直径,mm;管孔数量;n2拉杆孔数量;折流板厚度,mm。计算过程如下:h/D=150/=0252haDa/595.50.252,查得C=0.15528;(3-26)Af

49、-D2C=595.$0.15528=55065.4mm2/IL444qJ(-D2-人)-(d2md;n2)67850=6.14kg3.6法兰与垫片换热器中的法兰包括管箱法兰、壳体法兰、外头盖法兰、外头盖侧法兰、浮头盖法兰以及接管法兰,另浮头盖法兰将在下节进行计算,在此不作讨论。垫片则包括了管箱垫片和外头盖垫片。361固定端法兰与垫片1、查JB4700-2000压力容器法兰可选固定端的壳体法兰和管箱法兰为长颈对焊法兰,凹凸密封面,材料为锻件20MnMon,其具体尺寸如图3-7所示:(单位为mm)图表6法兰表格3-3DN600长颈对焊法兰尺寸DN法兰螺柱对接筒体最小厚度DD1D2D3D46Hhaa

50、166Rd规格数量6007607156766666634211035211816261227M2424102、此时查JB4700-2000压力容器法兰,根据设计温度可选择垫片型式为金属包垫片,材料为0Cr18Ni9,其尺寸为:!LAid-PD图表7垫片表格3-4管箱垫片尺寸PN(Mpa)DN(mm)外径D(mm)内径d(mm)垫片厚度反包厚度L2.560066562534362外头盖法兰与浮头垫片1、外头盖法兰的型式与尺寸、材料均同上壳体法兰,凹密封面,查JB4700-2000压力容器法兰可知其具体尺寸如下所示:(单位为mm)。表格3-5外头盖法兰尺寸DN法兰螺柱对接筒体最小厚度DD1D2D3

51、D46Hhaa16JRd规格数量7008608157767667635012035211816261227M2428102、外头盖侧法兰选用凸密封面,材料为锻件20MnMoH,查JB/4721-92可知其具体尺寸如下表:If-图表8外头盖侧法兰表格3-6外头盖侧法兰尺寸DN法兰螺柱对接筒体最小厚度DD1D2D3D46Hhal6&2Rd规格数量60086081577676676348150721816401227M2428103、查JB/T4718-92选外头盖垫片的型式为金属包垫片,其外径D为765mm,内径d为725mm且查JB/T4718-92也选浮头垫片的型式为金属包垫片,则其外径D为5

52、92mm,内径d为568mm,两者材料均为0Cr18Ni9。3.6.3接管法兰型式与尺寸根据接管的公称直径,公称压力可查HG2059220635-97钢制管法兰、垫片、紧固件,选择带颈对焊钢制管法兰,选用凹凸密封面,其具体尺寸如图3-10所示:(单位为mm)图表9接管法兰第4章换热器的安装、试车与维修4.1安装4.1.1场地和基础应根据换热器的结构形式,在换热器的两端留有足够的空间来满足拆装、维修的需要。4.1.2安装前的准备1、可抽管束换热器安装前应抽芯检查。清扫。抽管束时,应注意保护密封面和折流板。移动和起吊管束时,应将管束纺织在专业的支撑结构上,以避免损伤换热管;2、安装前一般应进行压力

53、试验。当图样有要求是,应进行密封性试验。4.1.3地脚螺栓和垫铁1、活动支座的地脚栓应装有两个锁紧的螺母,螺母与地板间应留有1-3m的间隙;2、地脚螺栓两侧均应有垫铁。设备找平后,斜垫铁可与设备支座地板焊牢,但不得与下面的平垫铁或滑板焊死;3、垫铁的安装不应妨碍换热器的热膨胀。4.1.4其他要求1、应在不受力的状态下连接管线,避免强力装配;2、拧紧换热器螺栓时,一般应按GB-151-1999表示的顺序进行,并应涂抹适当的螺纹润滑剂。4.2试车1、试车前应查阅图纸有无特殊的要求和说明,铭牌有无特殊标志,如管板是否按压差设计,对试压、试车程序有无特殊要求等;2、试车前应清洗整个系统,并在入口接管处

54、设置过滤网;3、系统中如无旁路,试车前应增设临时旁路,4、开启放气口,使流体充满设备;5、当介质为蒸汽是,前应排空残液,以免形成水击;有腐蚀性的介质,停车后应将残存介质排净;6、开车或停车过程中,应缓慢升温和降温,避免造成压差过大和热冲击。4.3维护1、换热器不得在超过铭牌规定的条件下运行;2、经常对管、壳程介质的温度及压降进行监督,分析换热器的泄露和结垢情况;在压降增大和传热系数超过一定数值时,应根据介质和换热器的结构,选择有效的方法进行清洗;3、应经常监视管束的振动情况。总结这次换热器的课程设计从设计上来看,我设计的换热器基本符合工业上用的换热器,换热器多适用于烟道内,结构大致由换热管和换

55、热箱组成。包括由多根换热管两端分别插入上管板和下管板组成的管束,换热管中为空气流道,管束的多个换热管间为烟气流道,管束通过连接集合箱使空气依次从多组管束的换热管中流过。在换热器的设计的过程中,我们自己由于有知识上的局限,造成了设计上的不准确。在利用烟气成分计算其比容时,只是算书一个大概的比容,没有达到精确的程度;在利用烟气成分查图求得其辐射度的问题上,由于方法的不同和图表的不清楚及自己在判断上的误差,造成了辐射度问题的误差;在一些计算过程中,我们都采用了四舍五入的方法求得值,这样也回使我的计算存在很大的问题。从设计结果可看出,若要保持总传热系数,温度越大、换热管数越多,这主要是因为空气的出口温

56、度增高,总的传热温差下降,所以换热面积要增大,才能保证Q和K.因此,换热器尺寸增大,金属材料消耗量相应增大.通过这个设计,我们可以知道,为提高传热效率,降低经济投入,设计参数的选择十分重要.虽然毕业设计内容繁多,过程繁琐但我的收获却更加丰富。各种元件的适用条件,各种结构的选用标准,各种热管的合理选择,我都是随着设计的不断深入而不断熟悉并学会应用的。和老师的沟通交流更使我从经济的角度对设计有了新的认识也对自己提出了新的要求。最后,这次的换热器课程设计自己换了很多的时间来研究它,因为以前自己只有一个感性的认识,现在要我们设计一个东西,很难。于是,从图书馆借书,借一些相关计算的例题来弄清楚它的具体的

57、计算方法,找老师问一些基础的问题之后自己在慢慢的学会假设,计算,校验。最终在自己的努力和老师的帮助下,做完了课程设计。这次的换热器设计上,自己学到了很多的东西:掌握了查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;培养了迅速准确的进行工程计算的能力;学会了用简洁的文字,清晰的图表来表达自己设计思想的能力,从而是自己的学习知识能力得到了很大的1 参考文献钱颂文.管壳式换热器设计原理M.华南理工理工大学出版社,1990E.U.施林德尔.换热器设计手册第三卷换热器的热设计与流动设计M.机械工业出版社,2008芮胜波,李峥,王克立,李彩艳.管壳式换热器的工艺设计J.化工设计,2009GB151-1999,钢制压力容器S林宗虎.强化传热及其工程应用M.北京:机械工业出版社,2003朱聘冠.换热器原理及计算M.清华大学出版社,2001

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!