运放参数说明(加选型和例子)
《运放参数说明(加选型和例子)》由会员分享,可在线阅读,更多相关《运放参数说明(加选型和例子)(25页珍藏版)》请在装配图网上搜索。
1、1、输入失调电压(Input Offset Voltage) VOS若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。 此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。其值为数mV,该值越小越好,较大时增益受到限制。输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入 端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对 称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特 别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中 双极型工艺(即上述的标准硅工艺)的输入失调电压在110mV之间;采
2、用场 效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一 般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处 理。所以对于精密运放是一个极为重要的指标。本文来自:DZ3W.COM原文网址:2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数TC VOS一般为数uV/.C输入失调电压的温度漂移(简称输入失调电压温漂)a VIO:输入失调电压的温 度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这 个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由 于温度变化造成的漂移大小。一般
3、运放的输入失调电压温漂在1020. V/C之 间,精密运放的输入失调电压温漂小于土川V/C。本文来自:DZ3W.COM原文网址:3、输入偏置电流(Input Bias Current) IBIAS运放两输入端流进或流出直流电流的平均值。对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型 运放,该值是栅极漏电流,值很小,但受温度影响较大。输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输 入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入 阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双 极型工艺(即上述的标准硅工
4、艺)的输入偏置电流在10nA1|j A之间;采用场 效应管做输入级的,输入偏置电流一般低于1nA。本文来自:DZ3W.COM原文网址:4、输入失调电流(Input Offset Current) IOS是运放两输入端输入偏置电流之差的绝对值。输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输 入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性 越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是 精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到 十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别
5、是 运放外部采用较大的电阻(例如10k或更大时),输入失调电流对精度的影响 可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点 偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。本文来自:DZ3W.COM原文网址:5、输入电阻Rin运放两输入端间的差动输入电阻。该值由微小交流信号定义,实际影响很小,可忽略不计。而运放输入端的共模输入电阻是Rin的10-1000倍,也可忽略不计。6、电压增益AV也称差动电压增益。理想运放的AV为无限大,实际运放一般也约数百dB。差模开环直流电压增益:差模开环直流电压增益定义为当运放工作于线性区时, 运放输出电压与差模电压输入电压的比
6、值。由于差模开环直流电压增益很大,大 多数运放的差模开环直流电压增益一般在数万倍或更多,用数值直接表示不方便 比较,所以一般采用分贝方式记录和比较。一般运放的差模开环直流电压增益在 80120dB之间。实际运放的差模开环电压增益是频率的函数,为了便于比较, 一般采用差模开环直流电压增益。本文来自:DZ3W.COM原文网址: 7、最大输出电压VOM饱和前的输出电压称为最大输出电压,理想运放可达到满幅度(rail to rail) 输出。8、共模输入电压范围 CMVR (Input Common-Mode Voltage Range) VICM表示运放两输入端与地间能加的共模电压的范围。VICM等
7、于正、负电源电压时为理想特性,满幅度输出运放接近这种特性。9、 共模信号抑制比(Common Mode Rejection Ratio) CMRR在运放两输入端与地间加相同信号时,输入、输出间的增益称为共模电压增 益AVC,则CMRR定义为:CMRR = AV/AVC共模抑制比:共模抑制比定义为当运放工作于线性区时,运放差模增益与共模增 益的比值。共模抑制比是一个极为重要的指标,它能够抑制差模输入二二模干扰信 号。由于共模抑制比很大,大多数运放的共模抑制比一般在数万倍或更多,用数 值直接表示不方便比较,所以一般采用分贝方式记录和比较。一般运放的共模抑 制比在80120dB之间。本文来自:DZ3
8、W.COM原文网址:10、电源电压抑制比(Supply Voltage Rejection Ratio) SVRR正、负电源电压变化时,该变化量出现在运放的输出中,并将其换算为运放 输入的值。若电源变化 Vs时等效输入换算电压为 Vin,则SVRR定义为:SVRR = Vs/A Vin电源电压抑制比:电源电压抑制比定义为当运放工作于线性区时,运放输入失调 电压随电源电压的变化比值。电源电压抑制比反映了电源变化对运放输出的影 响。目前电源电压抑制比只能做到80dB左右。所以用作直流信号处理或是小信 号处理模拟放大时,运放的电源需要作认真细致的处理。当然,共模抑制比高的 运放,能够补偿一部分电源电
9、压抑制比,另外在使用双电源供电时,正负电源的 电源电压抑制比可能不相同。11、消耗电流ICC该电流是指运放电源端流通的电流,它随外加电路及电源电压而有所变化。12、转换速率(Slew Rate) SR表示运放能跟踪输入信号变化快慢的程度,单位是V/us。转换速率(也称为压摆率)SR :运放转换速率定义为,运放接成闭环条件下,将 一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输 出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回 路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个 很重要的指标,对于一般运放转换速率SR10V/p,。目
10、前的高速运放最高转换速率SR达到6000V/P s。这用于大信号 处理中运放选型。本文来自:DZ3W.COM原文网址:13、增益带宽乘积(Gain Bandwidth Product) GB表示运放电压增益-频率特性的参数,单位是MHz。单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一 个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降 3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是 一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与 该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号
11、需 要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处 理中运放选型。本文来自:DZ3W.COM原文网址:运算放大器的专业术语1 bandwidth带宽:电压增益变成低频时1/(2 )的频率值2共模抑制比: common mode rejection ratio3谐波失真:harmonic distortion谐波电压的均方根值的和/基波电压均方根 值4输入偏置电流:input bias current两输入端电流的平均值5输入电压范围:input voltage range共模电压输入范围 运放正常工作时输入 端上的电压; 6输入阻抗:input impendence R
12、s Rl指定时输入电压与输入电流的比值7输入失调电流input offset current运放输出0时,流入两输入端电流的差 值;8输入失调电压input offset voltage为了让输出为0,通过两个等值电阻加 到两输入端的电压值9输入电阻:input resistance:任意输入端接地,输入电压的变化值/输入电流 的变化值10大信号电压增益:large-signal voltage gain输出电压摆幅/输入电压11输出阻抗:output impendence Rs Rl指定时输出电压与输出电流的比值12输出电阻:output resistance输出电压为0,从输出端看进去的小
13、信号电阻13输出电压摆幅:output voltage swing运放输出端能正常输入的电压峰值;14 失调电压温漂 offset voltage temperature drift15供电电源抑制比:power supply rejection输入失调电流的变化值/电源的 变化值16建立时间settling time从开始输入到输出达到稳定的时间;17摆率:slew rate输入端加上一个大幅值的阶跃信号的时候输出端电压的变 化率18 电源电流 supply current19瞬态响应transient response小信号阶跃响应20单位增益带宽unity gain bandwirth开
14、环增益为1时的频率值21电压增益voltage gain指rs rl固定时输出电压/输入电压2.运放的主要参数 本节以中国集成电路大全集成运算放大器为主要参考资料,同时参考了其它 相关资料。集成运放的参数较多,其中主要参数分为直流指标和交流指标。其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电 压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入 失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出 峰-峰值电压、最大共模输入电压、最大差模输入电压。主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时 间、等效输入噪声
15、电压、差模输入阻抗、共模输入阻抗、输出阻抗。2. 1直流指标输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入 端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对 称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特 别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中 双极型工艺(即上述的标准硅工艺)的输入失调电压在110mV之间;采用场 效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一 般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处 理。所以对于精密运放是一个极为重要
16、的指标。输入失调电压的温度漂移(简称输入失调电压温漂)a VIO:输入失调电压的温 度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这 个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由 于温度变化造成的漂移大小。一般运放的输入失调电压温漂在1020 V/C之 间,精密运放的输入失调电压温漂小于土川V/C。输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输 入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入 阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双 极型工艺(即上述的标准硅工艺)的输
17、入偏置电流在10nA单A之间;采用场 效应管做输入级的,输入偏置电流一般低于1nA。输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输 入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性 越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是 精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到 十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是 运放外部采用较大的电阻(例如10k或更大时),输入失调电流对精度的影响 可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点 偏移越小,
18、越容易处理。所以对于精密运放是一个极为重要的指标。输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移 定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数 实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度 变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且 是在用以直流信号处理或是小信号处理时才需要关注。差模开环直流电压增益:差模开环直流电压增益定义为当运放工作于线性区时, 运放输出电压与差模电压输入电压的比值。由于差模开环直流电压增益很大,大 多数运放的差模开环直流电压增益一般在数万倍或更多,用数值直接表示不方便
19、 比较,所以一般采用分贝方式记录和比较。一般运放的差模开环直流电压增益在 80120dB之间。实际运放的差模开环电压增益是频率的函数,为了便于比较, 一般采用差模开环直流电压增益。共模抑制比:共模抑制比定义为当运放工作于线性区时,运放差模增益与共模增 益的比值。共模抑制比是一个极为重要的指标,它能够抑制差模输入二二模干扰信 号。由于共模抑制比很大,大多数运放的共模抑制比一般在数万倍或更多,用数 值直接表示不方便比较,所以一般采用分贝方式记录和比较。一般运放的共模抑 制比在80120dB之间。电源电压抑制比:电源电压抑制比定义为当运放工作于线性区时,运放输入失调 电压随电源电压的变化比值。电源电
20、压抑制比反映了电源变化对运放输出的影 响。目前电源电压抑制比只能做到80dB左右。所以用作直流信号处理或是小信 号处理模拟放大时,运放的电源需要作认真细致的处理。当然,共模抑制比高的 运放,能够补偿一部分电源电压抑制比,另外在使用双电源供电时,正负电源的 电源电压抑制比可能不相同。输出峰-峰值电压:输出峰-峰值电压定义为,当运放工作于线性区时,在指定的 负载下,运放在当前大电源电压供电时,运放能够输出的最大电压幅度。除低压 运放外,一般运放的输出输出峰-峰值电压大于10V。一般运放的输出峰-峰值 电压不能达到电源电压,这是由于输出级设计造成的,现代部分低压运放的输出 级做了特殊处理,使得在10
21、k负载时,输出峰-峰值电压接近到电源电压的50mV 以内,所以称为满幅输出运放,又称为轨到轨(raid-to-raid)运放。需要注意 的是,运放的输出峰-峰值电压与负载有关,负载不同,输出峰-峰值电压也不同; 运放的正负输出电压摆幅不一定相同。对于实际应用,输出峰-峰值电压越接近 电源电压越好,这样可以简化电源设计。但是现在的满幅输出运放只能工作在低 压,而且成本较高。最大共模输入电压:最大共模输入电压定义为,当运放工作于线性区时,在运放 的共模抑制比特性显著变坏时的共模输入电压。一般定义为当共模抑制比下降 6dB是所对应的共模输入电压作为最大共模输入电压。最大共模输入电压限制了 输入信号中
22、的最大共模输入电压范围,在有干扰的情况下,需要在电路设计中注 意这个问题。最大差模输入电压:最大差模输入电压定义为,运放两输入端允许加的最大输入 电压差。当运放两输入端允许加的输入电压差超过最大差模输入电压时,可能造 成运放输入级损坏。2. 2主要交流指标开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运 放的输出端测得开环电压增益从运放的直流增益下降3db (或是相当于运放的直 流增益的0.707)所对应的信号频率。这用于很小信号处理。单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一 个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益
23、下降 3db (或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是 一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与 该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需 要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处 理中运放选型。转换速率(也称为压摆率)SR :运放转换速率定义为,运放接成闭环条件下,将 一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输 出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回 路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理
24、是一个 很重要的指标,对于一般运放转换速率SR10V/p,。目前的高速运放最高转换速率SR达到6000V/m s。这用于大信号 处理中运放选型。全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍 条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全 功率带宽二转换速率/2n Vop(Vop是运放的峰值输出幅度)。全功率带宽是一个 很重要的指标,用于大信号处理中运放选型。建立时间:建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下, 将一个阶跃大信号输入到运放的输入端,使运放输出由
25、0增加到某一给定值的所 需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动, 这个抖动时间称为稳定时间。稳定时间+上升时间二建立时间。对于不同的输出精 度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的 指标,用于大信号处理中运放选型。等效输入噪声电压:等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放, 在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端 时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通 运放的输入噪声电压有效值约1020m V。差模输入阻抗(也称为输入阻抗):差模输入阻抗定义为,运放工作在线性
26、区时, 两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输 入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采 用双极型品体管做输入级的运放的输入电阻不大于10兆欧;场效应管做输入级 的运放的输入电阻一般大于109欧。共模输入阻抗:共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端 输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低 频情况下,它表现为共模电阻。通常,运放的共模输入阻抗比差模输入阻抗高很 多,典型值在108欧以上。输出阻抗:输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压, 这个电压变化量与对应的电流
27、变化量的比值。在低频时仅指运放的输出电阻。这 个参数在开环测试本文来自:DZ3W.COM原文网址: 2.html3.运算放大器的对信号放大的影响和运放的选型由于运算放大器芯片型号众多,即使按照上述办法分类,种类也不少,细分 就更多了,这对于初学者就难免犯晕。本节力求通过几个实际电路的分析,明确 运算放大器的对信号放大的影响,最后总结如何选择运放。CA3140的主要指标为:项目单位参数输入失调电压M V5000输入失调电压温度漂移M V/C8输入失调电流pA0.5输入失调电流温度漂移pA/C0.0055000这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位参数输入失调电压造成的
28、误差M V5000输入失调电流造成的误差M V0.0045合计本项误差为M V输入信号200mV时的相对误差%2.5输入信号100mV时的相对误差%5输入信号25mV时的相对误差%20输入信号10mV时的相对误差%50输入信号1mV时的相对误差%500初步结论是:高阻运放的输入失调电流很小,它造成的误差远远不及输入失 调电压造成的误差,可以忽略;而输入失调电压造成的误差仍然不小,但是可以 在工作范围的中心温度处通过调零消除。这样可以计算出,025C的温度漂移造成的影响如下:项目单位 参数输入失调电压温漂造成的误差M V 200输入失调电流温漂造成的误差M V0.001合计本项误差为M V 20
29、0输入信号200mV时的相对误差%0.1输入信号100mV时的相对误差%0.2输入信号25mV时的相对误差%0.8输入信号10mV时的相对误差%2输入信号 1mV时的相对误差%20初步结论是:高阻运放的输入失调电流温漂很小,它造成的误差远远不及输 入失调电压温漂造成的误差,可以忽略;在使用高阻运放时,由于失调电压温度 系数较大,造成的影响较大,使得它不适合放大100mV以下直流信号。若以上两 项误差合计将更大。由于高阻运放的输入失调电流只有通用运放的千分之一,因此若其它条件不 变,仅仅运放的外围电阻等比例增加一倍,几乎不会造成可明显察觉的误差。HA5159的主要指标为:项目单位 参数输入失调电
30、压p V10000输入失调电压温度漂移p V/C 20输入失调电流nA6输入失调电流温度漂移pA/C60这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位参数输入失调电压造成的误差p V10000输入失调电流造成的误差p V54.5合计本项误差为p V10054输入信号200mV时的相对误差%5.0输入信号100mV时的相对误差%10.1输入信号25mV时的相对误差%40.2输入信号10mV时的相对误差%100.5输入信号 1mV时的相对误差%1005初步结论是:输入失调电压和输入失调电流造成的误差较大,但是可以在工 作范围的中心温度处通过调零消除。其中输入失调电压造成的误差远
31、远超过输入 失调电流造成的误差。这样可以计算出,025C的温度漂移造成的影响如下:项目单位 参数输入失调电压温漂造成的误差M V500输入失调电流温漂造成的误差M V13.6合计本项误差为M V513输入信号200mV时的相对误差%0.3输入信号100mV时的相对误差%0.51输入信号25mV时的相对误差%2.05输入信号10mV时的相对误差%5.14输入信号1mV时的相对误差%51.4初步结论是:在使用高速运放时,由于失调电压温度系数较大,造成的影响 较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:这样可
32、以计算出,在25C的温度下的失调误差造成的影响如下:项目单位参数输入失调电压造成的误差M V10000输入失调电流造成的误差M V109合计本项误差为M V10109这样可以计算出,025C的温度漂移造成的影响如下:项目单位参数输入失调电压温漂造成的误差M V500输入失调电流温漂造成的误差M V27.3527合计本项误差为初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输 入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差 随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调 电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入
33、失调电压 和输入失调电压温漂造成误差,所以这时需要考虑采用高阻运放或是低失调运 放。低功耗运放LF441的主要指标为:项目单位 参数输入失调电压M V7500输入失调电压温度漂移M V/C10输入失调电流nA1.5输入失调电流温度漂移pA/C15这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位 参数输入失调电压造成的误差M V 7500输入失调电流造成的误差M V 13.6合计本项误差为M V 7513输入信号200mV时的相对误差%3.8输入信号100mV时的相对误差%7.5输入信号25mV时的相对误差%30.1输入信号10mV时的相对误差%75.1输入信号 1mV时的相对
34、误差%751初步结论是:输入失调电压和输入失调电流造成的误差较大,但是可以在工 作范围的中心温度处通过调零消除。其中输入失调电压造成的误差远远超过输入 失调电流造成的误差。这样可以计算出,025C的温度漂移造成的影响如下:项目单位参数输入失调电压温漂造成的误差MV250输入失调电流温漂造成的误差MV3.4合计本项误差为MV253输入信号200mV时的相对误差%0.1输入信号100mV时的相对误差%0.25输入信号25mV时的相对误差%1.01输入信号10mV时的相对误差%2.53输入信号1mV时的相对误差%25.3初步结论是:在使用高速运放时,由于失调电压温度系数较大,造成的影响 较大,使得它
35、不适合放大100mV以下直流信号。若以上两项误差合计将更大。若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位 参数输入失调电压造成的误差M V7500输入失调电流造成的误差M V27.3合计本项误差为M V7527这样可以计算出,025C的温度漂移造成的影响如下:项目单位参数输入失调电压温漂造成的误差 M V250输入失调电流温漂造成的误差 M V6.8合计本项误差为M V 257初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输 入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的
36、误差 随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调 电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压 和输入失调电压温漂造成误差,所以这时需要考虑采用高阻运放或是低失调运 放。精密运放OP07D的主要指标为:项目单位 参数输入失调电压M V85输入失调电压温度漂移M V/C0.7输入失调电流nA1.6输入失调电流温度漂移pA/C12这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位 参数输入失调电压造成的误差M V85输入失调电流造成的误差M V14.5合计本项误差为M V 99.5输入信号200mV时的相对误差%0.05输入信号
37、100mV时的相对误差%0.1输入信号25mV时的相对误差%0.4输入信号10mV时的相对误差%1.0输入信号 1mV时的相对误差% 10初步结论是:精密运放输入失调电压和输入失调电流造成的误差不太大,而 且可以在工作范围的中心温度处通过调零消除。其中输入失调电压造成的误差大 于输入失调电流造成的误差。这样可以计算出,025C的温度漂移造成的影响如下:项目单位 参数输入失调电压温漂造成的误差M V17.5输入失调电流温漂造成的误差M V2.7合计本项误差为M V20.2输入信号200mV时的相对误差%0.01输入信号100mV时的相对误差%0.02输入信号25mV时的相对误差%0.08输入信号
38、10mV时的相对误差%0.2输入信号1mV时的相对误差%2.0初步结论是:在使用精密运放时,由于失调电压温度系数不大,造成的影响不大,使得它能够放大10mV以上的直流信号。若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位参数输入失调电压造成的误差M V85输入失调电流造成的误差M V29.1合计本项误差为M V114.1这样可以计算出,025C的温度漂移造成的影响如下:项目单位 参数输入失调电压温漂造成的误差 M V17.5输入失调电流温漂造成的误差 M V5.5合计本项误差为M V 23初步结论:仅仅运放的外围
39、电阻等比例增加一倍,运放的输入失调电压和输 入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差 随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调 电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压 和输入失调电压温漂造成误差,所以这时需要考虑采用增加运放输入电阻或是降 低运放输入失调电流。高精度运放ICL7650的主要指标为:项目单位 参数输入失调电压M V0.7输入失调电压温度漂移M V/C0.02输入失调电流nA0.02输入失调电流温度漂移pA/C0.2这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位参数输入失
40、调电压造成的误差M V0.7输入失调电流造成的误差M V0.2合计本项误差为MV0.9输入信号200mV时的相对误差%0.0004输入信号100mV时的相对误差%0.0009输入信号25mV时的相对误差%0.0035输入信号10mV时的相对误差%0.0088输入信号1mV时的相对误差%0.088初步结论是:高精密运放输入失调电压和输入失调电流造成的误差很小可以 不调零。其中输入失调电压造成的误差大于输入失调电流造成的误差。这样可以计算出,025C的温度漂移造成的影响如下:项目单位参数输入失调电压温漂造成的误差MV0.5输入失调电流温漂造成的误差MV0.05合计本项误差为MV0.55输入信号20
41、0mV时的相对误差%0.0003输入信号100mV时的相对误差%0.0005输入信号25mV时的相对误差%0.0022输入信号10mV时的相对误差%0.0055输入信号1mV时的相对误差%0.055初步结论是:在使用高精密运放时,由于失调电压温度系数很小,几乎没有 造成影响,使得它能够放大1mV以以下的直流信号。若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位参数输入失调电压造成的误差p V0.7输入失调电流造成的误差p V0.4合计本项误差为p V1.1这样可以计算出,025C的温度漂移造成的影响如下:项目单位
42、参数输入失调电压温漂造成的误差0.5输入失调电流温漂造成的误差0.090.59合计本项误差为初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输 入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差 随之增加了一倍,对于高阻信号源或是运放外围的电阻较高时,输入失调电流和 输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压和输入 失调电压温漂造成误差。由于这些误差太小,不调零时的总误差不过2m V,所 以忽略。3. 1例一,运算放大器的对直流小信号放大的影响这里的直流小信号指的是信号幅度低于200mV的直流信号。为了便于介绍,这里采用标准差分电路。这
43、里假定同相输入端的输入电阻为R1, 同相输入端的接地电阻为日3,反相输入端的输入电阻为日2,反相输入端的反馈 电阻为R4。运放采用双电源供电。假定R1=R2=10k欧姆,R1=R2=100k欧姆,这 样放大电路的输入电阻=10k欧姆,运放的同相端和反相端的等效输入电阻=10k 欧姆并联100k欧姆9.09 k欧姆,输入增益Av=10。这里假定工作温度范围是050C,所以假定调零温度为25C,这样实际有效变 化范围只有25C,可以减小一半的变化范围。还假定输入信号来自于一个无内阻的信号源,为了突出运放的影响,这里暂时不 考虑线路噪声、电阻噪声和电源变动等的影响。这里选用通用运放LM324、高阻运
44、放CA3140、高速运放HA5159、低功耗运放LF441、 精密运放OP07D、高精度运放ICL7650等6种运放来比较运算放大器的对直流小 信号放大的影响。由于不同厂家的同种运放的指标不尽相同,这里运放的指标来 自于中南工业大学出版社出版的世界最新集成运算放大器互换手册,所选的 集成运算放大器指标如下:LM324的主要指标为:项目单位参数输入失调电压M V9000输入失调电压温度漂移M V/C7输入失调电流nA7输入失调电流温度漂移pA/C10这样可以计算出,在25C的温度下的失调误差造成的影响如下:项目单位 参数输入失调电压造成的误差M V 9000输入失调电流造成的误差M V 63.6
45、合计本项误差为M V 9063输入信号200mV时的相对误差%4.5输入信号100mV时的相对误差%9.1输入信号25mV时的相对误差%36.3输入信号10mV时的相对误差%90.6输入信号 1mV时的相对误差%906初步结论是:输入失调电压和输入失调电流造成的误差较大,但是可以在工 作范围的中心温度处通过调零消除。其中输入失调电压造成的误差远远超过输入 失调电流造成的误差。这样可以计算出,025C的温度漂移造成的影响如下:项目单位 参数输入失调电压温漂造成的误差M V175输入失调电流温漂造成的误差M V2.3合计本项误差为M V 177.3输入信号200mV时的相对误差%0.09输入信号1
46、00mV时的相对误差%0.18输入信号25mV时的相对误差%0.71输入信号10mV时的相对误差%1.77输入信号 1mV时的相对误差%17.7初步结论是:在使用LM324时,由于输入失调电压温度系数较大,造成的影 响较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:这样可以计算出,在25C的温度下的输入失调误差造成的影响如下:项目单位参数输入失调电压造成的误差M V9000输入失调电流造成的误差M V127.3合计本项误差为M V9127这样可以计算出,025C的温度漂移造成的影响如下:项目单位参数输入失调
47、电压温漂造成的误差M V175输入失调电流温漂造成的误差M V4.5合计本项误差为M V179.5初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输 入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差 随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调 电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压 和输入失调电压温漂造成误差,所以这时需要考虑采用高阻运放或是低失调运放 本文来自:DZ3W.COM原文网址: 3.html3. 1例二,运算放大器的外部电路对直流小信号放大的影响这里的电路条件与例一相同。本例主要讨论共
48、模抑制比、电源变动抑制、外部电阻不对称等的影响。这里仍然选用精密运放OP07D。由于不同厂家的同种运放的指标不尽相同,这里 运放的指标来自于中南工业大学出版社出版的世界最新集成运算放大器互换于 册,所选的集成运算放大器指标如下:OP07D的主要指标为:项目单位参数电源变动抑制.V/V10输入偏置电流nA3共模抑制比db106由电源变动抑制=10. V/V可以得知,在其它条件不变的情况下,电源电压变化 幅度达到1V时造成输入失调电压增加10. V。可见,在低于10mV的微信号的放 大中,对精度至少会造成0.1%的影响。共模抑制比由106db换算为2X105。在其它条件不变的情况下,输入信号 =二
49、模电压幅度达到1V时造成输入电压增加5. V。可见,在低于10mV的微信号 的放大中,对精度至少会造成0.05%的影响。这里假定同相输入端的输入电阻为R1,同相输入端的接地电阻为日3,反相输入 端的输入电阻为日2,反相输入端的反馈电阻为R4。运放采用双电源供电。假定 R1=10k欧姆,R2=30k欧姆,R3=100k欧姆,R4=300k欧姆,这样放大电路的增益 Av=10,运放的同相端的等效输入电阻=10k欧姆并联100k欧姆9.09 k欧姆, 反相端的等效输入电阻=30k欧姆并联300k欧姆27.27 k欧姆。这样,由于运 放输入偏置电流造成的影响为: 运放的同相端由于输入偏置电流产生的电压
50、=3nAX9.09 k欧姆=27.27. V运放的反相端由于输入偏置电流产生的电压=3nAX27.27k欧姆=81.81. V 这样,对于输入端造成的误差等于输入偏置电流分别在运放的同相端与反相端等 效电阻上的电压的差值(54.54MV)。可见,当运放的同相端与反相端等效电阻 不同时,输入偏置电流将产生一定的影响,其中对于高阻运放的影响较小(它的 输入偏置电流比普通运放小3个数量级),而对非高阻运放影响较大,特别是在 低于10mV的微信号的放大中,对精度至少会造成0.2%的影响。本例总结:。 对于同一个直流小信号放大时,通用运放、高阻运放、高速运放、低功耗运 的性能接近,可以互换,但是从成本和采购角度来说,建议选用通用运放;但是 若信号源内阻较大(例如大于10K欧姆)时,采用高阻运放能够减小运放输入失 调造成的误差。 若不做精度要求时,选用通用运放或是高阻运放。 通用运放或是高阻运放只能精密放大100mV以上直流信号。 若要求精密放大100mV以下信号时,需要选用精密运放甚至高精度运放;本例中没有考虑的影响精度的因素太多,实际条件下,精度会更低。本文来自:DZ3W.COM原文网址:
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。