2018高数下册讲义(新)

上传人:bei****lei 文档编号:128531065 上传时间:2022-08-01 格式:DOC 页数:175 大小:4.32MB
收藏 版权申诉 举报 下载
2018高数下册讲义(新)_第1页
第1页 / 共175页
2018高数下册讲义(新)_第2页
第2页 / 共175页
2018高数下册讲义(新)_第3页
第3页 / 共175页
资源描述:

《2018高数下册讲义(新)》由会员分享,可在线阅读,更多相关《2018高数下册讲义(新)(175页珍藏版)》请在装配图网上搜索。

1、目 录第七章 微分方程 1第八章 向量代数与空间解析几何24第九章 多元函数微分法及其应用56第十章 重积分94第十一章 曲线积分和曲面积分113第十二章 无穷级数143第七章 微分方程7. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1

2、 一曲线通过点(1, 2), 且在该曲线上任一点M(x, y)处的切线的斜率为2x, 求这曲线的方程. 解 设所求曲线的方程为y=y(x). 根据导数的几何意义, 可知未知函数y=y(x)应满足关系式(称为微分方程) . (1)此外, 未知函数y=y(x)还应满足下列条件: x=1时, y=2, 简记为y|x=1=2. (2)把(1)式两端积分, 得(称为微分方程的通解) , 即y=x2+C, (3)其中C是任意常数. 把条件“x=1时, y=2”代入(3)式, 得: 2=12+C, 由此定出C=1. 把C=1代入(3)式, 得所求曲线方程(称为微分方程满足条件y|x=1=2的解): y=x2

3、+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t秒时行驶了s米. 根据题意, 反映制动阶段列车运动规律的函数s=s(t)应满足关系式 . (4)此外, 未知函数s=s(t)还应满足下列条件: t=0时, s=0, . 简记为s|t=0=0, s|t=0=20. (5) 把(4)式两端积分一次, 得 ; (6)再积分一次, 得 s=-0.2t2 +C1t +C2, (7)这里C1, C2都是任意常数. 把条件v|t=0=20代入

4、(6)得: 20=C1; 把条件s|t=0=0代入(7)得0=C2. 把C1, C2的值代入(6)及(7)式得 v=-0.4t +20, (8) s=-0.2t2+20t. (9)在(8)式中令v=0, 得到列车从开始制动到完全停住所需的时间(s). 再把t=50代入(9), 得到列车在制动阶段行驶的路程s=-0.2502+2050=500(m). 几个概念: 微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程. 偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程. 微分方程的阶: 微分方程中所出

5、现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x3 y+x2 y-4xy=3x2 , y(4) -4y+10y-12y+5y=sin2x, y(n) +1=0, 一般n阶微分方程: F(x, y, y, , y(n) )=0. y(n)=f(x, y, y, , y(n-1) ) . 微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y=j(x)在区间I上有n阶连续导数, 如果在区间I上, Fx, j(x), j(x), , j(n) (x)=0, 那么函数y=j(x)就叫做微分方程F(x, y, y, , y(n) )=

6、0在区间I上的解. 通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解. 初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如 x=x0 时, y=y0 , y= y0 . 一般写成 , . 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题. 如求微分方程y=f(x, y)满足初始条件的解的问题, 记为 . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数x=C1cos kt+C2 sin kt是

7、微分方程 的解. 解 求所给函数的导数: , . 将及x的表达式代入所给方程, 得 -k2(C1cos kt+C2sin kt)+ k2(C1cos kt+C2sin kt)0. 这表明函数x=C1coskt+C2sinkt 满足方程, 因此所给函数是所给方程的解. 例4 已知函数x=C1coskt+C2sinkt(k0)是微分方程的通解, 求满足初始条件 x| t=0 =A, x| t=0 =0的特解. 解 由条件x| t=0 =A及x=C1 cos kt+C2 sin kt, 得 C1=A. 再由条件x| t=0 =0, 及x(t) =-kC1sin kt+kC2cos kt, 得 C2=

8、0. 把C1、C2的值代入x=C1cos kt+C2sin kt中, 得 x=Acos kt. 7. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y=2x的通解. 为此把方程两边积分, 得y=x2+C. 一般地, 方程y=f(x)的通解为(此处积分后不再加任意常数). 2. 求微分方程y=2xy2 的通解. 因为y是未知的, 所以积分无法进行, 方程两边直接积分不能求出通解. 为求通解可将方程变为, 两边积分, 得, 或,可以验证函数是原方程的通解. 一般地, 如果一阶微分方程y=j(x, y)能写成g(y)dy=f(x)dx形式, 则两边积分可得一个不含未知函数的导数的方程: G

9、(y)=F(x)+C, 由方程G(y)=F(x)+C所确定的隐函数就是原方程的通解. 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P(x, y)dx+Q(x, y)dy=0在这种方程中, 变量x与y 是对称的. 若把x看作自变量、y看作未知函数, 则当Q(x,y)0时, 有.若把y看作自变量、x看作未知函数, 则当P(x,y)0时, 有. 可分离变量的微分方程: 如果一个一阶微分方程能写成g(y)dy=f(x)dx (或写成y=j(x)y(y)的形式, 就是说, 能把微分方程写成一端只含y的函数和dy, 另一端只含x的函数和dx, 那么原方程就称为可分离变量的微分方程. 讨

10、论: 下列方程中哪些是可分离变量的微分方程?(1) y=2xy, 是. y-1dy=2xdx .(2)3x2+5x-y=0, 是. dy=(3x2+5x)dx.(3)(x2+y2)dx-xydy=0, 不是.(4)y=1+x+y2+xy2, 是. y=(1+x)(1+y2).(5)y=10x+y, 是. 10-ydy=10xdx. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g(y)dy =f(x)dx的形式; 第二步 两端积分:, 设积分后得G(y)=F(x)+C; 第三步 求出由G(y)=F(x)+C所确定的隐函数y=F(x)或x=Y(y)G(y)=F(x)+C , y=F

11、 (x)或x=Y(y)都是方程的通解, 其中G(y)=F(x)+C称为隐式(通)解. 例1 求微分方程的通解. 解 此方程为可分离变量方程, 分离变量后得,两边积分得,即 ln|y|=x2+C1, 从而. 因为仍是任意常数, 把它记作C, 便得所给方程的通解. 例2 求微分方程的通解. 解 方程可化为,分离变量得,两边积分得,即. 于是原方程的通解为. 7. 3 齐次方程 齐次方程: 如果一阶微分方程中的函数f(x, y)可写成的函数, 即, 则称这方程为齐次方程. 讨论:下列方程哪些是齐次方程? (1)是齐次方程. (2)不是齐次方程. (3)(x2+y2)dx-xydy=0是齐次方程. .

12、 (4)(2x+y-4)dx+(x+y-1)dy=0不是齐次方程. (5)是齐次方程. 齐次方程的解法: 在齐次方程中, 令, 即y=ux, 有,分离变量, 得.两端积分, 得.求出积分后, 再用代替u, 便得所给齐次方程的通解. 例1 解方程. 解 原方程可写成,因此原方程是齐次方程. 令, 则y=ux, ,于是原方程变为: , 即 . 分离变量, 得 . 两边积分, 得u-ln|u|+C=ln|x|, 或写成ln|xu|=u+C. 以代上式中的u, 便得所给方程的通解 . 7.4 线性微分方程 线性方程: 方程叫做一阶线性微分方程. 如果Q(x)0 , 则方程称为齐次线性方程, 否则方程称

13、为非齐次线性方程. 方程叫做对应于非齐次线性方程的齐次线性方程. 讨论: 下列方程各是什么类型方程? (1)是齐次线性方程. (2) 3x2+5x-5y=0y=3x2+5x , 是非齐次线性方程. (3) y+y cos x=e-sin x , 是非齐次线性方程. (4), 不是线性方程. (5)或, 不是线性方程. 齐次线性方程的解法: 齐次线性方程是变量可分离方程. 分离变量后得,两边积分, 得,或 ,这就是齐次线性方程的通解(积分中不再加任意常数). 例1 求方程的通解. 解 这是齐次线性方程, 分离变量得,两边积分得ln|y|=ln|x-2|+lnC,方程的通解为y=C(x-2).非齐

14、次线性方程的解法: 将齐次线性方程通解中的常数换成x的未知函数u(x), 把设想成非齐次线性方程的通解. 代入非齐次线性方程求得 , 化简得 , ,于是非齐次线性方程的通解为 ,或 .非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和. 例2 求方程的通解. 解 这是一个非齐次线性方程. 先求对应的齐次线性方程的通解. 分离变量得 ,两边积分得 ln y=2ln (x+1)+ln C,齐次线性方程的通解为y=C(x+1)2. 用常数变易法. 把C换成u, 即令y=u(x+1)2, 代入所给非齐次线性方程, 得,两边积分, 得.再把上式代入y=u(x+1)2中, 即得所

15、求方程的通解为. 解: 这里, .因为 , , ,所以通解为 . 7.5可降阶的高阶微分方程一、y(n)=f (x)型的微分方程 解法: 积分n 次, . 例1 求微分方程y=e2x-cos x 的通解. 解 对所给方程接连积分三次, 得,这就是所给方程的通解. 二、y= f(x, y)型的微分方程 解法: 设y=p则方程化为p=f(x, p).设p=f(x, p)的通解为p=j(x,C1), 则 .原方程的通解为. 例2 求微分方程(1+x2)y=2xy,满足初始条件 y|x=0=1, y|x=0=3的特解. 解 所给方程是y=f(x, y)型的. 设y=p, 代入方程并分离变量后, 有.两

16、边积分, 得ln|p|=ln(1+x2)+C,即 p=y=C1(1+x2) (C1=eC). 由条件y|x=0=3, 得C1=3, 所以 y=3(1+x2). 两边再积分, 得 y=x3+3x+C2. 又由条件y|x=0=1, 得C2=1, 于是所求的特解为: y=x3+3x+1. 三、y=f(y, y)型的微分方程 解法: 设y=p,有.原方程化为.设方程的通解为y=p=j(y, C1), 则原方程的通解为. 例3 求微分yy-y2=0的通解. 解 设y=p, 则, 代入方程, 得. 在y0、p0时, 约去p并分离变量, 得.两边积分得ln|p|=ln|y|+lnc,即 p=Cy或y=Cy(

17、C=c). 再分离变量并两边积分, 便得原方程的通解为:ln|y|=Cx+lnc1,或 y=C1eCx (C1=c1). 例4 求微分yy-y2=0的通解. 解 设y=p, 则原方程化为,当y0、p0时, 有,于是 , 即 y-C1y=0, 从而原方程的通解为 . 7.6 高阶线性微分方程 一、二阶线性微分方程举例 例1 设有一个弹簧, 上端固定, 下端挂一个质量为m 的物体. 取x 轴铅直向下, 并取物体的平衡位置为坐标原点. , 例2 设有一个由电阻R、自感L、电容C和电源E串联组成的电路, 其中R、L、及C为常数, 电源电动势是时间t的函数: E=Emsinwt, 这里Em及w也是常数.

18、 , 如果电容器经充电后撤去外电源(E=0), 则上述成为. 二阶线性微分方程: 二阶线性微分方程的一般形式为y+P(x)y+Q(x)y=f(x),若方程右端f(x)0时, 方程称为齐次的, 否则称为非齐次的. 二、线性微分方程的解的结构 先讨论二阶齐次线性方程y+P(x)y+Q(x)y=0, 即. 定理1 如果函数y1(x)与y2(x)是方程 y+P(x)y+Q(x)y=0的两个解, 那么 y=C1y1(x)+C2y2(x)也是方程的解, 其中C1、C2是任意常数. 齐次线性方程的这个性质表明它的解符合叠加原理. 证明 C1y1+C2y2=C1 y1+C2 y2, C1y1+C2y2=C1

19、y1+C2 y2. 因为y1与y2是方程y+P(x)y+Q(x)y=0, 所以有y1+P(x)y1+Q(x)y1=0及y2+P(x)y2+Q(x)y2=0,从而 C1y1+C2y2+P(x) C1y1+C2y2+Q(x) C1y1+C2y2 =C1y1+P(x)y1+Q(x)y1+C2y2+P(x)y2+Q(x)y2=0+0=0. 这就证明了y=C1y1(x)+C2y2(x)也是方程y+P(x)y+Q(x)y=0的解. 函数的线性相关与线性无关: 设y1(x), y2(x), , yn(x)为定义在区间I上的n个函数. 如果存在n个不全为零的常数k1, k2, , kn, 使得当xI 时有恒等

20、式 k1y1(x)+k2y2(x)+ + knyn(x)0成立, 那么称这n个函数在区间I上线性相关; 否则称为线性无关. 判别两个函数线性相关性的方法: 对于两个函数, 它们线性相关与否, 只要看它们的比是否为常数, 如果比为常数, 那么它们就线性相关, 否则就线性无关. 例如, 1, cos2x , sin2x 在整个数轴上是线性相关的. 函数1, x, x2在任何区间(a, b)内是线性无关的. 定理2 如果如果函数y1(x)与y2(x)是方程y+P(x)y+Q(x)y=0 的两个线性无关的解, 那么 y=C1y1(x)+C2y2(x) (C1、C2是任意常数)是方程的通解. 例3 验证

21、y1=cos x与y2=sin x是方程y+y=0的线性无关解, 并写出其通解. 解 因为 y1+y1=-cos x+cos x=0, y2+y2=-sin x+sin x=0, 所以y1=cos x与y2=sin x都是方程的解. 因为对于任意两个常数k1、k2, 要使k1cos x+k2sin x0, 只有k1=k2=0, 所以cos x与sin x在(-, +)内是线性无关的. 因此y1=cos x与y2=sin x是方程y+y=0的线性无关解. 方程的通解为y=C1cos x+C2sin x. 例4 验证y1=x与y2=ex是方程(x-1)y-xy+y=0的线性无关解, 并写出其通解.

22、 解 因为(x-1)y1-xy1+y1=0-x+x=0, (x-1)y2-xy2+y2=(x-1)ex-xex+ex=0, 所以y1=x与y2=ex都是方程的解, 因为比值e x/x 不恒为常数, 所以y1=x与y2=ex在(-, +)内是线性无关的. 因此y1=x 与y2=ex是方程(x-1)y-xy+y=0的线性无关解. 方程的通解为y=C1x+C2e x. 推论 如果y1(x), y2(x), , yn(x)是方程 y(n)+a1(x)y(n-1)+ +an-1(x)y+ an(x)y=0 的n个线性无关的解, 那么, 此方程的通解为y=C1y1(x)+C2y2(x)+ + Cnyn(x

23、), 其中C1, C2, , Cn为任意常数. 二阶非齐次线性方程解的结构: 我们把方程: y+P(x)y+Q(x)y=0叫做与非齐次方程 y+P(x)y+Q(x)y=f(x)对应的齐次方程. 定理3 设y*(x)是二阶非齐次线性方程y+P(x)y+Q(x)y=f(x)的一个特解, Y(x)是对应的齐次方程的通解, 那么y=Y(x)+y*(x)是二阶非齐次线性微分方程的通解. 例如, Y=C1cos x+C2sin x 是齐次方程y+y=0的通解, y*=x2-2是y+y=x2的一个特解, 因此 y=C1cos x+C2sin x+x2-2是方程y+y=x2的通解. 定理4 设非齐次线性微分方

24、程 y+P(x)y+Q(x)y=f(x)的右端f(x)几个函数之和, 如y+P(x)y+Q(x)y=f1(x)+ f2(x),而y1*(x)与y2*(x)分别是方程y+P(x)y+Q(x)y=f1(x)与y+P(x)y+Q(x)y=f2(x)的特解, 那么y1*(x)+y2*(x)就是原方程的特解. 7.7 常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y+py+qy=0称为二阶常系数齐次线性微分方程, 其中p、q均为常数. 如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y=C1y1+C2y2就是它的通解. 我们看看, 能否适当选取r, 使y=erx 满足二阶常系

25、数齐次线性微分方程, 为此将y=erx代入方程 y+py+qy=0得 (r 2+pr+q)erx =0. 由此可见, 只要r满足代数方程r2+pr+q=0, 函数y=erx就是微分方程的解. 特征方程: 方程r2+pr+q=0叫做微分方程y+py+qy=0的特征方程. 特征方程的两个根r1、r2可用公式求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r1、r2时, 函数、是方程的两个线性无关的解. 这是因为, 函数、是方程的解, 又不是常数. 因此方程的通解为. (2)特征方程有两个相等的实根r1=r2时, 函数、是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为,

26、 是方程的解, 又 , 所以也是方程的解, 且不是常数. 因此方程的通解为. (3)特征方程有一对共轭复根r1, 2=aib时, 函数y=e(a+ib)x、y=e(a-ib)x是微分方程的两个线性无关的复数形式的解. 函数y=eaxcosbx、y=eaxsinbx是微分方程的两个线性无关的实数形式的解. 函数y1=e(a+ib)x和y2=e(a-ib)x都是方程的解, 而由欧拉公式, 得y1=e(a+ib)x=eax(cosbx+isinbx),y2=e(a-ib)x=eax(cosbx-isinbx),y1+y2=2eaxcosbx, ,y1-y2=2ieaxsinbx, .故eaxcosb

27、x、y2=eaxsinbx也是方程解. 可以验证, y1=eaxcosbx、y2=eaxsinbx是方程的线性无关解. 因此方程的通解为 y=eax(C1cosbx+C2sinbx ). 求二阶常系数齐次线性微分方程y+py+qy=0的通解的步骤为: 第一步 写出微分方程的特征方程 r2+pr+q=0第二步 求出特征方程的两个根r1、r2. 第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解. 例1 求微分方程y-2y-3y=0的通解. 解 所给微分方程的特征方程为r2-2r-3=0, 即(r+1)(r-3)=0. 其根r1=-1, r2=3是两个不相等的实根, 因此所求通解为 y=

28、C1e-x+C2e3x. 例2 求方程y+2y+y=0满足初始条件y|x=0=4、y| x=0=-2的特解. 解 所给方程的特征方程为 r2+2r+1=0, 即(r+1)2=0. 其根r1=r2=-1是两个相等的实根, 因此所给微分方程的通解为 y=(C1+C2x)e-x. 将条件y|x=0=4代入通解, 得C1=4, 从而y=(4+C2x)e-x. 将上式对x求导, 得 y=(C2-4-C2x)e-x. 再把条件y|x=0=-2代入上式, 得C2=2. 于是所求特解为: x=(4+2x)e-x. 例 3 求微分方程y-2y+5y= 0的通解. 解 所给方程的特征方程为r2-2r+5=0. 特

29、征方程的根为r1=1+2i, r2=1-2i, 是一对共轭复根, 因此所求通解为 y=ex(C1cos2x+C2sin2x). n 阶常系数齐次线性微分方程: 方程 y(n) +p1y(n-1)+p2 y(n-2) + + pn-1y+pny=0, 称为n 阶常系数齐次线性微分方程, 其中 p1, p2 , , pn-1, pn都是常数. 二阶常系数齐次线性微分方程所用的方法以及方程的通解形式, 可推广到n 阶常系数齐次线性微分方程上去. n 阶常系数齐次线性微分方程的特征方程: L(r)=rn +p1rn-1+p2 rn-2 + + pn-1r+pn=0称为微分方程L(D)y=0的特征方程.

30、 特征方程的根与通解中项的对应: 单实根r 对应于一项: Cerx ; 一对单复根r1, 2=a ib 对应于两项: eax(C1cosbx+C2sinbx); k重实根r对应于k项: erx(C1+C2x+ +Ck xk-1); 一对k 重复根r1, 2=a ib 对应于2k项: eax(C1+C2x+ +Ck xk-1)cosbx+( D1+D2x+ +Dk xk-1)sinbx. 例4 求方程y(4)-2y+5y=0 的通解. 解 这里的特征方程为 r4-2r3+5r2=0, 即r2(r2-2r+5)=0, 它的根是r1=r2=0和r3, 4=12i. 因此所给微分方程的通解为 y=C1

31、+C2x+ex(C3cos2x+C4sin2x). 例5 求方程y(4)+b 4y=0的通解, 其中b0. 解 这里的特征方程为r4+b 4=0. 它的根为, . 因此所给微分方程的通解为. 7.8 常系数非齐次线性微分方程 二阶常系数非齐次线性微分方程: 方程y+py+qy=f(x)称为二阶常系数非齐次线性微分方程, 其中p、q是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y=Y(x)与非齐次方程本身的一个特解y=y*(x)之和: y=Y(x)+ y*(x). 当f(x)为两种特殊形式时, 方程的特解的求法: 一、 f(x)=Pm(x)elx 型 当f(x)=Pm(x)e

32、lx时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y*=Q(x)elx, 将其代入方程, 得等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=Pm(x). (1)如果l不是特征方程r2+pr+q=0 的根, 则l2+pl+q0. 要使上式成立, Q(x)应设为m 次多项式: Qm(x)=b0xm+b1xm-1+ +bm-1x+bm ,通过比较等式两边同次项系数, 可确定b0, b1, , bm, 并得所求特解 y*=Qm(x)elx. (2)如果l是特征方程 r2+pr+q=0 的单根, 则l2+pl+q=0, 但2l+p0, 要使等式Q(x)+(2l+p)

33、Q(x)+(l2+pl+q)Q(x)=Pm(x).成立, Q(x)应设为m+1 次多项式: Q(x)=xQm(x),Qm(x)=b0xm +b1xm-1+ +bm-1x+bm ,通过比较等式两边同次项系数, 可确定b0, b1, , bm, 并得所求特解 y*=xQm(x)elx. (3)如果l是特征方程 r2+pr+q=0的二重根, 则l2+pl+q=0, 2l+p=0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=Pm(x).成立, Q(x)应设为m+2次多项式: Q(x)=x2Qm(x),Qm(x)=b0xm+b1xm-1+ +bm-1x+bm ,通过比较等式两边

34、同次项系数, 可确定b0, b1, , bm , 并得所求特解y*=x2Qm(x)elx. 综上所述, 我们有如下结论: 如果f(x)=Pm(x)elx, 则二阶常系数非齐次线性微分方程y+py+qy =f(x)有形如y*=xk Qm(x)elx的特解, 其中Qm(x)是与Pm(x)同次的多项式, 而k 按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2. 例1 求微分方程y-2y-3y=3x+1的一个特解. 解 这是二阶常系数非齐次线性微分方程, 且函数f(x)是Pm(x)elx型(其中Pm(x)=3x+1, l=0). 与所给方程对应的齐次方程为 y-2y-3y=

35、0, 它的特征方程为 r2-2r-3=0. 由于这里l=0不是特征方程的根, 所以应设特解为y*=b0x+b1. 把它代入所给方程, 得-3b0x-2b0-3b1=3x+1,比较两端x同次幂的系数, 得, -3b0=3, -2b0-3b1=1.由此求得b0=-1, . 于是求得所给方程的一个特解为. 例2 求微分方程y-5y+6y=xe2x的通解. 解 所给方程是二阶常系数非齐次线性微分方程, 且f(x)是Pm(x)elx型(其中Pm(x)=x, l=2). 与所给方程对应的齐次方程为 y-5y+6y=0, 它的特征方程为 r2-5r +6=0. 特征方程有两个实根r1=2, r2=3. 于是

36、所给方程对应的齐次方程的通解为Y=C1e2x+C2e3x . 由于l=2是特征方程的单根, 所以应设方程的特解为 y*=x(b0x+b1)e2x. 把它代入所给方程, 得-2b0x+2b0-b1=x. 比较两端x同次幂的系数, 得, -2b0=1, 2b0-b1=0.由此求得, b1=-1. 于是求得所给方程的一个特解为. 从而所给方程的通解为.二、方程y+py+qy=elxPl (x)coswx+Pn(x)sinwx的特解形式 我们有如下结论: 如果f(x)=elx Pl(x)coswx+Pn(x)sinwx, 则二阶常系数非齐次线性微分方程 y+py+qy=f(x)的特解可设为 y*=xk

37、 elxR(1)m(x)coswx+R(2)m(x)sinwx, 其中R(1)m(x)、R(2)m(x)是m次多项式, m=maxl, n, 而k 按l+iw (或l-iw)不是特征方程的根或是特征方程的单根依次取0或1. 例3 求微分方程y+y=xcos2x的一个特解. 解 所给方程是二阶常系数非齐次线性微分方程, 且f(x)属于elxPl(x)coswx+Pn(x)sinwx型(其中l=0, w=2, Pl(x)=x, Pn(x)=0). 与所给方程对应的齐次方程为 y+y=0, 它的特征方程为r2+1=0. 由于这里l+iw=2i 不是特征方程的根, 所以应设特解为 y*=(ax+b)c

38、os2x+(cx+d )sin2x. 把它代入所给方程, 得(-3ax-3b+4c)cos2x-(3cx+3d+4a)sin2x=xcos2x.比较两端同类项的系数, 得 , b=0, c=0, . 于是求得一个特解为 . 提示: y*=(ax+b)cos2x+(cx+d)sin2x.y*=acos2x-2(ax+b)sin2x+csin2x+2(cx+d)cos2x, =(2cx+a+2d)cos2x+(-2ax-2b+c)sin2x,y*=2ccos2x-2(2cx+a+2d)sin2x-2asin2x+2(-2ax-2b+c)cos2x =(-4ax-4b+4c)cos2x+(-4cx-

39、4a-4d)sin2x. y*+ y*=(-3ax-3b+4c)cos2x+(-3cx-4a-3d)sin2x.由, 得, b=0, c=0, .第八章 向量代数与空间解析几何8. 1 向量及其线性运算 一、向量概念 向量: 在研究力学、物理学以及其他应用科学时, 常会遇到这样一类量, 它们既有大小, 又有方向. 例如力、力矩、位移、速度、加速度等, 这一类量叫做向量. 在数学上, 用一条有方向的线段(称为有向线段)来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的符号: 以A为起点、B为终点的有向线段所表示的向量记作. 向量可用粗体字母表示, 也可用上加箭头

40、书写体字母表示, 例如, a、r、v、F或、. 自由向量: 由于一切向量的共性是它们都有大小和方向, 所以在数学上我们只研究与起点无关的向量, 并称这种向量为自由向量, 简称向量. 因此, 如果向量a和b的大小相等, 且方向相同, 则说向量a和b是相等的, 记为a = b. 相等的向量经过平移后可以完全重合. 向量的模: 向量的大小叫做向量的模. 向量a、的模分别记为|a|、. 单位向量: 模等于1的向量叫做单位向量. 零向量: 模等于0的向量叫做零向量, 记作0或. 零向量的起点与终点重合, 它的方向可以看作是任意的. 向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行

41、. 向量a与b平行, 记作a / b. 零向量认为是与任何向量都平行. 当两个平行向量的起点放在同一点时, 它们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线. 类似还有共面的概念. 设有k(k3)个向量, 当把它们的起点放在同一点时, 如果k个终点和公共起点在一个平面上, 就称这k个向量共面. 二、向量的线性运算 1向量的加法 向量的加法: 设有两个向量a与b, 平移向量使b的起点与a的终点重合, 此时从a的起点到b的终点的向量c称为向量a与b的和, 记作a+b, 即c=a+b . 三角形法则: 上述作出两向量之和的方法叫做向量加法的三角形法则. 平行四边形法则: 当向量

42、a与b不平行时, 平移向量使a与b的起点重合, 以a、b为邻边作一平行四边形, 从公共起点到对角的向量等于向量a与b的和a+b. A B C A B C D 向量的加法的运算规律: (1)交换律a+b=b+a; (2)结合律(a+b)+c=a+(b+c). 由于向量的加法符合交换律与结合律, 故n个向量a1, a2, , an(n 3)相加可写成 a1+a2+ +an, 并按向量相加的三角形法则, 可得n个向量相加的法则如下: 使前一向量的终点作为次一向量的起点, 相继作向量a1, a2, , an, 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即为所求的和. 负向量

43、: 设a为一向量, 与a的模相同而方向相反的向量叫做a的负向量, 记为-a. 向量的减法: 我们规定两个向量b与a的差为b-a=b+(-a). 即把向量-a加到向量b上, 便得b与a的差b-a. 特别地, 当b=a时, 有 a-a=a+(-a)=0. - - - 显然, 任给向量及点O, 有, 因此, 若把向量a与b移到同一起点O, 则从a的终点A向b的终点B所引向量便是向量b与a的差b-a . 2向量与数的乘法 向量与数的乘法的定义: 向量a与实数l的乘积记作la, 规定la是一个向量, 它的模|la|=|l|a|, 它的方向当l0时与a相同, 当l0时与a相反. 当l=0时, |la|=0

44、, 即la为零向量, 这时它的方向可以是任意的. 特别地, 当l=1时, 有1a=a, (-1)a=-a. 运算规律: (1)结合律 l(ma)=m(la)=(lm)a; (2)分配律 (l+m)a=la+ma; l(a+b)=la+lb. 例1. 在平行四边形ABCD中, 设=a, =b. 试用a和b表示向量、, 其中M是平行四边形对角线的交点. 解 由于平行四边形的对角线互相平分, 所以A B C D M a+b, 即 -(a+b), 于是 (a+b). 因为, 所以(a+b). 又因-a+b, 所以(b-a). 由于, 所以(a-b). 因为, 所以; 向量的单位化: 设a0, 则向量是

45、与a同方向的单位向量, 记为ea. 于是a=|a|ea. 向量的单位化: 设a0, 则向量是与a同方向的单位向量, 记为ea. 于是a = | a | ea. 定理1 设向量a 0, 那么, 向量b平行于a的充分必要条件是: 存在唯一的实数l, 使 b = la. 证明: 条件的充分性是显然的, 下面证明条件的必要性. 设b / a. 取, 当b与a同向时l取正值, 当b与a反向时l取负值, 即b=la. 这是因为此时b与la同向, 且 |la|=|l|a|. 再证明数l的唯一性. 设b=la, 又设b=ma, 两式相减, 便得 (l-m)a=0, 即|l-m|a|=0. 因|a|0, 故|l

46、-m|=0, 即l=m. 给定一个点及一个单位向量就确定了一条数轴. 设点O及单位向量i确定了数轴Ox, 对于轴上任一点P, 对应一个向量, 由/i, 根据定理1, 必有唯一的实数x, 使=xi(实数x叫做轴上有向线段的值), 并知与实数x一一对应. 于是 点P向量= xi实数x , 从而轴上的点P与实数x有一一对应的关系. 据此, 定义实数x为轴上点P的坐标. 由此可知, 轴上点P的坐标为x的充分必要条件是 = xi . 三、空间直角坐标系 在空间取定一点O和三个两两垂直的单位向量i、j、k, 就确定了三条都以O为原点的两两垂直的数轴, 依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴), 统

47、称为坐标轴. 它们构成一个空间直角坐标系, 称为Oxyz坐标系. 注: (1)通常三个数轴应具有相同的长度单位; (2)通常把x 轴和y轴配置在水平面上, 而z轴则是铅垂线; (3)数轴的的正向通常符合右手规则. 坐标面: 在空间直角坐标系中, 任意两个坐标轴可以确定一个平面, 这种平面称为坐标面. x轴及y轴所确定的坐标面叫做xOy面, 另两个坐标面是yOz面和zOx面. 卦限: 三个坐标面把空间分成八个部分, 每一部分叫做卦限, 含有三个正半轴的卦限叫做第一卦限, 它位于xOy面的上方. 在xOy面的上方, 按逆时针方向排列着第二卦限、第三卦限和第四卦限. 在xOy面的下方, 与第一卦限对

48、应的是第五卦限, 按逆时针方向还排列着第六卦限、第七卦限和第八卦限. 八个卦限分别用字母I、II、III、IV、V、VI、VII、VIII表示. 向量的坐标分解式: 任给向量r, 对应有点M, 使. 以OM为对角线、三条坐标轴为棱作长方体, 有 , 设 , , , 则 . 上式称为向量r的坐标分解式, xi、yj、zk称为向量r沿三个坐标轴方向的分向量. 显然, 给定向量r, 就确定了点M及, , 三个分向量, 进而确定了x、y、z三个有序数; 反之, 给定三个有序数x、y、z也就确定了向量r与点M. 于是点M、向量r与三个有序x、y、z之间有一一对应的关系 . 据此, 定义: 有序数x、y、

49、z称为向量r(在坐标系Oxyz)中的坐标, 记作r=(x, y, z); 有序数x、y、z也称为点M(在坐标系Oxyz)的坐标, 记为M(x, y, z). 向量称为点M关于原点O的向径. 上述定义表明, 一个点与该点的向径有相同的坐标. 记号(x, y, z)既表示点M, 又表示向量. 坐标面上和坐标轴上的点, 其坐标各有一定的特征. 例如: 点M在yOz面上, 则x=0; 同相, 在zOx面上的点, y=0; 在xOy面上的点, z=0. 如果点M在x轴上, 则y=z=0; 同样在y轴上,有z=x=0; 在z轴上 的点, 有x=y=0. 如果点M为原点, 则x=y=z=0. 四、利用坐标作

50、向量的线性运算 设a=(ax, ay, az), b=(bx, by, bz)即 a=axi+ayj+azk, b=bxi+byj+bzk , 则 a+b=(axi+ayj+azk)+(bxi+byj+bzk) =(ax+bx)i+(ay+by)j+(az+bz)k =(ax+bx, ay+by, az+bz). a-b=(axi+ayj+azk)-(bxi+byj+bzk) =(ax-bx)i+(ay-by)j+(az-bz)k =(ax-bx, ay-by, az-bz). la=l(axi+ayj+azk) =(lax)i+(lay)j+(laz)k =(lax, lay, laz).

51、利用向量的坐标判断两个向量的平行: 设a=(ax, ay, az)0, b=(bx, by, bz), 向量b/ab=la , 即b/a(bx, by, bz)=l(ax, ay, az), 于是. 例2 求解以向量为未知元的线性方程组,其中a=(2, 1, 2), b=(-1, 1, -2). 解 如同解二元一次线性方程组, 可得x=2a-3b, y=3a-5b .以a、b的坐标表示式代入, 即得 x=2(2, 1, 2)-3(-1, 1, -2)=(7, -1, 10), y=3(2, 1, 2)-5(-1, 1, -2)=(11, -2, 16). 例3 已知两点A(x1, y1, z1

52、)和B(x2, y2, z2)以及实数l-1, 在直线AB上求一点M, 使. 解 由于, , 因此 , 从而 , 这就是点M的坐标. 另解 设所求点为M (x, y, z), 则, . 依题意有, 即 (x-x1, y-y1, z-z1)=l(x2-x, y2-y, z2-z) (x, y, z)-(x1, y1, z1)=l(x2, y2, z2)-l(x, y, z), , , , . 点M叫做有向线段的定比分点. 当l=1, 点M的有向线段的中点, 其坐标为 , , . 五、向量的模、方向角、投影 1向量的模与两点间的距离公式 设向量r=(x, y, z), 作, 则 , 按勾股定理可得 , 设 , , , 有 |OP|=|x|, |OQ|=|y|, |OR|=|z|, 于是得向量模的坐标表示式 . 设有点A (x1, y1, z1)、B(x2, y2, z2), 则 =(x2, y2, z2)-(x1, y1, z1)=(x2-x1, y2-y1, z2-z1), 于是点A与点B间的距离为 . 例4 求证以M1(4, 3, 1)、M2 (

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!