中央空调控制系统设计

上传人:无*** 文档编号:132589227 上传时间:2022-08-08 格式:DOC 页数:57 大小:1.65MB
收藏 版权申诉 举报 下载
中央空调控制系统设计_第1页
第1页 / 共57页
中央空调控制系统设计_第2页
第2页 / 共57页
中央空调控制系统设计_第3页
第3页 / 共57页
资源描述:

《中央空调控制系统设计》由会员分享,可在线阅读,更多相关《中央空调控制系统设计(57页珍藏版)》请在装配图网上搜索。

1、 .wd. 中央空调控制系统设计 摘 要本文通过中央空调的运行控制要求的分析,采用西门子s7-200 PLC设计了中央空调控制系统。对出口温度控制采用冬夏两种控制模式,出口风压采用变频控制已到达节能效果,控制系统具有稳定性好等的优点,本系统具有一定的推广价值。关键词:空调系统;PID控制;变频调速;PLC编程ABSTRACTThis article analysis the control requirements of running central air-conditioning, Siemens s7-200 PLC with a central air-conditioning co

2、ntrol system design.Winter and summer temperature control on the export of two control modes, export wind frequency control has been used to save energy, and good stability control system has the advantages of the system has a potential market value.Key words: air-conditioning system,;PID control; f

3、requency control,;PLC programming目录摘 要IABSTRACTII第1章 引 言11.1 中央空调介绍11.2 中央空调研究背景21.3 中央空调开展历史21.4 中央空调的开展现状41.5 本论文的主要工作6第2章 中央空调系统的原理及其构成72.1 中央空调系统的原理72.1.1 空气的物理性质72.1.2 空气调节原理112.1.3 中央空调原理162.2 中央空调系统的组成17第3章 中央空调控制系统的设计203.1中央空调控制系统的方案及要求203.1.1 空气温度控制203.1.2 湿度控制213.1.3送风压力控制223.1.4 新风回风比例控制2

4、23.2 PID算法和变频器的原理介绍及检测元件的选型223.2.1 PID算法233.2.2变频器调速原理及变频器的选型253.2.3其他测量元件的选型333.3 I/O分配及硬件接线图353.3.1 I/O分配353.3.2 硬件接线图36第4章 中央空调系统程序设计384.1 PLC简介384.2 PLC编程软件介绍384.3 中央空调控制系统的工作过程394.4 梯形图程序404.4.1 主程序404.4.2 温度控制程序414.4.3 湿度控制程序444.4.4 送风压力控制程序46第5章 完毕语50致 谢51参考文献52第1章 引 言1.1 中央空调介绍 一般认为:制冷量大于140

5、00W,带风道的空调器称为中央空调或商用空调,其余称为家用空调。中央空调是集中处理空调负荷的系统形式,空调机组产生的冷热量是通过一定的介质输送到空调房间的。其核心是一种“小型的中央空调,是由一台主机通过风道送风或冷热源带动空调末端的方式来控制各房间以到达调节室内空气品质之目的的空调。它在制冷原理上、构造上类似于普通空调,但又结合了中央空调的众多功能。其制冷量范围大致在7120KW之间,相应的可供单元住房面积801500M2。多个户式中央空调模块的组合可供更大空调面积使用,如长虹中央空调MLRFS65型冷水机组就是根据这种设计思路推出的,这种机型最多可以并联8台组成一个中央空调子系统。多个中央空

6、调子系统组合就可以满足大型公共建筑的空调需求。模块组合这种方式非常灵活,且各子系统的使用互不影响。空调机组产生的冷热量是通过一定的介质输送到空调房间的。输送介质主要有三种:空气、水、及制冷剂。据此可将户式中央空调分为风管系统、冷热水系统、制冷剂系统。 小型中央空调系统是大型中央空调的小型化,几乎包含大型中央系统所有部件。 对于风冷式冷水机组小型中央空调系统包括用于循环水冷却的冷水机组,用于与空气二次换热的空气末端设备,水系统,风管系统,控制系统等,另外还包括其它一些辅材,主要有保温材料、水膨胀系统等;风管式中央空调系统包括一个制冷系统和一个风系统,还包括控制系统,风管和风口等。 1.2 中央空

7、调研究背景随着建筑业、工商设施及人民生活质量的提高,中央空调产品的需求日益增加,近十年是我国制冷空调行业蓬勃开展的时期,制冷空调工业产值平均年增长率达20,处于平稳的上升趋势,市场潜力巨大。随着世界范围内的产业构造调整,高新技术行业不断开展以及传统行业的高新技术改造都将导致大批的生产办公用房需设置中央空调。由此可见,随着宏观经济的不断开展,采用中央空调的建筑物越来越多,因此,对中央空调制冷的需求量必将持续增加。现如今,随着人们生活水平的进一步提高,人们的居住观念和居住行为方式都发生了重大的改变,居住面积越来越大,居住档次越来越高,居住环境越来越美,居住内环境也得到了前所未有的重视,以人为本的居

8、住观念和居住需求。随着人们生活水平的不断提高,人们对室内空气环境、建筑外部环境、小区环境要求也越来越高。同时,随着社会的不断进步,国家对节能、环保也将日益重视。传统空调必将由中央空调及区域供冷取代,中央空调的市场需求必然会增长。随着时代的进步,生产效率逐步提高,技术革新速度越来越快,中央空调系统各种设备成本将不断下降;需求市场的不断增加引起产量水平上升,规模经济效应也会导致产品价格的下调。中央空调产品价格下调必然会增强其市场竞争力,中央空调的市场需求会逐渐增加。1.3 中央空调开展历史 在二十世纪六,七十年代,美国地区发生罕见的干旱天气,为解决干旱缺水地区的空调冷热源问题,美国率先研制出风冷式

9、冷水机,用空气散热代替冷却塔,其英文名称是:Air cool Chiller,简称为Chiller! 在空调历史中,美国已经开展和改良了有风管的中央单元式系统,并得到了正在现场安装和修理有风管的单元式空调系统的空调设备分销商和经销商的强力支持。WRAC是最简单和最廉价的系统,能够很容易的在零售商店中购得,并在持续高温来的时候自己安装。同时,无风管的SRAC和SPAC自70年代起在有别于美国市场的动力下在日本得到开展和改良。之后,设备设计和制造技术在90年代被转让到中国,这是通过与当地公司(包括主要元件如压缩机、热交换器、电劝机、精细阀和电子控制器的本地制造商)组成的合资公司进展的。在90年代中

10、国也从其它先进国家吸收了较大型空调设备的先进高新技术,并与多数是美国的大公司组成合资企业。现今,中国已是一个顶级国家,她的当地主要工厂和合资企业制造了大量SRAC和SPAC以满足增长的国内市场和出口需要。日本过去几年在把SRAC和SPAC机组出口到中国、欧洲和中东以建设新的市场。但是中国现今已是最大的空调出口国,在2001年出口的WRAC,SRAC和SPAC机组总数达500万台,2002年预计有750或800万台机组出口,而日本正在失去出口的地位。美国 美国是最大的空调市场,占世界总空调设备销售额的28,大多数是有风管的单元式空调系统。但是,热泵比例相对的低,在2001年以数量计占20而以销售

11、额计占30。美国空调市场与其它国家的差异,一些明显的原因是: 大多数人居住在位于有广阔空间的郊区独立房屋内,可以更方便地为整个室内空间的舒适优先选择安装风管。 能源价格相对要低,全国范围有电力和燃气可以供给,在冬季可以通过天然气管路网络用燃气炉取暖。大局部陆地在冬季的寒冷天气并不适用没有辅助电加热的热泵,而辅助电加热是不经济的。强大工业分销商和经济商网络以相对低的安装费用和维修后缓支持推销有风管的中央空调系统。 日本 开利公司五十年代创造溴化锂机组技术以后并没有马上大力推广当时美国的电力、能源并不紧缺,全球对氟里昂制冷剂破坏地球大气臭氧层还没有引起足够的重视、也没有进一步研究开展。日本厂商引进

12、溴化锂技术以后便大力开展,诸如荏原、日立、三菱重工、川崎重工等公司都形成了成熟、稳定的技术,现在日本国内溴化锂机组占据了主机市场份额的90左右。 而到了八十年代全球对氟里昂制冷剂地球大气臭氧层的破坏引起广泛的重视,再加上电力、能源日益紧缺,各个国家的厂商开场重视溴化锂技术,但发现日本公司已经形成了强大的竞争实力、成熟稳定的技术。同时,公司致力于围绕中央空调系统不断地开发新产品,开展新事业,逐步实现从中央空调主机供给商向中央空调系统集成供给商的转变。1.4 中央空调的开展现状伴随着计算机控制技术的开展,世界上HVAC系统的控制从五十年代开场就采用气动仪表控制系统,六十年代改良为电动单元组合仪表,

13、七十年代采用小型专用微型计算机进展集中式控制系统,直到1984年,美国哈特福德市第一幢采用微星计算机集散式控制系统大厦的出现,标志着智能建筑时代的开场。集散式自控系统,目前技术趋于成熟,主要技术特征是采用了DDCDirect Digital Control)。作为控制系统中的主要单元控制器,目前国内外主要采用的是常规的PID控制,因其控制简单实用低成本技术成熟易于实现参数调整方便并且具有一定的鲁棒性,在空气调节的应对比广泛。年和等对控制阀门和执行器实现温度和湿度控制的不同特性做了研究。年和对控制的废气温度控制系统的单位阶跃响应做了仿真研究。年A L M A N等人将PID控制用于压缩机和蒸发器

14、的电机速度调节,以实现制冷去湿,并建设了系统的数学模型遗迹PID算法的三个参数的解析整定发发,同时给出了系统的两种控制策略。我国空调产业一直沿用家用空调和中央空调的分类,家用空调和中央空调的两类生产厂家互不涉足。目前,市场出售的两类空调都有其局限性:一般家用空调使用于小面积、居室少的环境中,大型建筑采用中央空调。但是随着社会经济的不断开展与进步,随着居民居住面积的增大,对室内空气品质的要求也越来越高。例如一个三居室用户要装三部空调器,需要三个不同的室外空间,原来使用的家用空调特别是分体式空调器的安装就受到限制;虽然有些空调器生产厂家加装了排气扇,但空气流通不畅,空气质量差等弊端仍没有从 根本上

15、抑制。而大型中央空调虽可同时为多用户集中供冷暖,但缺少个性化选择、自由度小,一次性投资较大,只能应用在大型建筑物和高档住宅小区,同时中央空调用于大型建筑特别是出租式建筑时又会遇到收费较困难等问题。为了解决上述两种空调的弊端户式中央空调就应运而生。通过分析得出户式中央空调的一下优点:户式中央空调系统是小型化的中央空调系统可满足用户多居室需求,以家庭为单元,可适应用户的个性化需求不受其他用户影响。由于户式空调采用了分体式空调室内机与室外机相别离的构造形式,使主机与末端装置相别离,这样就保证了宁静的家居环境;符合空调低噪声的开展趋势。室内末端装置可采用多种方式安装如:暗藏、半暗藏、明装等方式,极适宜

16、配合室内装修,尤其适合高档装修。由于主机由微电脑控制,在室内可完成全部操作,且操作简便;采用先进的电子控制技术系统可根据实际负荷自动化运行,节约能源及运行费用。在户式中央空调的销售方面,可以和房地产商进展匹配销售。因为对房地产商而言,户式中央空调系统运行可靠、维护量极小、收费直观合理、不需设机房、这样可以减少公用设施和土建投资,降低房地产价格。此外户式中央空调可以分批投资添置各用户的空调系统,这样可以减少资金的固定化。关于变频技术的运用,是由于现阶段的能源紧张所导致的。2004年9月16日国家空谈的强制性能效新标准出台,新标准按空调能效等级分为五级:一级为最高标准其能效指标为3.4;五级为最低

17、标准,能效指标为2.6。一台1.5匹的一级产品每小时用电量不超过1度,五级产品每小时用电量不超过1.35度。从2005年3月1日起达不到最低标准的空调将不允许上市销售。所谓的“变频空调是与传统的“定频空调相对比而产生的概念。众所周知,我国的电网电压为220伏、50赫兹,在这种条件下工作的空调称之为“定频空调。由于供电频率不能改变,传统的定频空调的压缩机转速 根本不变,依靠不断地“开、停压缩机来调整室内温度,其一开一关之间容易造成室温忽冷忽热,并消耗较多电能。而与之相比的“变频空调变频器改变压缩机供电频率,调节压缩机转速,依靠压缩机转速的快慢到达控制室温的目的,室温波动小、电能消耗少,其舒适度得

18、到较大提高。运用变频控制技术的变频空调,可根据环境温度自动选择制热、制冷和除湿运转方式,使居室在短时间内迅速到达所需要温度,并在低转速、低能消耗状态下以较小的温差波动,实现了快速、节能和舒适控温效果。供电频率高,压缩机转速快,空调器制冷热量就大;而当电频率较低时,空调器冷热就小,这就是所谓定频的原理。变频空调的核心是它的变频器,变频技术是20世纪80年代问世的高新技术,它通过对电流的转换来实现电动机运转频率的自动调节,把50Hz的固定电网频率改为30至130Hz的变化频率,使空调完成了一个新革命;同时,还使电源电压范围到达142V至270V,彻底解决了由于电源电压不稳造成空调机不能正常工作的难

19、题。变频每次开场使用时,通常是让空调以最大功率、最大风速量进展制冷或制热,迅速接近所设定的温度。由于变频空调通过提高压缩机工作频率的方式增大了在低温时的制热能力,最大制热量可到达同品牌同级别空调器的1.5倍,低温下仍能保持良好的制冷效果。此外,一般的分体机只有四风速可供调节,而变频空调的室内风机自动运行时,转速会随压缩机的工作频率在12档风速范围内变化,由于风机的转速与空调器的能力配合较为合理,实现了低噪音的宁静运行。在空调高功率运转时,迅速接近所设定的温度。这样不但温度稳定,还防止了压缩机频繁地开开停停所造成的对压缩机寿命的衰减,而且耗电量大大下降,实现了高效节能。“变频空调采用了对比先进的

20、技术,启动时电压较小,可在低电压和低温条件下启动,这对于某些地区由于电压不稳或冬天室外温度较低而空调难以启动的情况,有一定的改善作用。由于实现了压缩机的无级变速,它也可以适应更大面积的制热要求。不过,“变频空调的价位通常较“定频空调高出几百元。根据目前的变频技术的开展主要表现在以下两个方面:1 机的驱动方式从交流变频到直流调速;2 制技术VVVF变频技术,PWM脉宽调速控制技术,矢量控制技术。变频技术的优点:3 或制热速度快4 较好的舒适性。1.5 本论文的主要工作 本论文的主要工作有两局部:一. 中央空调控制系统设计方案 二. 关于中央空调控制系统PLC编程全论文分为5章:第一章 介绍什么是

21、中央空调及中央空调的开展概况 第二章 介绍中央空调控制系统的原理及其构成 第三章 关于中央空调的设计 第四章 关于中央空调控制系统的PLC程序控制 第五章 结论及完毕语第2章 中央空调系统的原理及其构成2.1 中央空调系统的原理要讨论空调技术,就必须对控制对象及空调系统有全面,深入的了解。只有掌握了其原理和特性及要到达的母的和实现手段才能决定采用何种控制策略。本文在此将先对空调系统原理及组成作介绍。2.1.1 空气的物理性质1. 空气的成分 自然界的空气是由于空气和水蒸气组成的混合气体,成为湿空气。另外空气中还含有不同程度的灰尘、微生物、及其它杂质。 空气中水蒸气的大幅度变化,将造成不同的空气

22、环境状态。在大气层中,距地面高度10km以内的范围内,都含有一定量的水蒸气。因此,湿空气使我们生活中的真是空气环境,而空调主要是解决空气的温度和湿度问题,所以空调是以湿空气为对象的。2. 空气的状态参数 空气的物理性质不仅取决于它的组成成分,而且也与它所处的状态有关。空气的状态可用一些物理量来表示,例如压力、温度和湿度等,这些物理量称为空气的状态参数。空气调节工程中常常用的空气状态参数表达如下: 1压力 1大气压力p 地球外表的空气层作用在单位面议上的压力称为大气压力。大气压力一般用帕斯卡pa表示。大气压力随季节、天气的变化稍有上下。通常以纬度45 的海平面上的平均大气压作为一个标准大气压,或

23、者无力大气压,它相当于101.325kpa760mmHg。 2水汽分压力 pc 任何气体分子,由于不停地地热运动的结果,使它们都具有一定的压力,水汽当然也不例外。不过空气中的水汽是和干空气同时存在的,这是两种气体各有自己的压力,称之为分压力,而且两者之和应该是空气的总压力,即: p=pg+pc (2-1)其中p为湿空气的总压力,一般即大气压力,单位kpa;pg为干空气的分压力,单位为kpa;pc为水汽的分压力,单位为kpa。在空调中,经常会用到水汽分压力这个参数。水汽分压力的大小反映了水汽的多少,湿空气湿度的一个指标。此外,空气的加湿、枯燥处理过程是水分蒸发到空气中去或水汽从空气中冷凝出来的湿

24、交换过程。这种交换和空气中的水汽分压力也是有关系的。(2) 湿度t或T 温度时表示空气冷热程度的指标,它反映了空气分子热运动的剧烈程度,一般用t表示摄氏度温度单位为,用T表示热力学温度单位为K,关系式: T=273+t (2-2) 空气湿度的上下,将直接影响着人体的散热状况,当空气温度过高或者过低时,便会造成人体的不适感和产生疾病。空气环境温度的上下,对某些生产环节的映象也是很大的。如半导体器件的生产,当温度超出一定的范围时,便会大大的映象产品的各项性能指标。因此在空气调节中,温度是衡量空气环境对人体和生产是否适宜的一个重要参数。 干球温度计由两只棒状温度计组成。一只是直接测量环境空气本身温度

25、的;另外一只是在测温球上包上湿布,测得湿球温度。由于在湿空气未到达饱和前,湿布上的水分蒸发,吸收了一局部汽化潜热,所以湿球温度计上的读数总要低些。环境空气的相对湿度越小,湿球上水分蒸发的就越快,湿球温度降低的幅度就越大。对比连个温度值,便可计算出相对湿度。 3湿度 人体感觉的冷热成都,不仅与空气温度的上下有关,而且还与空气中水蒸气的多少有关,即与湿度有关。空气中的湿度有以下几种表示方法: 1绝对湿度x1m湿空气中含有的水汽量单位为kg,称为空气的绝对湿度。它和水汽分压力pc有如下管辖: x=pc/RcT ) (2-3)其中Rc是水汽的气体常量,等于461J/kgk),T是空气的热力学温度。它说

26、明,当温度一定是,水汽分压力Pc越大,则绝对湿度x越大,所以水汽分压力也可以反响空气中的湿度多少。2) 含湿量 d 在空调中一般都是用1kg干空气中含有的水汽量来代表空气湿度,这样就可以排除空气温度和水汽量变化时对湿度这个概念造成的影响。这种湿度习惯上称之为含湿量d。在空调设计中,含湿量和温度一样,是一个十分重要的参数,反映了空气中带有水汽量的多少。任何空气发生变化的过程,例如加湿或枯燥过程,都必须用含湿量来反映水量增减的情况。3) 相对湿度 相对湿度表示空气湿度接近饱和绝对湿度的程度。所谓饱和绝对湿度,即指空气中的水汽超过了最大限度,多余的水汽开场发生凝结的水汽量。在一定的温度下,相对湿度越

27、大,这时空气就越超市,反之,空气就越枯燥。在空调中,相对湿度是衡量空气环境的超市程度对人体和生产是否适宜的一项重要指标。空气的相对湿度大,人体不能充分发挥出汗的散热作用,变会感到闷热;相对湿度小,水分便会蒸发的过多过快,人体会觉得口干舌燥。 4)露点温度 t1 空气在某一温度下,其相对湿度小于100,但如果时期温度降至另一适当温度时,其相对湿度也到达了100,此时,空气中的水汽变凝结盛水结露,这个降低后的温度称为露点温度。湿度越大,露点与实际温度之差就越小。 如果空气的含湿量d,根据空气性质表查处饱和含湿量等于这个d时对应的温度,他就是这时空气的露点温度t1,这说明,根据空气的含湿量,便可确定

28、露点温度。 在一些冷外表上会发生结露现象,能否产生结露,视冷外表的温度t与露点温度t1相比照拟而决定,当tt1时不会结露,反之会结霜。 3 空气状态参数相互间的关系 在实际运行中,只要掌握住空气温度t、含湿量d、相对湿度和水汽分压力pc之间的关系,就能较准确的保证室内空气状态要求的参数。因此,把t、d、pc之间的关系绘制成图,对运行来说就更为直观,对运行来说就更为直观。如以下列图: 图2-1 t,d,,pc关系图图中标示t、d、pc之间的关系图,以下列图标示的是t、pc之间的关系图: 图2-2 t,d,,pc关系图2.1.2 空气调节原理 空气调节的任务,在于按照使用的目的,对房间或公共建筑内

29、的空气状态参数进展调节,为人们的工作和生活,创造一个温度适宜、湿度恰当的术士环境。一般来说,空气调节主要是指空气的温度湿度控制。1温度调节 按照人类的生理特征和生活习惯,常常要求居住和工作环境与外界温差不宜过大,从保健的角度来看,以5左右对人体安康对比有益。夏日里,如果降温过剧,则有室外进入室内时将受到冷冲击;而有室内走到室外,将受到热冲击,这两种情况都会使人体感受到不舒适。因此对于大多数人,居住室温夏季包吃在2527,冬季保持在1620是对比适宜的。(2) 湿度调节生活经历得知,空气过于潮湿或者过于枯燥都将使人感到不舒适。一般来说,相对湿度的冬季在4050之间,夏季在5060之间,认得感觉对

30、比良好,参加温度适宜,相对湿度在4070的范围内变化,人们也能 根本适应。1 调温调湿设备(1) 空气的加热设备 空气的加热时通过加热器来实现的。空调系统中所用的加热器一般是以热水或蒸汽为热媒的空气加热器和电加热器。 以热水或蒸汽为热媒的空气加热器一般都采用肋片管式换热器。它由几排肋片管和联箱组成的。 当热水或蒸汽在管内流动,空气在肋片管之间流动时,空气被高温的肋片外表及基管加热,空气和管内的流速越大,加热量越大;热水或蒸汽与空气间的温差越大,加热量越大;空气与加热器接触面积越大,加热量也越大。但增加空气和谁的流速,或靠增加排数来增大加热器的面积,加热器的空气阻力和水的阻力均增加,风机和水泵的

31、耗电量也增加。肋片管式空气加热器一般作为空调系统的一次或二次加热器。一次加热器的任务在东起负责将一次回风和新风混合后的空气加热到指定温度,以便于系统进入加湿处理一次加热器多用于冬季室外气温较低的北方地区和全年一次回风混合比例不变的系统。对于冬季室外气温较高的南方地区和一次回风混合比例可变的系统,通过调节一次回风混合比例使一次回风和新风的混合温度到达设计值。一次加热器夏季一般不适用,但有时也可以将其内通自来水等作为新风预冷器,到达加热器冷却两用的目的。但此时冷、热水管路上的阀门要严密,以防互相串通。二次加热器适用于将被表冷器冷却或与二次回风混合后的空气加热到所需的送风温度。 电加热器是通过电阻丝

32、将电能转化为热能来加热空气的设备。它具有加热均匀、加热量稳定、效率高、构造紧凑和易于控制等优点,常用语各类小型空调机组内。在恒温恒湿精度要求较高的大型集中式系统中,常采用电加热器作为末端加热设备来控制局部加热。电加热器的缺点是耗电量大、加热量大的场合不宜采用。 电加热器有裸线式和管式两种。抽屉式电加热器是一种常用的裸线式电加热器。裸线式加热器加热迅速、热惯性小、构造简单,单容易断线和漏电,安全性差;管式电加热器加热均匀、热量稳定、经久耐用、安全性好、可直接装在风道内,但其热惯性较大,构造复杂。(2) 空气的减湿冷却设备 空气的减湿与冷却可以通过表冷器来实现。与空气加热器构造类似,表冷器也都是肋

33、片管式换热器,他的肋片一般多采用套片和绕片,基管的管径也较小。 表冷器内流动的冷媒有制冷剂和冷水两种。一制冷剂为冷水表冷器,多用于集中式空调系统和半集中式空调系统的末端设备中。 与加热器的欧诺工作原理类似,当空气沿表冷器的肋片间流过时,通过肋片和基管外表与冷媒进展热交换,空气放出热量温度降低,冷媒得到热量温度提高。当表冷器的外表温度低于空气的露点温度时,空气中的一局部水蒸气将凝结出来,此时成称表冷器处于湿工况,从而到达对空气进展降温减湿处理的目的。 增大空气和冷水的流速,增加换热面积和空气与冷水间的温差,都可以提高传热量。但风速水速过大,风机和水泵耗电量增加,而且在湿工况下,过大的空气流速容易

34、将冷凝水待到表冷器后面的空气中,影响减湿效果。设计师一般取表冷器迎风面风速V=2.5m/s左右,管内水流速为0.61.5m/s。 表冷器的安装与以热水为媒的空气加热器安装方式 根本一样,但表鞥器下部应设积水盘,用来收集空气被表冷器冷却后产生的冷凝水。 表冷器的调节方法有两种,一是水量调节,二是水温调节。水量调节是改变进入表冷器的冷水流量,水温不变,使表冷器的传热效果发生变化。水量减少,表冷器传热量降低,空气温度降低,除湿量也少;反之,增大冷水量,空气经过表冷器后的温降大,降湿量也多。水湿调节是在水量不变的条件下,通过改变表冷器进水温度,改变其传热学效果。进水温度越低,空气温降越大,除湿量也增加

35、;反之供水温度提高,空气温降减小,除湿量降低。该方式调节性能好,但设备复杂,运行也不太经济。水温调节一般多用于温度控制精度较高的场合。(3) 空气的加湿设备 在建筑中常常遇到的空调系统一般都采用向空气中喷蒸汽的方法进展加湿。常用的喷蒸汽加湿方法有干蒸汽加湿和电加湿两种。干蒸汽加湿是将锅炉房送来的具有一定压力的蒸汽由蒸汽加湿器均匀的喷入空气中。而电加湿则是用于加湿量较小的机组或系统中。电加湿器分为电热式加湿器和电极式加湿器两种。电热式加湿器是将电热元件直接放在盛水的容器内,利用加热元件所散发出的热量加热水而产生蒸汽。电热式加湿器体积较大。闭式电热式加湿器,在工程中对比常用。作为完整的电热式加湿器

36、,除蒸汽发生器外,尚需配备自动补水设施、用于恒定蒸汽压力的电源控制设施、湿度敏感元件、湿度调节器和带电动调节阀的喷管组件。电极式加湿器是用3根不锈钢棒作为电极,放在不易锈蚀的水容器中,一水作为电阻,通电后水被加热而产生蒸汽。通过调整水位的上下,可以改变水的电阻,从而改变热量和蒸汽发生量。电极式加湿器构造紧凑,多用于各类空调机组内,其加湿量较小。2 空气状态调节空气调节是对房间或公共建筑内的空气状态参数进展调节,一般来说,空气调节主要是指对空气的温度、相对湿度进展调节。空气调节的原理就是应用空气状态参数相互间的关系,通过合理的加热、加湿、冷却、去湿步骤,使得空气的状态发生人为的改变,到达设定状态

37、。我们通过t,p三者之间的关系的图来说明。如以下列图,空气从状态A调节到状态B的状态变化过程。 图2-3 空气状态调节过程 如以下列图说明了整个空气调节处理流程: 图2-4 空气调节处理流程 1冬季新空气加热加湿处理 冬季新空气的气温低,如果对新空气加热至室内气温的标准,这是新空气中的水汽总量未发生变化,及pc水汽分压未变,因此加热后的空气相对湿度会大大降低。为了使加热后的空气的相对湿度也能到达室内空气湿度的标准,在调节的过程中必须要进展加湿处理。如以下列图: 图2-5 冬季新空气加热加湿处理 这是冬季新空气加热加湿处理的一种调节发发。其中的加湿是采用定温饱和加湿法师。这种调节方式可以不用测量

38、pc或相对湿度。新风首先加热至12不管新风是3还是5,然后加湿喷水至饱和,再加热至20,这是的相对湿度即为60。2 夏季新空气减温去湿处理夏季新空气的调节与冬季相反,新空气的气温高于室内空气,需要对夏季新空气进展减温去湿处理。如果对新空气只进展降温至室内气温的标准,这是新空气中的水汽总量未发生变化,即pc水汽分压为改变,因此降温后的空气相对湿度会大大增加。为了使降温后的空气的相对湿度也能到达室内空气湿度的标准,在调节的过程中必须进展去湿处理。如以下列图: 图2-6 夏季新空气减温去湿处理这是夏季新空气减温去湿处理的一种调节方法。其中的去湿是采用顶露点去湿方式。这种调节方式可以不用测量pc或相对

39、湿度。新风首先降温至12的露点不管新风是23还是25,然后使用表冷器的外表温度稳定在露点温度,让空气中的一局部水蒸气充分凝结出来,至空气饱和,再加热至20,这使得相对湿度即为60。2.1.3 中央空调原理 中央空调原理如以下列图: 图2-7 中央空调系统的原理图 如以下列图,新风与回风混合进入空气热湿处理系统,热湿对空气温度和湿度进展调节过后进入风机,风机将满足要求的空气送入各各房间。房间内的风称为回风;回风通过系统的排风机将一局部风与新风混合,另一多余的局部被排除,形成一个简单的循环。2.2 中央空调系统的组成一般空调系统包括以下几局部:(1) 进风局部 根据生理卫生对空气新鲜度的要求,空调

40、系统必须有一局部空气取自室外,通常称为新风。进风口,连同引入通道和阻止外来异物的构造等,组成了进风局部。2空气过滤局部 有进风局部取入的新风,必须先经过一次预过滤,一出去颗粒较大的尘埃。一般空调系统都装有预过滤器和主过滤器两级过滤装置。根据过滤的效率不同可以分为初效过滤器,中效过滤器和高效过滤器。3空气的热湿处理局部 将空气加热、冷却、加湿和减湿等不同的处理过程组合在一起统称为空调系统的热湿处理局部。热湿处理设备主要有两大类型:直接接触式和外表式。 直接接触式 与空气进展热湿交换的戒指直接和被处理的空气接触,通常是将其喷淋到被处理的空气中。喷水室、蒸汽加湿器,局部补充加湿装置以及使用固体吸湿机

41、的设备均属于这一类。 外表式 与空气进展热湿交换的戒指不合空气直接接触,热湿交换是通过处理设备的面进展的。外表式换热器属于这一类。 4 空气的输送和分配局部 将调节好的空气均匀的输入和分配到空调房内,以保证其适宜的温度场和速度场。这是空调系统空气输送和分配局部的任务,它由风机和不同形状的管道组成。根据用途和要求不同,有的系统只采用一台送风机,称为“单风机系统;有的系统采用一台送风机和一台回风机,称为“双风机系统。管道截面通常为矩形和圆形两种,一般低俗风道多采用矩形,而高速风道多用圆形。 5 冷热源局部 为了保证空调系统具有加温和冷却能力,必须具备冷源和热源两局部。冷源有自然冷源和人工冷源两种。

42、自然冷源指深井水。人工冷源有空气膨胀制冷和液体汽化制冷两种。 热源也有自然和人工两种。自然热源指地热和太阳能。人工热源是指用煤、石油、煤气当做燃料的锅炉所产生的蒸汽和热水,目前应用的最广泛。按照空气处理设备的设置情况,空调系统可分为集中系统、半集中系统和全分散系统。 如以下列图是一个典型的集中式空调系统 图2-9 典型的集中式空调系统集中系统的所有空气处理设备包括风机、冷却器、加热器、加湿器、过滤器等都设在一个集中的空调机房内。其特点是,经济中设备处理后的空气,用风道分送到个空调房间,因而,系统便于集中管理、维护。此外,没写空气处理的质量,如温度、湿度精度和干净度等也可以送达较高的水平。在半集

43、中空调系统中,出了集中空调机房外,还设有分散在被调节房间的二次设备又称为末端装置。变风量系统、诱导器系统以及风机盘系统均属于半集中空调系统。全分散系统也呈局部空调机组。这种机组通常把冷、热源和空气处理、输送设备风机集中设置在一个箱体内,形成一个紧凑的空调系统。通常的窗式空调器及柜式、壁挂式分体空调器均属于此类机组。他不需要集中的机房,安装方便,使用灵活。可以直接将此机组放在要求空调的房间内进展空调,也可以放在相邻的房间用很短的风道与该房间项链。一般来说,这类系统可以满足不同房间的不同送风要求,使用灵活,移动方便,单装置的总功率必然较大。2 第3章 中央空调控制系统的设计3.1中央空调控制系统的

44、方案及要求空调系统控制的主要对象是:空气温度及相对湿度。以下列图为空气热湿处理系统框图: 图3-1 空气热湿处理系统3.1.1 空气温度控制 1.一般空气的温度调节有以下几种方式 1夏季制冷A采用喷水室喷冷水冷却空气的温度调节 B.采用水冷式冷却器冷却空气的温度调节 (2) 冬季加热 A. 热水加热器的加热量调节 B.蒸汽加热器的加热量调节 各种温度控制方式都有其特点,针对不同工程实际情况,要分析后采用适宜的温度控制方案。由于温度控制分为夏季冷却和冬季的加热两种情况,其控制方式也会有所不同。2 .空气温度控制方案 在空调系统中,需要送风温度进展控制与调节,送风温度通过温度传感器得到与温度相关的

45、模拟量输入到PLC,这样,PLC对送风温度的控制形成了一个闭环系统,使得控制变得更加准确。温度控制有冬夏两种控制模式,夏季采用冷冻水降温、冬季采用蒸汽加热的方式来控制送风温度,两种模式用转换开关I0.4来手动控制。I0.4为1状态,则为夏季控制模式,I0.4为0则为冬季控制模式。 温度传感器检测送风管内的送风温度,将检测值送与给定值22进展对比,假设检测值与给定值相等则冷却水/蒸汽的阀门开度保持不变。假设检测值大于给定值,夏季控制模式时加大冷却水的阀门开度,冬季控制模式时减小加热蒸汽的阀门开度,使温度恢复到设定值。假设检测值小于给定值,在夏季控制模式时减小冷却水的阀门开度,冬季控制模式时加大加

46、热蒸汽的阀门开度,使温度恢复到设定值。 其控制图如图:图3-2 PID温度控制闭环负反响3.1.2 湿度控制 在空调系统中,需要对送风湿度进展控制与调节,送风湿度通过湿度传感器得到与湿度相关的模拟量输入到PLC。这样,PLC对送风湿度的控制形成了一个闭环系统,使得控制变得更加准确。送风管内的湿度传感器检测送风湿度,将检测值与给定值进展对比,假设检测值与给定值相等,则加湿阀的开度保持不变,假设检测值大于给定值,通过PI控制关小加湿阀的开度,假设检测值小于给定值,则通过PI运算加大加湿阀的开度,使送风湿度满足要求。湿度控制在85。3.1.3送风压力控制 在空调系统中,需要对送风机的转速进展有效控制

47、与调节,从而控制送风压力。送风压力通过压力变送器得到与压力相关的模拟量输入到PLC,PLC通过变频器来控制送风机的转速。这样, PLC对送风压力的控制形成了一个闭环系统,使得控制变得更加准确。送风管尾端的压力传感器检测送风压力,将检测值与给定值进展对比,假设检测值与给定值相等则保持送风机的转速,假设检测值大于给定值则通过变频器减小送风机的转速,假设检测值小于给定值则通过变频器加大送风机的转速,从而使送风压力满足系统的要求。 3.1.4 新风回风比例控制按下中央空调控制系统的启动按钮和回风机的启动按钮,则中央空调系统就会按照设定的方式自动运行,监测送风机、回风机、过滤网有无故障报警,假设有,则停

48、顿整个系统,假设无则按设定值开启新风回风阀门的开度,调用子程序温湿度控制系统、送风压力控制系统进展温湿度调节和送风压力调节。而一旦按下系统停顿按钮,则中央空调系统就会停顿工作。本次设计的系统要求新风回风比为1:4,通过控制新风回风阀的开度来实现,新风阀开度保持在20%,回风阀开度保持在80%。新回风阀的开度0100%对应420mA,则新风阀开度20%对应3.2mA,转换成数字量对应为11520。回风阀开度80%对应16.8mA,转换成数字量对应为26880。将新风阀开度20%对应的数字量送到PLC的模拟量输出口AQW0控制新风阀的开度,将回风阀开度80%对应的数字量送到PLC的模拟量输出口AQ

49、W2控制回风阀的开度。3.2 PID算法和变频器的原理介绍及检测元件的选型 3.2.1 PID算法在闭环控制系统中广泛应用PID控制即比例一积分一微分控制。PID控制器调节回路输出。为使系统到达稳定状态,应让偏差e趋于零。偏差e是给定值SP和过程变量PV的差。回路的输出变量Ct是时间t的函数,见式5-1。它可以看作是比例项、积分项、微分项三项之和。 3-1式中 Ct PID回路的输出,是时间函数; KC PID回路的增益; e PID回路的偏差;M0 PID回路输出的初始值。数字计算机处理这个函数关系式,必须将连续函数离散化,对偏差周期采样后,计算输出值。式5-2是式5-1的离散形式。 3-2

50、式中 Mn 在第n次采样时刻PID回路输出的计算值; KC PID回路增益; en 在第n次采样时刻的偏差值; enl 在第n-1次采样时刻的偏差值偏差前值; KI 积分项的系数; M0 PID回路输出的初值; KD 微分项的系数。式5-2中,积分项是包括从第1个采样周期到当前采样周期的所有误差。计算中没有必要保存所有采样周期的误差项。只需保存积分项前值Mn即可。 3-3式中 MX 积分项前值在第n-1次采样时刻的积分项; MPn 第n次采样时刻的比例项; MIn 第n次采样时刻的积分项; MDn 第n次采样时刻的微分项。1比例项比例项MPn是增益KC和偏差e的乘积。增益KC决定输出对偏差的灵

51、敏度。增益为正的回路为正作用回路,反之为反作用回路。选择正、反作用回路的目的是使系统处于负反响控制。 3-4式中 SPn 第n次采样时刻的给定值; PVn 第n次采样时刻的过程变量值。2积分项积分项MIn与偏差的和成正比。 3-5式中 TS 采样周期: TI 积分时间常数。积分项前值MX是第n次采样周期前所有积分项之和。在每次计算出MIn之后,都要用MIn去更新MX 。第一次计算时MX的初值被设置为M0初值。采样周期TS是重新计算输出的时间间隔,而积分时间常数TI 控制积分项在整个输出结果中影响的程度。3微分项微分项MDn与偏差的变化成正比。 3-6 为了防止给定值变化的微分作用而引起的跳变,

52、可设定给定值不变SPn=SPn-1,那么 3-7式中 TD 微分时间常数; SPn-1 第n-1次采样时刻的给定值; PVn-1第n-1次采样时刻的过程变量值。用计算机处理上述三项的控制算式,即得到如下的计算公式: 3-87 3.2.2变频器调速原理及变频器的选型 一 变频器的 根本原理及特点变频调速是通过改变电机定子绕组供电的频率来到达调速的目的。常用三相交流异步电动机的构造为图1所示。定子由铁心及绕组构成,转子绕组做成笼型见图2,俗称鼠笼型电动机。当在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电

53、流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。电机磁场的转速称为同步转速,用N表示N=60f/p(r/min) 1式中:f三相交流电源频率,一般为50Hz;p磁极对数。当p=1时,N=3000r/min;p=2时,N=1500r/min。可见磁极对数p越多,转速N越慢。转子的实际转速n比磁场的同步转速N要慢一点,所以称为异步电机,这个差异用转差率s表示:s=n1n/n1100% 2当加上电源转子尚未转动瞬间,n=0,这时s=1;起动后的极端情况n=N,则s=0,即s在01之间变化。一般异步电机在额定负载下的s=16%。综合式1和式2可以得出n=60f1s/p 3图1 三相异步电动机构造

54、示意图1机座;2定子铁心;3定子绕组;4转子铁心;5转子绕组图2笼型电动机的转子绕组1铜环;2铜条由式3可以看出,对于成品电机,其磁极对数p已经确定,转差率s变化不大,则电机的转速n与电源频率f成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而到达异步电机调速的目的。但是,为了保持在调速时电机的最大转矩不变,必须维持电机的磁通量恒定,因此定子的供电电压也要作相应调节。变频器就是在调整频率VariableFrequency的同时还要调整电压VariableVoltage,故简称VVVF装置。通过电工理论分析可知,转矩与磁通量最大值成正比,在转子参数值一定时,转矩与电源电压的平方成正比。

55、变频器的工作原理是把市电380V、50Hz通过整流器变成平滑直流,然后利用半导体器件GTO、GTR或IGBT组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制SPWM方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。上述的两次变换可简化为ACDCAC交直交变频方式。图3给出国产深圳华为变频器的原理图。图中各组成局部名称已经标出,DSP是微机编程器。利用变频器可以根据电机负载的变化实现自动、平滑的增速或减速, 根本保持异步电机固有特性转差率小的特点,具有效率高、范围宽、精度高且能无级变速的优点,这对于水泵,风机等设备是很适用的。我国应用的变频器

56、,国外产品以日本富士、三菱牌号较多,台湾普传产品也不少,国内有西普西安、艾伦上海、华为深圳、艾普斯天津等厂家的产品均在推广应用。变送器选型 表3-1 变送器范围压力变送器功能,作用方式范围PT101检测蒸汽主管出口压力04MPaPT201检测锅炉负压0-10mmH2O流量变送器FT301检测蒸汽流量孔板050吨/小时FT302检测锅炉给水流量孔板040吨/小时液位变送器LT301检测锅炉液位整个汽包 二 变频调速原理 变频调速系统的控制方式交流异步电动机的转速公式为 式中,f-定子供电频率Hz p-磁极对数 s-转差率 n-电动机转速r/min。 由公式可知,只要平滑地调节异步电动机的供电频率

57、f,就可以平滑地调节异步电动机的转速。 变频调速系统的控制方式 由电机学中的相关知识可知,异步电动机定子绕组的感应电动势E1的有效值为 式中,E1-气隙磁通在定子每相中感应电动势的有效值V; f1-定子频率Hz; N1-定子每相绕组串联的匝数; -与绕组有关的构造常数; -每级气隙磁通量Wb。由式可知,如果定子每相电动势的有效值E1不变,改变定子频率时会出现下面两种情况:如果f1大于电动机的额定频率,气隙磁通就会小于额定气隙磁通,结果是电动机的铁心没有得到充分利用,造成浪费。如果f1小于电动机的额定频率,气隙磁通就会大于额定气隙磁通 ,结果是电动机的铁心过热饱和,从而导致过大的励磁电流,使电动

58、机功率因数,效率下降,严重时会因绕组过热烧坏电动机。因此,要实现变频调速,且在不损害电动机的情况下充分利用电机铁心,应保持每级气隙磁通不变。基频以下调速。要保持不变,当频率f1从额定值向下调时,必须降低E1,使E1/f1=常数,即采用电动势与频率之比恒定的控制方式。但绕组中的感应电动势不易直接控制,当电动势的值较高时,可以认为电机输入电压V1E1,则可通过控制V1到达控制E1的目的,即 V1/f1=常数 极频以下调速时,如果电动机在不同转速下都具有额定电流,则电动机都能在温升允许的条件下长期运行,这时转矩 根本上随磁通变化。由于在基频以下调速时候磁通恒定,所以转矩恒定,其调速属于恒转矩调速。基频以上调速。在基频以上调速时,频率可以从向上增加,但电压V1却不能超过额定电压。这将使磁通随频率的升高而降低,相当于直流电机弱磁升速的情况。在基频以上调速时,由于电压V1=不变,当频率升高时,同步转速随之升高,气隙磁动势减弱,最大转矩减小,输出功率 根本不变。所以,基频以上变频调速属于弱磁恒功率调速。 PWM控制技术PWM控制技术是变频技术的核心技术之一,也是目前应用较多的一种技术。PWM控制方式

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!