制冷技术与原理第2章单级蒸汽压缩式制冷循环

上传人:仙*** 文档编号:127627655 上传时间:2022-07-30 格式:PPT 页数:61 大小:952.50KB
收藏 版权申诉 举报 下载
制冷技术与原理第2章单级蒸汽压缩式制冷循环_第1页
第1页 / 共61页
制冷技术与原理第2章单级蒸汽压缩式制冷循环_第2页
第2页 / 共61页
制冷技术与原理第2章单级蒸汽压缩式制冷循环_第3页
第3页 / 共61页
资源描述:

《制冷技术与原理第2章单级蒸汽压缩式制冷循环》由会员分享,可在线阅读,更多相关《制冷技术与原理第2章单级蒸汽压缩式制冷循环(61页珍藏版)》请在装配图网上搜索。

1、第第2 2章单级蒸气压缩制冷循环章单级蒸气压缩制冷循环w2.1 单级压缩制冷的理论循环w2.2 单级压缩制冷的实际循环w2.3 工况与性能2.1 单级蒸气压缩制冷的理论循环w2.1.1 2.1.1 系统与循环系统与循环w2.1.2 2.1.2 压焓图及温熵图压焓图及温熵图w2.1.3 2.1.3 制冷循环过程在压焓图和温制冷循环过程在压焓图和温 熵图上的表示熵图上的表示w2.1.4 2.1.4 单级蒸气压缩式制冷理论循单级蒸气压缩式制冷理论循 环的热力计算环的热力计算2.1.12.1.1系统与循环系统与循环液体蒸发制冷构成循环的四个基本过程是:液体蒸发制冷构成循环的四个基本过程是:制冷剂液体在

2、低压(低温)下蒸发,制冷剂液体在低压(低温)下蒸发,成为低压蒸气成为低压蒸气 将该低压蒸气提高压力为高压蒸气将该低压蒸气提高压力为高压蒸气 将高压蒸气冷凝,使之成为高压液体将高压蒸气冷凝,使之成为高压液体 高压液体降低压力重新变为低压液体,高压液体降低压力重新变为低压液体,返回到返回到从而完成从而完成循环。循环。压缩机压缩机:压缩和输送制冷蒸汽,并造成蒸发压缩和输送制冷蒸汽,并造成蒸发器中低压、冷凝器中高压,是整个器中低压、冷凝器中高压,是整个系统的心脏。系统的心脏。冷凝器冷凝器:输出热量的设备,将制冷剂在蒸发输出热量的设备,将制冷剂在蒸发器中吸收的热量和压缩机消耗功所器中吸收的热量和压缩机消

3、耗功所转化的热量排放给冷却介质。转化的热量排放给冷却介质。节流阀节流阀:对制冷剂起节流降压作用,并调节对制冷剂起节流降压作用,并调节进入蒸发器的制冷剂流量。进入蒸发器的制冷剂流量。蒸发器蒸发器:输出冷量的设备,制冷剂在蒸发器输出冷量的设备,制冷剂在蒸发器中吸收被冷却对象的热量,从而达中吸收被冷却对象的热量,从而达到制冷的目的。到制冷的目的。2.1.2 压焓图和温熵图phThspx压焓图v等容线等容线-向右上方倾斜的虚线,比等熵线平坦;向右上方倾斜的虚线,比等熵线平坦;等温线等温线-液体区几乎为垂直线。两相区内,因制液体区几乎为垂直线。两相区内,因制冷剂状态的变化是在等压、等温下进行,故等冷剂状

4、态的变化是在等压、等温下进行,故等 温温线与等压线重合,是水平线。过热蒸气区为向右下线与等压线重合,是水平线。过热蒸气区为向右下方弯曲的倾斜线;方弯曲的倾斜线;等熵线-向右上方倾斜的实线;等干度线等干度线-只存在于湿蒸气区域内,其方向大致与饱只存在于湿蒸气区域内,其方向大致与饱和液体线或饱和蒸气线相近,视干度大小而定。和液体线或饱和蒸气线相近,视干度大小而定。等焓线等焓线-垂直线;垂直线;等压线等压线-水平线;水平线;TssTvphx温熵图等容线等容线-向右上方倾斜的虚线;向右上方倾斜的虚线;等压线等压线-两相区内是水平线;过热蒸气区两相区内是水平线;过热蒸气区为向右上方弯曲的倾斜线;过冷区可

5、用饱和为向右上方弯曲的倾斜线;过冷区可用饱和线代替。线代替。等焓线等焓线-过热区和两相区内为向右下方倾过热区和两相区内为向右下方倾斜的实线;过冷液体区可近似用同温度下的斜的实线;过冷液体区可近似用同温度下的饱和液体的焓值代替;饱和液体的焓值代替;等等干干度线度线-只存在于湿蒸气区域内,其方向只存在于湿蒸气区域内,其方向大致与饱和液体线或饱和蒸气线相近,视干度大致与饱和液体线或饱和蒸气线相近,视干度大小而定。大小而定。等熵线等熵线-垂直线;垂直线;等温线等温线-水平线;水平线;2.1.3 2.1.3 制冷循环过程在压焓图制冷循环过程在压焓图和温熵图上的表示和温熵图上的表示ph12345kp0p0

6、qw 理论循环在理论循环在p-h图上的表示图上的表示ABCD12345A A压缩机;压缩机;B B冷凝器;冷凝器;C C节流阀;节流阀;D D蒸发器。蒸发器。单级蒸气压缩单级蒸气压缩式制冷系统图式制冷系统图ABCDABCD12345单级蒸气压缩式单级蒸气压缩式制冷系统图制冷系统图A A压缩机;压缩机;B B冷凝器;冷凝器;C C节流阀;节流阀;D D蒸发器蒸发器Ts12345kT0T0q理论循环在理论循环在T-s图上的表示图上的表示2.1.4 2.1.4 单级蒸气压缩式制冷理论循环的热单级蒸气压缩式制冷理论循环的热力计算力计算 (1 1)压缩过程为等熵过程,即在压缩过程)压缩过程为等熵过程,即

7、在压缩过程中不存在任何不可逆损失中不存在任何不可逆损失 (2 2)在冷凝器和蒸发器中,制冷剂的冷凝)在冷凝器和蒸发器中,制冷剂的冷凝温度等于冷却介质的温度,蒸发温度等于被温度等于冷却介质的温度,蒸发温度等于被冷却介质的温度,且冷凝温度和蒸发温度都冷却介质的温度,且冷凝温度和蒸发温度都是定值是定值单级理论循环是建立在以下一些假设的基础上的:单级理论循环是建立在以下一些假设的基础上的:(4 4)制冷剂在管道内流动时,没有流动阻)制冷剂在管道内流动时,没有流动阻力损失,忽略动能变化,除了蒸发器和冷凝器力损失,忽略动能变化,除了蒸发器和冷凝器内的管子外,制冷剂与管外介质之间没有热交内的管子外,制冷剂与

8、管外介质之间没有热交换换 (5 5)制冷剂在流过节流装置时,流速变化)制冷剂在流过节流装置时,流速变化很小,可以忽略不计,且与外界环境没有热交很小,可以忽略不计,且与外界环境没有热交换换 (3 3)离开蒸发器和进入压缩机的制冷剂蒸)离开蒸发器和进入压缩机的制冷剂蒸气为蒸发压力下的饱和蒸气,离开冷凝器和进气为蒸发压力下的饱和蒸气,离开冷凝器和进入膨胀阀的液体为冷凝压力下的饱和液体入膨胀阀的液体为冷凝压力下的饱和液体Ts12345kT0T0qhp12345kp0p0qw 理论循环在理论循环在p-h图和图和T-s图上的表示图上的表示ab 按照热力学第一定律,对于在控制容积中进行按照热力学第一定律,对

9、于在控制容积中进行的状态变化存在如下关系:的状态变化存在如下关系:这里,把自外界传入的功作为负值。这里,把自外界传入的功作为负值。whq(2-1)qhhhw 压缩机、冷凝器、节流阀和蒸发器都可以单压缩机、冷凝器、节流阀和蒸发器都可以单独作为一个控制体进行分析。独作为一个控制体进行分析。(2)(2)冷凝过程:冷凝过程:(2-32-3)(3)(3)节流过程:节流过程:(2-42-4)(1 1)压缩过程)压缩过程:(2-2)(4 4)蒸发过程:)蒸发过程:(2-5)0q12hhw0w41510hhhhq0,0qw54hh 0w42hhqk 单位制冷量可按式(单位制冷量可按式(2-52-5)计算。单位

10、制)计算。单位制冷量也可以表示成汽化潜热冷量也可以表示成汽化潜热r r0 0和节流后的干度和节流后的干度x x5 5的关系:的关系:为了说明单级压缩蒸气制冷机理论循环为了说明单级压缩蒸气制冷机理论循环的性能,的性能,采用下列一些性能指标。采用下列一些性能指标。)1(500 xrq(2-6)由式(由式(2-62-6)可知,制冷剂的汽化潜热越)可知,制冷剂的汽化潜热越大,或节流所形成的蒸气越少(大,或节流所形成的蒸气越少(x x5 5越小)则单越小)则单位制冷量就越大。位制冷量就越大。(1)(1)单位制冷量单位制冷量0q(2)(2)单位容积制冷量单位容积制冷量14110vhhvqqv(2-7)对于

11、单级蒸气压缩制冷机的理论循环来对于单级蒸气压缩制冷机的理论循环来说,理论比功可表示为说,理论比功可表示为120hhw(2-8)单级压缩蒸气制冷机的理论比功也是随单级压缩蒸气制冷机的理论比功也是随制冷剂的种类和制冷机循环的工作温度而变制冷剂的种类和制冷机循环的工作温度而变的。的。vq(3)(3)理论比功理论比功0w(4)(4)单位冷凝热单位冷凝热 单位(单位(1kg1kg)制冷剂蒸气在冷凝器中)制冷剂蒸气在冷凝器中放出的热量,称为单位冷凝热。单位冷凝放出的热量,称为单位冷凝热。单位冷凝热包括显热和潜热两部分热包括显热和潜热两部分 qhhhhhhk233424(2-9)比较式(比较式(2-52-5

12、)、()、(2-82-8)和()和(2-92-9)可以看出,对于单级压缩式蒸气制冷机可以看出,对于单级压缩式蒸气制冷机理论循环,存在着下列关系理论循环,存在着下列关系(2-10)qqwk00kq(5)(5)制冷系数制冷系数0 对于单级压缩蒸气制冷机理论循环,对于单级压缩蒸气制冷机理论循环,制冷系数为制冷系数为(2-11)0001421qwhhhh制冷系数愈大制冷系数愈大经济性愈好经济性愈好 在蒸发温度和冷凝温度相同的条在蒸发温度和冷凝温度相同的条件下:件下:(6)(6)压缩终温压缩终温2t影响到制冷剂的分解和润滑油结炭。影响到制冷剂的分解和润滑油结炭。(7)(7)热力完善度热力完善度 单级压缩

13、蒸气制冷机理论循环的热单级压缩蒸气制冷机理论循环的热力完善度按定义可表示为力完善度按定义可表示为00124101241011TTThhhhTThhhhkkc(2-12)这里这里c c为在蒸发温度(为在蒸发温度(T T0 0)和冷)和冷凝温度(凝温度(T Tk k)之间工作的逆卡诺循环的)之间工作的逆卡诺循环的制冷系数。热力完善度愈大,说明该循制冷系数。热力完善度愈大,说明该循环接近可逆循环的程度愈大。环接近可逆循环的程度愈大。2.2单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环w 2.2.1 2.2.1 液体过冷对循环性能的影响液体过冷对循环性能的影响w 2.2.2 2.2.2 蒸气

14、过热对循环性能的影响蒸气过热对循环性能的影响w 2.2.3 2.2.3 气气-液热交换器对循环性能的影响液热交换器对循环性能的影响w 2.2.4 2.2.4 不凝性气体的存在对循环性能的影响不凝性气体的存在对循环性能的影响w 2.2.5 2.2.5 单级压缩实际制冷循环的热力计算单级压缩实际制冷循环的热力计算 上面所述的循环,是单级压缩蒸气制上面所述的循环,是单级压缩蒸气制冷机的基本循环,也是最简单的循环。在冷机的基本循环,也是最简单的循环。在实用上,根据实际条件对循环往往要作一实用上,根据实际条件对循环往往要作一些改进,以便提高循环的热力完善度。在些改进,以便提高循环的热力完善度。在单级制冷

15、机循环中,这一改进主要有液体单级制冷机循环中,这一改进主要有液体过冷、吸气过热及由此而产生的回热循环。过冷、吸气过热及由此而产生的回热循环。2.2.1 液体过冷对循环性能的影响液体过冷对循环性能的影响将节流前的制冷剂液体冷却到低于冷凝将节流前的制冷剂液体冷却到低于冷凝温度的状态,称为过冷。温度的状态,称为过冷。带有过冷的循环,叫做过冷循环。带有过冷的循环,叫做过冷循环。采用液体过冷对提高制冷量和制冷系数采用液体过冷对提高制冷量和制冷系数都是有利的都是有利的ph12345kp0p0qw过冷循环在过冷循环在p-h图和图和T-s图上的表示图上的表示Ts12345kT0T0qab0q450q45)()

16、(5551510hhhhhhq(2-13)(2)(2)单位容积制冷量单位容积制冷量vq(3)(3)理论比功理论比功0w0q(1)单位制冷量)单位制冷量不变不变151vhhqv增加增加增加增加(4)(4)单位冷凝热单位冷凝热kq(5)(5)制冷系数制冷系数(6)(6)压缩终温压缩终温2t不变不变增加增加增加增加 120124441hhtchhhhhh(2-15)()(444242hhhhhhqk(2-14)2.2.2 蒸气过热对循环性能的影响 压缩机吸入前的制冷剂蒸气的温度高于压缩机吸入前的制冷剂蒸气的温度高于吸气压力下制冷剂的饱和温度时,称为过热。吸气压力下制冷剂的饱和温度时,称为过热。具有吸

17、气过热的循环,称为过热循环。具有吸气过热的循环,称为过热循环。下图示出了过热循环下图示出了过热循环1-1-2-3-4-5-1的的T-s图和图和lg p-h图。图中图。图中1-1是吸气的过热过程,是吸气的过热过程,其余与基本循环相同。其余与基本循环相同。ph12345kp0p0q过热循环在过热循环在p-h图和图和T-s图上的表示图上的表示Ts12345kT0T0qab120q210q过热循环分有效过热和无效过热两种情况过热循环分有效过热和无效过热两种情况)()(5111510hhhhhhq(2-13)(2)(2)单位容积制冷量单位容积制冷量vq0q(1)单位制冷量)单位制冷量151vhhqv增加

18、增加有效过热循环有效过热循环 有效过热循环:过热过程中产生的冷量也为有效过热循环:过热过程中产生的冷量也为被冷却介质所吸收。被冷却介质所吸收。?(4)(4)单位冷凝热单位冷凝热kq(5)(5)制冷系数制冷系数?增加增加125111hhhhhh(2-15)()(422242hhhhhhqk(2-14)(3)(3)理论比功理论比功0w120hhw(2-14)增加增加(6)(6)压缩终温压缩终温2t升高升高图图2-192-19有效过热的过热度对制冷系数的影响有效过热的过热度对制冷系数的影响过热度过热度R502R502 R600aR600a R290R290 R134aR134aR22R22NHNH3

19、 30 045.345.337.437.444.444.444.144.155.955.993.093.0303073.973.965.765.772.172.172.972.986.386.3 131.5131.5)(510hhq(2-13)(2)(2)单位容积制冷量单位容积制冷量vq0q(1)单位制冷量)单位制冷量151vhhqv不变不变无效过热循环无效过热循环 无效过热循环:过热过程中产生的冷量没有无效过热循环:过热过程中产生的冷量没有被冷却介质所吸收。被冷却介质所吸收。减小减小(4)(4)单位冷凝热单位冷凝热kq(5)(5)制冷系数制冷系数减小减小增加增加1251hhhh(2-15)(

20、)(422242hhhhhhqk(2-14)(3)(3)理论比功理论比功0w120hhw(2-14)增加增加2.2.3 回热器对循环性能的影响hhhh4411(2-20)若不计回热器与环境空气之间的热交换,则若不计回热器与环境空气之间的热交换,则液体过冷的热量等于使蒸气过热的热量,其液体过冷的热量等于使蒸气过热的热量,其热平衡关系为热平衡关系为 利用回热使节流前的制冷剂液体与压缩机吸利用回热使节流前的制冷剂液体与压缩机吸入前的制冷剂蒸气进行热交换,使液体过冷、入前的制冷剂蒸气进行热交换,使液体过冷、蒸气过热,称之为回热。蒸气过热,称之为回热。ph12345kp0p0q回热循环在回热循环在p-h

21、图和图和T-s图上的表示图上的表示Ts12345kT0T0qab0q0q12452145 回热循环中各性能指标的变化完全同于有效过回热循环中各性能指标的变化完全同于有效过热循环。热循环。2.2.4 不凝性气体的存在对循环性能的影响w 积存于冷凝器上部;积存于冷凝器上部;w 冷凝压力增加;冷凝压力增加;w 压缩机排气压力升高;压缩机排气压力升高;w 比功增加;比功增加;w 制冷系数下降;制冷系数下降;w 压缩机容积效率降低;压缩机容积效率降低;2.2.5 单级压缩实际制冷循环的热力计算 实际循环和理论循环有许多不同之处,实际循环和理论循环有许多不同之处,除了压缩机中的工作过程以外,主要还有下除了

22、压缩机中的工作过程以外,主要还有下列一些差别:列一些差别:1 1流动过程有压力损失。流动过程有压力损失。2 2制冷剂流经管道及阀门时同环境介质间有热制冷剂流经管道及阀门时同环境介质间有热交换。交换。3 3热交换器中存在温差。热交换器中存在温差。热交换及压力损失对循环性能的影响热交换及压力损失对循环性能的影响 (1 1)吸入管道)吸入管道 吸入管道中的压力降始终是有害的,它使吸入管道中的压力降始终是有害的,它使得吸气比容增大,压缩机的压力比增大,单位容得吸气比容增大,压缩机的压力比增大,单位容积制冷量减少,压缩机容积效率降低,压力比增积制冷量减少,压缩机容积效率降低,压力比增大,制冷系数下降。大

23、,制冷系数下降。吸气管道中的热交换可视情况当作有效过吸气管道中的热交换可视情况当作有效过热或无效过热来分析。热或无效过热来分析。(2 2)排出管道)排出管道 在压缩机的排出管道中,热量由高温制冷在压缩机的排出管道中,热量由高温制冷剂蒸气传给周围空气,它不会引起性能剂蒸气传给周围空气,它不会引起性能 的改的改变,仅仅是减少了冷凝器中的热负荷。变,仅仅是减少了冷凝器中的热负荷。排气管道中的压降会引起压缩机排气压力排气管道中的压降会引起压缩机排气压力升高。升高。(3 3)冷凝器到膨胀阀之间的液体管道)冷凝器到膨胀阀之间的液体管道 在冷凝器到膨胀阀这段管路中,热量通常由在冷凝器到膨胀阀这段管路中,热量

24、通常由液体制冷剂传给周围空气,使液体制冷剂过冷,液体制冷剂传给周围空气,使液体制冷剂过冷,制冷量增大。然而,也可能水冷冷凝器中的冷却制冷量增大。然而,也可能水冷冷凝器中的冷却水温度很低,冷凝温度低于环境温度,热量由空水温度很低,冷凝温度低于环境温度,热量由空气传给液体制冷剂,可能导致部分液体气化,这气传给液体制冷剂,可能导致部分液体气化,这不仅使单位制冷量下降,而且使得膨胀阀不能正不仅使单位制冷量下降,而且使得膨胀阀不能正常工作。常工作。压力降没有关系,只要没有气化。压力降没有关系,只要没有气化。通常膨胀阀是紧靠蒸发器安装的。倘若通常膨胀阀是紧靠蒸发器安装的。倘若将它安装在被冷却空间内,传给管

25、道的热量将它安装在被冷却空间内,传给管道的热量将产生有效制冷量;若安装在室外,热量的将产生有效制冷量;若安装在室外,热量的传递使制冷减少,因而此段管道必须保温。传递使制冷减少,因而此段管道必须保温。压力降也没关系。压力降也没关系。(4 4)膨胀阀到蒸发器之间的管道)膨胀阀到蒸发器之间的管道(5 5)冷凝器)冷凝器 假定出冷凝器的压力不变,为克服冷凝器假定出冷凝器的压力不变,为克服冷凝器中制冷剂的流动阻力,必须提高进冷凝器时中制冷剂的流动阻力,必须提高进冷凝器时制冷剂的压力,这必须导致压缩机的排气压制冷剂的压力,这必须导致压缩机的排气压力升高,压力比增大,压缩机耗功增加,制力升高,压力比增大,压

26、缩机耗功增加,制冷系数下降。冷系数下降。(6 6)蒸发器)蒸发器 若保证蒸发器的出口压力不变,为克服蒸若保证蒸发器的出口压力不变,为克服蒸发器中制冷剂的流动阻力,必须提高进蒸发器发器中制冷剂的流动阻力,必须提高进蒸发器时制冷剂的压力,这必然导致平均蒸发温度升时制冷剂的压力,这必然导致平均蒸发温度升高,传热温差下降高,传热温差下降。若保证传热温差不变,克服蒸发器中制若保证传热温差不变,克服蒸发器中制冷剂的流动阻力,这必然导致压缩机的吸气冷剂的流动阻力,这必然导致压缩机的吸气压力下降,吸气比容增大,压力比增大,压压力下降,吸气比容增大,压力比增大,压缩机耗功增加,制冷量减小,制冷系数下降缩机耗功增

27、加,制冷量减小,制冷系数下降。(7 7)压缩机)压缩机 在理论循环中,假设压缩过程为等熵过程。在理论循环中,假设压缩过程为等熵过程。而实际上,整个过程是一个压缩指数而实际上,整个过程是一个压缩指数 在不断在不断变化的多方过程。另外,由于压缩机气缸中有变化的多方过程。另外,由于压缩机气缸中有余隙容积的存在,气体经过吸、排气阀及通道余隙容积的存在,气体经过吸、排气阀及通道出有热量交换及流动阻力,这些因素都会使压出有热量交换及流动阻力,这些因素都会使压缩机的输气量减少,制冷量下降,消耗的功率缩机的输气量减少,制冷量下降,消耗的功率增大。增大。图图2-22 2-22 实际循环在实际循环在T-sT-s图

28、(图(a a)和)和lglg p-hp-h图(图(b b)上的表示)上的表示简化后的实际循环在简化后的实际循环在 p-h图上的表示图上的表示phkp0p2s345120下面是按照这样简化后的循环的性能指标下面是按照这样简化后的循环的性能指标的表达式,各下标对应于图的表达式,各下标对应于图2-232-23所示的状所示的状态点。态点。1201041510hhwvqqhhhhqsv (2-33)这些同理论循环的计算完全一致。这些同理论循环的计算完全一致。1 1单位制冷量、单位容积制冷量及单位单位制冷量、单位容积制冷量及单位理论功理论功qhhk24 (2-34)上式中点上式中点2 2状态的焓值用下式计

29、算状态的焓值用下式计算1122)(hhhhis (2-35)式中i 为压缩机的指示效率,它被定为压缩机的指示效率,它被定义为等熵压缩过程耗功量与实际压缩过程义为等熵压缩过程耗功量与实际压缩过程耗功量之比。耗功量之比。2 2单位冷凝热单位冷凝热3 3制冷剂的循环流量制冷剂的循环流量00qQqm 式中Q0为制冷量,通常由设计任务给出。(2-36)4 4压缩机的理论功率和指示功率分别为压缩机的理论功率和指示功率分别为00wqNmiiNN0(2-38)5 5实际制冷系数实际制冷系数)/(0eisNQ(2-39)6 6冷凝器的热负荷冷凝器的热负荷kmkqqQ (2-40)式中e为压缩机的机械效率。2.3

30、 单级蒸气压缩式制冷机的性能及工况w 2.3.1 蒸发温度对循环性能的影响蒸发温度对循环性能的影响w 2.3.2 冷凝温度对循环性能的影响冷凝温度对循环性能的影响w 2.3.3 制冷机工况制冷机工况ph3kp45120p5120p0q0w0q0w2.3.1 2.3.1 蒸发温度对循环性能的影响蒸发温度对循环性能的影响 当蒸发温度减小时:当蒸发温度减小时:1 1、单位容积制冷量、单位容积制冷量141vhhqv2 2、比容积功、比容积功112100vhhvwwv111110010110100kkkkkkvppkkpppvvpkkvww减小减小未知未知近似认为制冷剂正气为理想气体近似认为制冷剂正气为

31、理想气体1110000kkkVvVppqpkkwqPhh压缩机的理论功率压缩机的理论功率 对上式求导数,并令对上式求导数,并令000pP即可求出功率为最大值时的压缩比即可求出功率为最大值时的压缩比1max00kkPkkpp通过对不同制冷剂的计算发现:通过对不同制冷剂的计算发现:31kkk3 3、制冷系数、制冷系数123100hhhhwq氨的制冷系数与蒸发温度的关系氨的制冷系数与蒸发温度的关系 减小减小2.3.2 2.3.2 冷凝温度对循环性能的影响冷凝温度对循环性能的影响 ph52kp0q0w0w当冷凝温度升高时:当冷凝温度升高时:0q43kp4520p11 1、单位容积制冷量、单位容积制冷量

32、131vhhqv2 2、比容积功增加、比容积功增加 112100vhhvwwv3 3、制冷系数、制冷系数123100hhhhwq 综上所述,我们希望:综上所述,我们希望:蒸发温度尽可能高:蒸发温度尽可能高:在满足被冷却在满足被冷却物体的温度要求下;物体的温度要求下;冷凝温度尽可能低:冷凝温度尽可能低:在冷却介质能在冷却介质能满足的条件下。满足的条件下。减小减小增加增加急剧减小急剧减小2.3.3 制冷机工况制冷机工况制冷制冷剂剂类类型型试验工况试验工况蒸发蒸发温度温度冷凝冷凝温度温度吸气温度吸气温度过冷过冷温度温度R22R22高高温温用用空调工况空调工况5 540/5540/55151535/5035/50最大压差工况最大压差工况-5-550501515(3 3)4545最大轴功率工况最大轴功率工况1010555515155050低低温温用用标准工况标准工况-15-15303015152525最大压差工况最大压差工况-30-3045450 0(-22-22)4040最大轴功率工况最大轴功率工况-5-5454515154040R12R12标准工况标准工况-15-15303015152525最大压差工况最大压差工况-30-3050500 0(-22-22)4545最大轴功率工况最大轴功率工况-3-3505015154545全封闭式压缩机试验工况全封闭式压缩机试验工况

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!