破坏准则学习教案

上传人:辰*** 文档编号:109446260 上传时间:2022-06-16 格式:PPTX 页数:87 大小:1.61MB
收藏 版权申诉 举报 下载
破坏准则学习教案_第1页
第1页 / 共87页
破坏准则学习教案_第2页
第2页 / 共87页
破坏准则学习教案_第3页
第3页 / 共87页
资源描述:

《破坏准则学习教案》由会员分享,可在线阅读,更多相关《破坏准则学习教案(87页珍藏版)》请在装配图网上搜索。

1、会计学1破坏准则破坏准则第一页,编辑于星期二:五点 二十分。 在主应力空间中,在主应力空间中,与各坐标轴保持等距的各点连结成为静水压力轴(即与各坐标轴保持等距的各点连结成为静水压力轴(即各点应力状态均满足:各点应力状态均满足:1=2=3)。)。 此轴必通过坐标原点,且与各坐标轴的夹角相等,此轴必通过坐标原点,且与各坐标轴的夹角相等,均为均为)3/1cos( arc 静水压力轴上一点与坐标原静水压力轴上一点与坐标原点的距离称为点的距离称为静水压力(静水压力(); 其值为其值为3个主应力在静水个主应力在静水压力轴上的投影之和,故压力轴上的投影之和,故:cot132133313/ )(mI-1-3-

2、2312+(1, 2)-(1, 2)静水压力轴静水压力轴第1页/共87页第二页,编辑于星期二:五点 二十分。垂直于静水压力轴的平面为偏平面。垂直于静水压力轴的平面为偏平面。3个主应力轴在偏平面上的投影各成个主应力轴在偏平面上的投影各成120o角。角。同一偏平面上的每一点的同一偏平面上的每一点的3个主应力之和为一常数:个主应力之和为一常数:I1为应力张量为应力张量ij的第一不变量的第一不变量1321Iconst 偏平面与破坏包络曲面的交线成为偏平面包络线。偏平面与破坏包络曲面的交线成为偏平面包络线。不同静水压力下的偏平面包络线构成一族封闭曲线。不同静水压力下的偏平面包络线构成一族封闭曲线。第2页

3、/共87页第三页,编辑于星期二:五点 二十分。 偏平面包络线为偏平面包络线为三折对称三折对称,有夹角,有夹角60o范围内的曲线段,和直线段一范围内的曲线段,和直线段一起共同构成全包络线。取起共同构成全包络线。取主应力轴正方向处为主应力轴正方向处为=0o,负方向处为,负方向处为=60o ,其余各处为其余各处为0o60o。 在偏平面上,在偏平面上,包络线上一点至静水压力轴的距离称为偏应力包络线上一点至静水压力轴的距离称为偏应力 r。偏应力在偏应力在=0o处最小处最小(rt),随),随角逐渐增大,至角逐渐增大,至=60o处为最大处为最大(rc),故,故rt rc 。第3页/共87页第四页,编辑于星期

4、二:五点 二十分。 一些特殊应力状态的混凝土强度点,在破坏包络面上占有特定的位置。从工一些特殊应力状态的混凝土强度点,在破坏包络面上占有特定的位置。从工程观点,混凝土沿各个方向的力学性能可看作相同,即立方体试件的多轴强度程观点,混凝土沿各个方向的力学性能可看作相同,即立方体试件的多轴强度只取决于应力比例只取决于应力比例 1:2:3,而与各应力的作用方向,而与各应力的作用方向X、Y、Z无关。例如无关。例如: 混凝土的单轴抗压强度混凝土的单轴抗压强度 fc 和抗拉强度和抗拉强度 ft 不论作用在哪一个方向,都有相不论作用在哪一个方向,都有相等的强度值等的强度值。在包络面各有在包络面各有3个点,分别

5、位于个点,分别位于3个坐标轴的负、正方向;个坐标轴的负、正方向;第4页/共87页第五页,编辑于星期二:五点 二十分。 同理,混凝土的二轴等压(同理,混凝土的二轴等压(1=0,f2=f3=fcc)和等拉()和等拉( 3=0, f1=f2=ftt )强度位于坐标平面内的两个坐标轴的等分线上,)强度位于坐标平面内的两个坐标轴的等分线上,3个坐标面内各有一点;个坐标面内各有一点; 混凝土的三轴等拉强度(混凝土的三轴等拉强度(fl=f2=f3=fttt )只有一点且落在静水压力轴的正方向。只有一点且落在静水压力轴的正方向。 对于任意应力比对于任意应力比(flf2f3)的三轴受压、受拉或拉压应力状态,从工

6、程观点的三轴受压、受拉或拉压应力状态,从工程观点考虑混凝土的各向同性,考虑混凝土的各向同性,可由坐标或主应力可由坐标或主应力(fl,f2,f3 )值的轮换(破坏横截面三重对称),在应力空间中各画出值的轮换(破坏横截面三重对称),在应力空间中各画出6个点,位于同一偏平面上,且夹角个点,位于同一偏平面上,且夹角值相等。值相等。第5页/共87页第六页,编辑于星期二:五点 二十分。 破坏包络曲面的三维立体图既不便绘制,又不适于理解和应用,常改用拉压子午面和偏平面上的平面图形来表示。破坏包络曲面的三维立体图既不便绘制,又不适于理解和应用,常改用拉压子午面和偏平面上的平面图形来表示。 拉压子午面拉压子午面

7、为为静水压力轴与任一主应力轴(如图中的静水压力轴与任一主应力轴(如图中的3轴)组成的平面,同时通过另两个主应力轴(轴)组成的平面,同时通过另两个主应力轴( 1 , 2 )的等分线)的等分线。此平面与破坏包络面的交线,分别称为拉、压子午线。此平面与破坏包络面的交线,分别称为拉、压子午线。1、拉子午线的应力条件为、拉子午线的应力条件为1 2 = 3 ,线上特征强度点有单轴受拉,线上特征强度点有单轴受拉(ft,0,0)和二轴等压和二轴等压(0,-fcc,-fcc)在偏平面上的夹角为)在偏平面上的夹角为 =0o ;2、压子午线的应力条件则为、压子午线的应力条件则为1 = 2 3 ,线上有单轴受压,线上

8、有单轴受压(0,0,-fc )和二轴等拉和二轴等拉(ftt, ftt, 0),在偏平面上的夹角,在偏平面上的夹角 =60o。 3、拉、压子午线与静水压力轴同交于一点,即三轴等拉、拉、压子午线与静水压力轴同交于一点,即三轴等拉(fttt, fttt, fttt)。拉、压子午线至静水压力轴的垂直距离即为偏应力。拉、压子午线至静水压力轴的垂直距离即为偏应力 rt 和和 rc。 =0o =60o第6页/共87页第七页,编辑于星期二:五点 二十分。 拉压子午线的命名,并非指应力状态的拉或压,而是相应于三轴试验过拉压子午线的命名,并非指应力状态的拉或压,而是相应于三轴试验过程。程。 若试件先施加静水应力若

9、试件先施加静水应力1 = 2 = 3 ,后在一轴后在一轴1上施加拉力上施加拉力,得得1 2 = 3 ,称拉子午线;,称拉子午线; 若试件先施加静水应力若试件先施加静水应力1 = 2 = 3 ,后在另一轴后在另一轴3上施加压力上施加压力,得,得1 =2 3 ,称压子午线。,称压子午线。 另外也可以理解为另外也可以理解为以单轴拉、压以单轴拉、压条件定义拉、压子午线,条件定义拉、压子午线,即即单轴拉单轴拉状态所在的子午线成为拉子午状态所在的子午线成为拉子午线线,而,而单轴压状态所在的子午线成单轴压状态所在的子午线成为压子午线为压子午线。 试验研究指出,混凝土的三维破坏试验研究指出,混凝土的三维破坏面

10、也面也可用三维主应力空间破坏曲可用三维主应力空间破坏曲面的圆柱坐标面的圆柱坐标,r,来描述来描述,其本身也其本身也是应力不变量是应力不变量。 =0o =60o第7页/共87页第八页,编辑于星期二:五点 二十分。12oNr31 =2 = 3oct3oct3圆柱坐标系及主应力空间应力分解圆柱坐标系及主应力空间应力分解,r,的几何表示的几何表示12oNP(1 ,2 , 3)r3e=60o=0orcrt拉子午线拉子午线压子午线压子午线偏平面-3+3-(1, 2)等应力轴和一个主应力轴组成的平面通过另两个主应力轴的等分线等应力轴和一个主应力轴组成的平面通过另两个主应力轴的等分线转换过转换过程归纳程归纳偏

11、平面偏平面1-12-2-33rN静水应力偏斜应力偏斜应力平面中矢量的方向P第8页/共87页第九页,编辑于星期二:五点 二十分。 将以上图形绕坐标原点逆时针方向旋转一角度将以上图形绕坐标原点逆时针方向旋转一角度(90o),得到以静水压力轴,得到以静水压力轴()为横坐标、偏应力为横坐标、偏应力(r)为纵坐标的拉、压子午线。为纵坐标的拉、压子午线。 于是,空间的破坏包络面于是,空间的破坏包络面改为由子午面和偏平面上的包络曲线来表达改为由子午面和偏平面上的包络曲线来表达。破坏面破坏面上任一点的直角坐标上任一点的直角坐标(fl , f2, f3 )改为由圆柱坐标改为由圆柱坐标(,r,)来表示来表示,换算

12、关系为:换算关系为:)6/()2(cos33/)()()(33/)(321213232221321rfffffffffrfffoctoct 由上式可知,将上图的坐标缩小由上式可知,将上图的坐标缩小 可以用八面体正应力(可以用八面体正应力(oct)和)和剪应力(剪应力(oct)坐标代替静水压力)坐标代替静水压力和偏应力坐标,得到相应的拉、和偏应力坐标,得到相应的拉、压子午线和破坏包络线。压子午线和破坏包络线。3第9页/共87页第十页,编辑于星期二:五点 二十分。 根据试验结果绘制的拉、压子午线和偏平面包络线。根据试验结果绘制的拉、压子午线和偏平面包络线。 子午线按照偏平面夹角划分,试验点的子午线

13、按照偏平面夹角划分,试验点的=3060o 分别列在横坐分别列在横坐标轴的上、下。标轴的上、下。第10页/共87页第十一页,编辑于星期二:五点 二十分。试验时测试试验时测试=0o60o的扇形(其他的扇形是对称的)的扇形(其他的扇形是对称的) 偏平面包络线则以八面体应力值分段给出。图中曲线为混凝土破坏偏平面包络线则以八面体应力值分段给出。图中曲线为混凝土破坏准则的理论值。准则的理论值。 第11页/共87页第十二页,编辑于星期二:五点 二十分。 根据国内外混凝土多轴强根据国内外混凝土多轴强度的大量试验资料分析,破度的大量试验资料分析,破坏包络曲面的几何形状具有坏包络曲面的几何形状具有如下特征:如下特

14、征:曲面连续、光滑、外凸;曲面连续、光滑、外凸;对静水压力轴三折对称,对静水压力轴三折对称,当应力状态为静水应力与单当应力状态为静水应力与单向拉应力叠加时,向拉应力叠加时,=0o,故,故=0o的子午线称为受拉子午线的子午线称为受拉子午线。如将单向拉应力换为压应力。如将单向拉应力换为压应力,则相应于受压子午线,则相应于受压子午线,=60o。破坏曲线与等应力轴破坏曲线与等应力轴有关。在有关。在轴的正向,静水压力轴的拉端封闭轴的正向,静水压力轴的拉端封闭,顶点为三轴等拉应力状态;在,顶点为三轴等拉应力状态;在轴的负向,压端开口,不与静水压力轴的负向,压端开口,不与静水压力轴相交,破坏曲线的开口随轴相

15、交,破坏曲线的开口随轴绝对值的增大而增大;轴绝对值的增大而增大;第12页/共87页第十三页,编辑于星期二:五点 二十分。子午线上各点的偏应力或子午线上各点的偏应力或八面体剪应力值,八面体剪应力值,随静水压随静水压力或八面体正应力的力或八面体正应力的代数值代数值的的减小而单调增大,但斜率渐减小而单调增大,但斜率渐减,有极限值;减,有极限值;偏平面上的封闭曲线三折偏平面上的封闭曲线三折对称,其形状对称,其形状随静水压力或随静水压力或八面体正应力值的减小,由八面体正应力值的减小,由近似三角形近似三角形(rtrc0.5)逐渐外凸逐渐外凸饱满,过渡为一圆饱满,过渡为一圆(rtrc=1)。)。第13页/共

16、87页第十四页,编辑于星期二:五点 二十分。 将混凝土的破坏包络曲面用数学函数加以描述,作为将混凝土的破坏包络曲面用数学函数加以描述,作为判定混凝土是否达到破坏状态或极限强度的条件,称为判定混凝土是否达到破坏状态或极限强度的条件,称为破坏准则或强度准则。破坏准则或强度准则。虽然它不属基于机理分析、具有明虽然它不属基于机理分析、具有明确物理概念的强度理论,但它是大量试验结果的总结,具确物理概念的强度理论,但它是大量试验结果的总结,具有足够的计算准确性,对实际工程有重要的指导意义。有足够的计算准确性,对实际工程有重要的指导意义。 1、分类:、分类: 借用古典强度理论的观点和计算式借用古典强度理论的

17、观点和计算式; 以混凝土多轴强度试验资料为基础的经验回归式;以混凝土多轴强度试验资料为基础的经验回归式; 以包络曲面的几何形状特征为依据的纯数学推导式,参数以包络曲面的几何形状特征为依据的纯数学推导式,参数值由若干特征强度值标定。各个准则的表达方式和简繁程度各值由若干特征强度值标定。各个准则的表达方式和简繁程度各异,适用范围和计算精度差别大,使用时应认真选择。异,适用范围和计算精度差别大,使用时应认真选择。第14页/共87页第十五页,编辑于星期二:五点 二十分。2、著名的古典强度理论包括:、著名的古典强度理论包括:最大主拉应力理论(最大主拉应力理论(Rankine);最大主拉应变理论(最大主拉

18、应变理论(Mariotto););最大剪应力理论最大剪应力理论(Tresca);统计平均剪应力理论(统计平均剪应力理论(Von Mises);Mohr-Coulomb理论;理论;Drucker-Prager理论。理论。 共同特点:共同特点: 针对某种特定材料而提出,对于解释材料破坏的内在原因和规律针对某种特定材料而提出,对于解释材料破坏的内在原因和规律有明确的理论(物理)观点,有相应的试验验证,破坏包络面的有明确的理论(物理)观点,有相应的试验验证,破坏包络面的几何形状简单,计算式简明,只含几何形状简单,计算式简明,只含1个或个或2个参数,其值易于标定。因个参数,其值易于标定。因而,它们应用于

19、相适应的材料时,可在工程实践中取得良好的效果。例如而,它们应用于相适应的材料时,可在工程实践中取得良好的效果。例如.Von Mises准则适用于塑性材料(如软钢),在金属的塑性力学中应用准则适用于塑性材料(如软钢),在金属的塑性力学中应用最广;最广;Mohr-Coulomb准则反映了材料抗拉和抗压强度不等(准则反映了材料抗拉和抗压强度不等( ftfc)的特点)的特点,适用于脆性的土壤、岩石类材料,在岩土力学中广为应用。,适用于脆性的土壤、岩石类材料,在岩土力学中广为应用。第15页/共87页第十六页,编辑于星期二:五点 二十分。第16页/共87页第十七页,编辑于星期二:五点 二十分。3、以混凝土

20、多轴强度试验资料为基础的经验回归式、以混凝土多轴强度试验资料为基础的经验回归式 随试验数据的积累,许多研究人员提出了若干基于试验结果、随试验数据的积累,许多研究人员提出了若干基于试验结果、较为准确、但数学形式复杂的混凝土破坏准则。准则中一般需要较为准确、但数学形式复杂的混凝土破坏准则。准则中一般需要包含包含45个参数。个参数。第17页/共87页第十八页,编辑于星期二:五点 二十分。这些破坏准则的原始表达式中采用了不同的应力量作这些破坏准则的原始表达式中采用了不同的应力量作为变量,分为变量,分5种:种:主应力主应力fl , f2, f3 ;应力不变量应力不变量Il ,J2,J3 ;静水压力和偏应

21、力静水压力和偏应力 , r,;八面体应力八面体应力 oct ,oct ;平均应力平均应力m ,m 。 采用上述应力量致使准则的数学形式差别很大,不便采用上述应力量致使准则的数学形式差别很大,不便作深入对比分析。但这些应力量借助下列基本公式可以作深入对比分析。但这些应力量借助下列基本公式可以很方便地互相变换:很方便地互相变换:第18页/共87页第十九页,编辑于星期二:五点 二十分。 采用上述应力量致使准则的数学形式差别很大,不便作深人采用上述应力量致使准则的数学形式差别很大,不便作深人对比分析。但这些应力量借助下列基本公式可以很方便地互相对比分析。但这些应力量借助下列基本公式可以很方便地互相变换

22、:变换:3oct31.52332132123213212213232221013210J22JJ33cos3 30262322232cos353323)()()(333或moctmoctcmoctcfffrfffJffffffrJfffffffIffff 最终可统一用相对八面体强度(最终可统一用相对八面体强度( 0 = oct / fc和和0= oct / fc )表达,经)表达,经归纳得子午线方程的归纳得子午线方程的3种基本形式:种基本形式:第19页/共87页第二十页,编辑于星期二:五点 二十分。 最终可统一用相对八面体强度(最终可统一用相对八面体强度( 0 = oct / fc和和0= o

23、ct / fc )表达,经归纳得子午线方程的)表达,经归纳得子午线方程的3种基本形式:种基本形式:HGFEDCBA)(0020002000 一些常用的、有代表性的混凝土破坏准则列于下表一些常用的、有代表性的混凝土破坏准则列于下表,同同时给出了原始表达式和统一表达式,可看到两者中参数的互时给出了原始表达式和统一表达式,可看到两者中参数的互换关系。换关系。第20页/共87页第二十一页,编辑于星期二:五点 二十分。第21页/共87页第二十二页,编辑于星期二:五点 二十分。 过镇海、王传志、张秀琴等搜集了国内外大量的混过镇海、王传志、张秀琴等搜集了国内外大量的混凝士多轴强度试验数据,与按上述准则计算的

24、理论值凝士多轴强度试验数据,与按上述准则计算的理论值进行全面比较,根据三项标准:进行全面比较,根据三项标准:计算值与试验强度的相符程度;计算值与试验强度的相符程度;适用的应力范围宽窄;适用的应力范围宽窄;理论破坏包络面几何特征的合理性等加以评定。理论破坏包络面几何特征的合理性等加以评定。所得结论为:所得结论为:较好的准则:过较好的准则:过王、王、Ottosen和和Podgorski准则;准则;一般的准则:一般的准则:Hsieh-Ting-Chen,Kotsovos, Willam-Warnke准则;准则;较差准则:较差准则:Bresler-Pister准则。准则。 在结构的有限元分析中,可根据

25、结构的应力范围和准确度在结构的有限元分析中,可根据结构的应力范围和准确度要求选用合理的混凝土破坏准则。要求选用合理的混凝土破坏准则。第22页/共87页第二十三页,编辑于星期二:五点 二十分。4、以包络曲面的几何形状特征为依据的纯数学推导公式以包络曲面的几何形状特征为依据的纯数学推导公式 模式规范模式规范CEB FIP MC90C采纳了采纳了Ottosen准则。它根据偏平面包络线准则。它根据偏平面包络线由三角形过渡为圆形的特点、应用薄膜比拟法:即在等边三角形边框上由三角形过渡为圆形的特点、应用薄膜比拟法:即在等边三角形边框上蒙上一薄膜,承受均匀压力后薄膜鼓起,等高线的形状由外向内的变化蒙上一薄膜

26、,承受均匀压力后薄膜鼓起,等高线的形状由外向内的变化恰好相同据此建立了二阶偏微分方程,求解后转换得到以应力不变量恰好相同据此建立了二阶偏微分方程,求解后转换得到以应力不变量表达的破坏准则式:表达的破坏准则式:011222cccfIbfJfJa)3cos(cos313cos 0cos3 ,30 )3cos(cos31cosr1 0cos3 ,30 211o211okkkk时即当时即当第23页/共87页第二十四页,编辑于星期二:五点 二十分。011222cccfIbfJfJa)3cos(cos313cos 0cos3 ,30 )3cos(cos31cosr1 0cos3 ,30 211o211ok

27、kkk时即当时即当其中:其中: a和和b决定子午线的形状,决定子午线的形状, k1和和k2分别决定偏平面包络分别决定偏平面包络线的大小和形状。线的大小和形状。标定参数值的标定参数值的4个特征强度值取为:个特征强度值取为:单轴抗压单轴抗压(- fc)、单轴抗拉、单轴抗拉(ft)、二轴等压)、二轴等压(fcc=1.16 fc) 三轴抗压强度三轴抗压强度22/J , 5/,60210ccffI第24页/共87页第二十五页,编辑于星期二:五点 二十分。三轴抗压强度三轴抗压强度按下式计算各特征强度的按下式计算各特征强度的22/J , 5/,60210ccffI代入代入值 , J , 21I3oct31.

28、52332132123213212213232221013210J22JJ33cos3 30262322232cos353323)()()(333或moctmoctcmoctcfffrfffJffffffrJfffffffIffff011222cccfIbfJfJa)3cos(cos313cos 0cos3 ,30 )3cos(cos31cosr1 0cos3 ,30 211o211okkkk时即当时即当第25页/共87页第二十六页,编辑于星期二:五点 二十分。 得得4阶联立方程,解得各参数值。若取阶联立方程,解得各参数值。若取ft=0.1fc,解得的,解得的4个参数为:个参数为:a=1. 2

29、759, b=3.1962 k111.7365,k2=0.9801Hsieh-Ting-Chen和和Podgorski准则是对准则是对Ottosen准则的简化和准则的简化和修正。修正。第26页/共87页第二十七页,编辑于星期二:五点 二十分。 我国的我国的混凝土结构设计规范混凝土结构设计规范附录附录C.4中采纳了过中采纳了过王准则,其王准则,其与试验结果相符较好、以八面体应力无量纲量表达、应用幕函与试验结果相符较好、以八面体应力无量纲量表达、应用幕函数拟合混凝土的破坏包络面,一般计算式为数拟合混凝土的破坏包络面,一般计算式为:octoctoctctdcoctcoctdcoctfffarcrff

30、fffffffcccfcfbacbaf232cos 31)()()(31313)23(sin)23(cos/32121323222132125.10004.7.3、规范中的破坏准则、规范中的破坏准则 破坏准则的计算公式破坏准则的计算公式第27页/共87页第二十八页,编辑于星期二:五点 二十分。式中式中5个参数都有明确的几何(物理)意义:个参数都有明确的几何(物理)意义: 当当 a=0,max时,时,0时时0有极限值(高压应力状态),即有极限值(高压应力状态),即25.1000)23(sin)23(cos/ctdcoctcoctdcoctcccfcfbacbaf参数参数b,当,当oct/ fc=

31、0时,时,b= oct/ fc即包络面或子午线与静水压力即包络面或子午线与静水压力轴交点的坐标;故轴交点的坐标;故b值为混凝土三轴等拉强度(值为混凝土三轴等拉强度( f1= f2 = f3= fttt)与单与单轴抗压强度的比值轴抗压强度的比值 符合破坏曲面包络线随符合破坏曲面包络线随oct的增大由近似三角形趋向圆柱面过渡的的增大由近似三角形趋向圆柱面过渡的特性;即,此时,拉、压子午线与静水压力轴平行切等距(特性;即,此时,拉、压子午线与静水压力轴平行切等距(rc=rt),偏平面上包络线为一半径,偏平面上包络线为一半径a的圆,破坏包络面趋于圆柱形。的圆,破坏包络面趋于圆柱形。maxcoctfac

32、tttffb第28页/共87页第二十九页,编辑于星期二:五点 二十分。 0d1. 0时,时, =0o时时c=ct,=60o时。时。 c=cc ,代人上式分别得拉、压,代人上式分别得拉、压子午线,即为拉、压子午线对应的剪切强度。子午线,即为拉、压子午线对应的剪切强度。 当当=0o增增加到加到60o时,时,ct逐渐增加至逐渐增加至cc,符合光滑、外凸的特性;,符合光滑、外凸的特性;dcoctcoctcoctfcfbaf/ 其导数在其导数在 oct/ fc=b处的数值为处的数值为,即切线垂直于横坐标,即切线垂直于横坐标,拉、压子午线在此处连续,破坏包络面顶点处连续、光滑;,拉、压子午线在此处连续,破

33、坏包络面顶点处连续、光滑;25 .1000)23(sin)23(cos/ctdcoctcoctdcoctcccfcfbacbaf第29页/共87页第三十页,编辑于星期二:五点 二十分。 另外,由于该破坏准则是根据包括整个应力空间另外,由于该破坏准则是根据包括整个应力空间8个个象限的各种应力状态的上千个试验点建立起来的,所以象限的各种应力状态的上千个试验点建立起来的,所以它不仅在中、高静水压力区域实验值符合较好,而且在它不仅在中、高静水压力区域实验值符合较好,而且在拉区乃至三向等拉状态也能较好地反映实际受力情况。拉区乃至三向等拉状态也能较好地反映实际受力情况。 该准则适用于平面应力、平面应变、三

34、向受压、三该准则适用于平面应力、平面应变、三向受压、三向受拉、乃至三向拉压等多种应力状态,且计算简单向受拉、乃至三向拉压等多种应力状态,且计算简单,便于工程设计和非线性分析应用。,便于工程设计和非线性分析应用。25 .1000)23(sin)23(cos/ctdcoctcoctdcoctcccfcfbacbaf第30页/共87页第三十一页,编辑于星期二:五点 二十分。 计算参数值的确定计算参数值的确定 混凝土破坏准则中包含的混凝土破坏准则中包含的5个参数,可以用全部试验数据个参数,可以用全部试验数据进行回归分析拟定,也可在破坏包络面上,或拉、压子午线上进行回归分析拟定,也可在破坏包络面上,或拉

35、、压子午线上选定任意选定任意5个特征强度值加以标定。前者计算工作量大,一般个特征强度值加以标定。前者计算工作量大,一般取用后者。取用后者。 单轴抗压和抗拉强度是混凝土的基本强度指标,应作为首单轴抗压和抗拉强度是混凝土的基本强度指标,应作为首选的二个特征强度值。其余选的二个特征强度值。其余3个特征强度可以选用:包络面个特征强度可以选用:包络面顶端,即拉压子午线交点处的三轴等拉强度;试验数量较顶端,即拉压子午线交点处的三轴等拉强度;试验数量较多的二轴等压强度;和一个强度较高的常规三轴抗压强度多的二轴等压强度;和一个强度较高的常规三轴抗压强度(0 f1= f2 f3,=60o )。这样使拉、压子午线

36、上各)。这样使拉、压子午线上各有有3个控制点,可以较好地拟合试验结果。个控制点,可以较好地拟合试验结果。第31页/共87页第三十二页,编辑于星期二:五点 二十分。 将这将这5个特征值的应力状态分别代入式个特征值的应力状态分别代入式计算计算octoctoctfffarcrfffffffff232cos 31)()()(31313321213232221321coctfcoctf第32页/共87页第三十三页,编辑于星期二:五点 二十分。并代人破坏准则计算式,并代人破坏准则计算式,可得可得5个联立方程如下:个联立方程如下:25.1000)23(sin)23(cos/ctdcoctcoctdcoctc

37、ccfcfbacbafdddddScSba TFcFbaF.FcFbaScSbaTcba0t00tc60c6060c 3/3/47140 0 3/13/10.4714 从这些方程求解从这些方程求解5个参数值,个参数值,难有显式解,可采用迭代法难有显式解,可采用迭代法进行数值计算:进行数值计算: 第33页/共87页第三十四页,编辑于星期二:五点 二十分。由式由式直接得:直接得:dddddScSba TFcFbaF.FcFbaScSbaTcba0t00tc60c6060c 3/3/47140 0 3/ 13/ 10.4714 ctttffFbc ffFffttttt、其中:其中:由其余由其余4式消

38、去参数式消去参数a,有:,有:F.TScFcFbSbFcFcFbbTSccbSb471403/3/ 13/ 13/3/3/ 1 4714. 03/ 13/ 1 0d0tt0dct60d60cc60第34页/共87页第三十五页,编辑于星期二:五点 二十分。由式由式F.TScFcFbSb471403/3/ 0d0tt0得参数得参数 d 的计算式:的计算式:3/log47140log3/3/log47140log0000tt0FbSbnF.TFbSbScFcF.Td13/0ttScFcn其中取第35页/共87页第三十六页,编辑于星期二:五点 二十分。4714. 03/13/1 60d60cc60TS

39、ccbSb由式由式1/ 1606060cc4714. 03/13/1KTSbbSccd160113/ 1KSKcc取取得得由式由式FcFcFbb13/ 13/3/3/ 1 dct取取2/ 1ct13/ 13/ 3/ 13/KFbFbcFcd得得3312FKccct第36页/共87页第三十七页,编辑于星期二:五点 二十分。最后由式最后由式中任意一式计算参数中任意一式计算参数a,取,取式得:式得:dtFcFbFa3/3/4714.0 在设定了在设定了5个特征强度值后、即个特征强度值后、即S60、T60、 S0、T0等值已知,可应等值已知,可应用这些方程进行迭代计算,以确定混凝土破坏准则的用这些方程

40、进行迭代计算,以确定混凝土破坏准则的5个参数值。其个参数值。其步骤如下:步骤如下:计算参数计算参数b;ctttffFb 设定设定n(1)的初始值,如)的初始值,如n0=0.98;代入代入计算参数计算参数d;3/log47140log3/3/log47140log0000tt0FbSbnF.TFbSbScFcF.Td由式由式第37页/共87页第三十八页,编辑于星期二:五点 二十分。代入代入1/ 1606060cc4714. 03/13/1KTSbbSccd2/ 1ct13/ 13/ 3/ 13/KFbFbcFcd计算计算K1和和K2;由式由式160113/ 1KSKcc3312FKccct计算参

41、数计算参数cc和和ct;代入代入13/0ttScFcn得得n的第一次近似值的第一次近似值n1,计算误差,计算误差,01nn 若不满足精度要求(取若不满足精度要求(取0.0001),),则按步骤则按步骤继续迭代计算;继续迭代计算;代入代入dtFcFbFa3/3/4714.0计算参数计算参数a。第38页/共87页第三十九页,编辑于星期二:五点 二十分。 确定这确定这5个参数采用的混凝土特征强度值为:个参数采用的混凝土特征强度值为:单轴抗压(单轴抗压( - fc); 单轴抗拉单轴抗拉(ft=0.1 fc,F=0.1););二轴等压二轴等压(fcc =1.28 fc , S0 = -0.8533, T

42、0= 0.6034););三轴等拉三轴等拉(fttt=0.9 ft ,=0.9););三轴抗压强度三轴抗压强度 (=60o, S60 = oct/fc=4, T60= oct/fc =2.7 )。)。 分别代入上式,用迭代法计算的参数值:分别代入上式,用迭代法计算的参数值: a6.9638 b=0.09 d=0.9297 ct12.2445 cc7.3319 第39页/共87页第四十页,编辑于星期二:五点 二十分。 按此公式可计算各种应力状态下的混凝土多轴强度理论值按此公式可计算各种应力状态下的混凝土多轴强度理论值,并绘制子午线和偏平面包络线,以及二轴和三轴包络线。,并绘制子午线和偏平面包络线

43、,以及二轴和三轴包络线。按此准则计算的混凝土多轴强度值与国内外的试验结果比较按此准则计算的混凝土多轴强度值与国内外的试验结果比较吻合。吻合。 将所得参数值代入基本方程,即得混凝土的破坏准则将所得参数值代入基本方程,即得混凝土的破坏准则公式:公式:25.19297.0)23(sin3319.7)23(cos2445.12/09.09638.6cfcffcoctcoctcoct第40页/共87页第四十一页,编辑于星期二:五点 二十分。 需要说明,选用的上述需要说明,选用的上述5个特征强度值,是分析了国内个特征强度值,是分析了国内外众多研究者的试验结果而确定的,与此相应的混凝土外众多研究者的试验结果

44、而确定的,与此相应的混凝土破坏准则(上两式)可适用于各种试验条件和全部多轴破坏准则(上两式)可适用于各种试验条件和全部多轴应力范围,总体计算准确度较高。如果针对某一种特定应力范围,总体计算准确度较高。如果针对某一种特定的混凝土材料,或者在有限的应力比或静水压力范围(的混凝土材料,或者在有限的应力比或静水压力范围(如二轴应力状态)内,为了得到更准确的破坏准则,可如二轴应力状态)内,为了得到更准确的破坏准则,可以通过试验测定,或参照已有试脸资料另行设定以通过试验测定,或参照已有试脸资料另行设定5个特征个特征强度值,用上述迭代法计算参数值,得相应的破坏准则计算强度值,用上述迭代法计算参数值,得相应的

45、破坏准则计算式。式。25.19297.0)23(sin3319.7)23(cos2445.12/09.09638.6cfcffcoctcoctcoct第41页/共87页第四十二页,编辑于星期二:五点 二十分。4.7.4多轴强度验算举例多轴强度验算举例 二维和三维结构在线弹性或非线性分析后获得了混凝土的多轴应二维和三维结构在线弹性或非线性分析后获得了混凝土的多轴应力状态,力状态,可按多轴强度设计值进行验算可按多轴强度设计值进行验算(如(如4.5所述),所述),也可采用破也可采用破坏准则进行验算坏准则进行验算,通常将混凝土的破坏准则编成程序,附在结构分析通常将混凝土的破坏准则编成程序,附在结构分析

46、之后,由计算机完成混凝土的应力分析和多轴强度验算。之后,由计算机完成混凝土的应力分析和多轴强度验算。 下面列举几个手算例题,说明具体的计算方法和步骤,有助于对混凝下面列举几个手算例题,说明具体的计算方法和步骤,有助于对混凝土破坏准则的理解。土破坏准则的理解。例例4-7 混凝土三向受压,应力比为混凝土三向受压,应力比为1 :2 :3 -0.15:-0.3:-1,用上述破坏准则计算相应的多轴强度值。用上述破坏准则计算相应的多轴强度值。解:设三轴抗压强度为:解:设三轴抗压强度为:cxff3另二个方向分别为:另二个方向分别为: 3.0 15.021ccxffxff其中其中 x 为待定值。为待定值。第4

47、2页/共87页第四十三页,编辑于星期二:五点 二十分。 计算无量纲的八面体正、剪应力和偏平面夹角:计算无量纲的八面体正、剪应力和偏平面夹角:ooctccoctccoctxxxxarcfffarcxxffffffffxxfffff48.503704. 0233 . 015. 02cos 232cos 3704. 0)15. 01() 13 . 0()3 . 015. 0(3)()()(314833. 0) 13 . 015. 0(3)(31321222213232221321代入代入25.1)23(sin3319.7)23(cos2445.12c3857. 8)48.505 . 1(sin331

48、9. 7)48.505 . 1(cos2445.1225 . 1ooc第43页/共87页第四十四页,编辑于星期二:五点 二十分。由准则:由准则:9297.0/09.09638.6coctcoctcoctfcff9297. 04833. 03857. 84833. 009. 09638. 63704. 0 xxx建立建立为一超越方程,解此超越方程得:为一超越方程,解此超越方程得: x=4.48混凝土的三轴抗压强度为:混凝土的三轴抗压强度为: 34.1 67.0 48.4213cccffffff试验结果表明,上述比例下的混凝土三轴抗压强度约为:试验结果表明,上述比例下的混凝土三轴抗压强度约为:cf

49、f)6.43.4(3与计算值接近。与计算值接近。 另一方面,若按混凝土规范三轴抗压强度设计值进行验算,相同应另一方面,若按混凝土规范三轴抗压强度设计值进行验算,相同应力比例下的三轴抗压强度仅为:力比例下的三轴抗压强度仅为: 69.0 345.0.0 3.2213cccffffff 比按前述破坏准则的计算值低很多。其主要原因是:给定的多轴压强比按前述破坏准则的计算值低很多。其主要原因是:给定的多轴压强度设计值有意比试验值偏低;未考虑第度设计值有意比试验值偏低;未考虑第2主应力主应力2的有利作用。的有利作用。第44页/共87页第四十五页,编辑于星期二:五点 二十分。例例4-8 一钢筋混凝土平面结构

50、,在荷载设计值作用下,按线弹性一钢筋混凝土平面结构,在荷载设计值作用下,按线弹性分析得最不利位置处的主应力为(分析得最不利位置处的主应力为(5、 16N/mm2),试确定混凝土),试确定混凝土的强度等级。用混凝土破坏准则进行计算。的强度等级。用混凝土破坏准则进行计算。解:该处混凝土的应力状态写成三轴应力形式:解:该处混凝土的应力状态写成三轴应力形式:1:3125.0:016:5:0:321设三轴抗压强度为:设三轴抗压强度为: cxff3相应有:相应有: cxfff3125.0 021、计算破坏准则的各项指标和参数值:计算破坏准则的各项指标和参数值:xxffffffffxxfffffccoctc

51、coct4177. 0)01() 13125. 0()3125. 00(3)()()(314375. 0) 13125. 00(3)(31222213232221321第45页/共87页第四十六页,编辑于星期二:五点 二十分。ooctxxxarcfffarc22.424177. 0233125. 00cos 232cos 3215375. 9)22.425 . 1(sin3319. 7)22.425 . 1(cos2445.1225 . 1ooc代入代入25.1)23(sin3319.7)23(cos2445.12c由准则:由准则:9297.0/09.09638.6coctcoctcoctfc

52、ff9297.04375.05375.94375.009.09638.64177.0 xxx为一超越方程,解此超越方程得:为一超越方程,解此超越方程得: x=1.37cff37.13第46页/共87页第四十七页,编辑于星期二:五点 二十分。此强度值大于按下图所给的混凝土多轴抗压强度设计值。此强度值大于按下图所给的混凝土多轴抗压强度设计值。cff37.13 2 .13cff试选试选C30混凝土,其单轴抗压强度设计值为混凝土,其单轴抗压强度设计值为fc=14.3N/mm2,故,故 16-59.19 , /59.193 .1437.13323fmmNf若该选若该选C25混凝土,其单轴抗压强度设计值为

53、混凝土,其单轴抗压强度设计值为fc=11.9N/mm2, 16-30.16 , /30.169 .1137.13323fmmNf也可满足承载能力要求,也可满足承载能力要求,3)21( 、ifii第47页/共87页第四十八页,编辑于星期二:五点 二十分。例例4-9 若混凝土三方向的应力比为:若混凝土三方向的应力比为:(+0.1 : + 0.06:1)和)和(+0.04: 0.5 : 1),确定相应的三轴拉),确定相应的三轴拉-压强度。用混凝土破坏压强度。用混凝土破坏准则进行计算。准则进行计算。 解:解: 三轴拉三轴拉-拉拉-压应力状态的应力比为:压应力状态的应力比为:1:06.0:1.0:321

54、设三轴抗压强度为:设三轴抗压强度为: cxff3ccxffxff60.0 1.021、4439. 7 16.58 5094. 0 28. 0cxfxfococtcoct代入相应计算公式:代入相应计算公式: 由准则得:由准则得:9297.028.04439.728.009.09638.65094.0 xxx解此超越方程得:解此超越方程得: x=0.571三轴拉压强度分别为:三轴拉压强度分别为: 571. 0 0343. 0 0571. 0321cccffffff第48页/共87页第四十九页,编辑于星期二:五点 二十分。解:解: 三轴拉三轴拉-拉拉-压应力状态的应力比为:压应力状态的应力比为:1:

55、5.0:04.0:321设三轴抗压强度为:设三轴抗压强度为: cxff3ccxffxff5.0 04.021、代入相应计算公式:代入相应计算公式: 063.11 732.28 4247. 0 4867. 0cxfxfococtcoct由准则得:由准则得:9297.04867.0063.114867.009.09638.64247.0 xxx解此超越方程得:解此超越方程得: x=1.044三轴拉压强度分别为:三轴拉压强度分别为: 044. 1 522. 0 0418. 0321cccffffff 按混凝土破坏准则计算的这些应力比例下的三轴拉按混凝土破坏准则计算的这些应力比例下的三轴拉-压强度,与

56、按二轴拉压强度,与按二轴拉-压压强度设计值计算的结果接近,二者相差不到强度设计值计算的结果接近,二者相差不到10%。第49页/共87页第五十页,编辑于星期二:五点 二十分。4.8.1本构关系的概念本构关系的概念 一切结构的力学分析,例如杆系结构的内力和变形分析,一切结构的力学分析,例如杆系结构的内力和变形分析,二、三维结构的应力和变形分析,以及构件的截面承载力和正二、三维结构的应力和变形分析,以及构件的截面承载力和正常使用阶段性能的分析等,都必须使用和满足三类基本方程,常使用阶段性能的分析等,都必须使用和满足三类基本方程,即:即:力学平衡方程;力学平衡方程;变形协调条件;变形协调条件;本构关系

57、。本构关系。 力学平衡方程力学平衡方程,无论是结构的整体或局部、静力或动力荷载的作用,无论是结构的整体或局部、静力或动力荷载的作用、分析的准确解或近似解都必须满足,这是混凝土结构进行结构分析最基、分析的准确解或近似解都必须满足,这是混凝土结构进行结构分析最基本的条件。本的条件。 变形协调条件,变形协调条件,是几何或机动方程。结构是连续体,在荷载作用是几何或机动方程。结构是连续体,在荷载作用下会发生变形和位移,但仍应为连续体。几个部分的变形应该是协调下会发生变形和位移,但仍应为连续体。几个部分的变形应该是协调的,在边界、支座、节点等处仍能互相吻合,这就是满足变形协调条的,在边界、支座、节点等处仍

58、能互相吻合,这就是满足变形协调条件。但有时为对结构计算简图作某些简化,件。但有时为对结构计算简图作某些简化, 第50页/共87页第五十一页,编辑于星期二:五点 二十分。 本构关系本构关系则是联系前二者,即力和变形间的物理方程,例如材料的应力则是联系前二者,即力和变形间的物理方程,例如材料的应力-应变(应变(-、-)或构件截面的弯矩)或构件截面的弯矩-曲率、轴力曲率、轴力-伸长(缩短)、扭矩伸长(缩短)、扭矩-转角等,转角等,之间的关系,之间的关系,统称为本构关系。统称为本构关系。 各种材料的、不同形式和体系的结构,在力学分析时所用的前二各种材料的、不同形式和体系的结构,在力学分析时所用的前二类

59、方程原则相同、数学形式相近,而本构关系可有很大差别。例如类方程原则相同、数学形式相近,而本构关系可有很大差别。例如,本构关系有弹性的、塑性的,还有与时间相关的黏弹性、黏塑性,本构关系有弹性的、塑性的,还有与时间相关的黏弹性、黏塑性的,与温度相关的热弹性、热塑性等。每一种特定的本构关系都可的,与温度相关的热弹性、热塑性等。每一种特定的本构关系都可发展成为一个相对独立的力学分支,如弹性力学、塑性力学、黏弹发展成为一个相对独立的力学分支,如弹性力学、塑性力学、黏弹(塑)性力学,热弹(塑)性力学等。近期发展的断裂力学、损伤(塑)性力学,热弹(塑)性力学等。近期发展的断裂力学、损伤力学等,也各有相应的本

60、构关系。由于本构关系的不同,这些力学力学等,也各有相应的本构关系。由于本构关系的不同,这些力学分支各有独特的分析思路和求解方法,并获得相应的计算结果。分支各有独特的分析思路和求解方法,并获得相应的计算结果。分析计算作了某些假定,造成难以完全满足各单元之间的变形协调分析计算作了某些假定,造成难以完全满足各单元之间的变形协调,特别是难以满足边界约束条件。因此,也不一定要求从微观上严,特别是难以满足边界约束条件。因此,也不一定要求从微观上严格满足变形协调,但在宏观上,即整体上,仍能满足变形协调条件格满足变形协调,但在宏观上,即整体上,仍能满足变形协调条件,使结构分析的结果与实际情况不致有较大的出入。

61、,使结构分析的结果与实际情况不致有较大的出入。第51页/共87页第五十二页,编辑于星期二:五点 二十分。 钢筋混凝土是一种特殊的组合结构材料。除了钢筋(钢筋混凝土是一种特殊的组合结构材料。除了钢筋(材)和混凝土本身的材料本构关系因所用材料的品种和材)和混凝土本身的材料本构关系因所用材料的品种和强度等级而不同外,还因二者的配合和相对比例、如面强度等级而不同外,还因二者的配合和相对比例、如面积比、强度比、弹性模量比、积比、强度比、弹性模量比、等的变化,而又有更复杂等的变化,而又有更复杂的组合本构关系,如平均应力的组合本构关系,如平均应力-应变、截面弯矩应变、截面弯矩-平均曲率、平均曲率、等。将这些

62、钢筋混凝土的特殊本构关系引入结构等。将这些钢筋混凝土的特殊本构关系引入结构的非线性分析,完全有理由称之为钢筋混凝土力学。的非线性分析,完全有理由称之为钢筋混凝土力学。事实上,这已是混凝土结构和构件分析的重要发展方事实上,这已是混凝土结构和构件分析的重要发展方向。向。 混凝土在简单应力状态下的本构关系,即单轴受压和受拉时混凝土在简单应力状态下的本构关系,即单轴受压和受拉时的应力的应力-应变关系比较明确,可以相当准确地在相应的试应变关系比较明确,可以相当准确地在相应的试验中测定,并用合理的经验回归式加以描述。即使如此验中测定,并用合理的经验回归式加以描述。即使如此,仍然因为混凝土材性的离散、变形成

63、分的多样和影响,仍然因为混凝土材性的离散、变形成分的多样和影响因素的众多等而在一定范围内变动。因素的众多等而在一定范围内变动。第52页/共87页第五十三页,编辑于星期二:五点 二十分。 混凝土在多轴应力状态下的本构关系,当然更要复杂混凝土在多轴应力状态下的本构关系,当然更要复杂得多。得多。3个方向主应力的共同作用,使各方向的正应变和个方向主应力的共同作用,使各方向的正应变和横向变形效应相互约束和牵制,影响内部微裂缝的出现横向变形效应相互约束和牵制,影响内部微裂缝的出现和发展程度。而且,和发展程度。而且,混凝土多轴抗压强度的成倍增长和多混凝土多轴抗压强度的成倍增长和多轴拉压强度的降低,扩大了混凝

64、土的应力值范围,改变了轴拉压强度的降低,扩大了混凝土的应力值范围,改变了各部分变形成分的比例,出现了不同的破坏过程和形态。各部分变形成分的比例,出现了不同的破坏过程和形态。这这些都使得混凝土多轴变形的变化范围大,形式复杂。另一方面些都使得混凝土多轴变形的变化范围大,形式复杂。另一方面,混凝土多轴试验方法的不统一和应变量测技术的困难,又加,混凝土多轴试验方法的不统一和应变量测技术的困难,又加大了应变量测数据的离散度,给研究本构关系造成更大困难。大了应变量测数据的离散度,给研究本构关系造成更大困难。第53页/共87页第五十四页,编辑于星期二:五点 二十分。 有限元方法和计算机技术的发展为混凝土结构

65、和构件的非线有限元方法和计算机技术的发展为混凝土结构和构件的非线性分析创建了便利条件。任何类型、体系和受力状况的结构或性分析创建了便利条件。任何类型、体系和受力状况的结构或其局部都可依靠非线性分析方法求解。但是,其局部都可依靠非线性分析方法求解。但是,计算结果的可计算结果的可靠性和准确度主要取决于所采用的钢筋混凝土各项非线性靠性和准确度主要取决于所采用的钢筋混凝土各项非线性本构关系是否准确、合理本构关系是否准确、合理。因此,建立或选择本构关系是。因此,建立或选择本构关系是结构非线性分析的关键问题,成为近结构非线性分析的关键问题,成为近20年混凝土结构的一年混凝土结构的一个重要研究方向。确定了合

66、适的本构关系、进行非线性个重要研究方向。确定了合适的本构关系、进行非线性的全过程分析,有可能改变目前的钢筋混凝土结构的内的全过程分析,有可能改变目前的钢筋混凝土结构的内力弹性分析和截面承载力经验性计算等不尽理想的景况力弹性分析和截面承载力经验性计算等不尽理想的景况,走向更完善、准确的理论解方向。,走向更完善、准确的理论解方向。第54页/共87页第五十五页,编辑于星期二:五点 二十分。4.8.2非线性分析中的各种本构关系非线性分析中的各种本构关系 结构分析时,无论采用解析法和有限元法都要将整体结构离散化结构分析时,无论采用解析法和有限元法都要将整体结构离散化、分解成各种计算单元。例如二、三维结构的解析法取为二维或三、分解成各种计算单元。例如二、三维结构的解析法取为二维或三维应力状态的点(微体),有限元法取为形状和尺寸不同的块体;维应力状态的点(微体),有限元法取为形状和尺寸不同的块体;杆系结构可取为各杆件的截面、或其一段、或全长;结构整体分析杆系结构可取为各杆件的截面、或其一段、或全长;结构整体分析可取其局部,如高层建筑的一层作为基本计算单元。因此,本构关可取其局部,如高层建筑的一层作为

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!