2022年高三上学期12月月考数学(理)试题 含答案

上传人:xt****7 文档编号:105176181 上传时间:2022-06-11 格式:DOC 页数:7 大小:196.52KB
收藏 版权申诉 举报 下载
2022年高三上学期12月月考数学(理)试题 含答案_第1页
第1页 / 共7页
2022年高三上学期12月月考数学(理)试题 含答案_第2页
第2页 / 共7页
2022年高三上学期12月月考数学(理)试题 含答案_第3页
第3页 / 共7页
资源描述:

《2022年高三上学期12月月考数学(理)试题 含答案》由会员分享,可在线阅读,更多相关《2022年高三上学期12月月考数学(理)试题 含答案(7页珍藏版)》请在装配图网上搜索。

1、2022年高三上学期12月月考数学(理)试题 含答案一选择题1已知集合为( )A B C D2用反证法证明命题“若,则三个实数中最多有一个小于零”的反设内容为( )A三个实数中最多有一个不大于零 B三个实数中最多有两个小于零C三个实数中至少有两个小于零 D三个实数中至少有一个不大于零3用数学归纳法证明不等式“(n2)”过程中,由到时,不等式的左边( )A.增加了一项 B.增加了两项C.增加了两项,又减少了一项 D.增加了一项,又减少了一项4.若两个正数满足, ,则的取值范围是( )A. B. C. D. 5已知函数()的图象与轴交点的横坐标构成一个公差为的等差数列,把函数的图象沿轴向左平移个单

2、位,得到函数的图象关于函数,下列说法正确的是( )A在上是增函数 B其图象关于直线对称C函数是奇函数 D当时,函数的值域是6设则下列判断中正确的是( )A B C D7.已知等差数列的等差,且 成等比数列,若,为数列的前项和,则 的最小值为( )A B C D 8.如下图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n1,n N*)个点,相应的图案中总的点数记为,则=( )A B C D9.某四面体的三视图如图所示该四面体的六条棱的长度中,最大的是( )A. B. C. D. (9题) (10题) 10.如图,等边三角形的中线与中位线相交于,已知是绕旋转过程中的一个图形,下列命题中

3、,错误的是( ) A动点在平面上的射影在线段上 B恒有平面平面C三棱锥的体积有最大值 D异面直线与不可能垂直11已知定义域为的奇函数的导函数为,当时,若,则的大小关系正确的是( )A B C D 12分析函数的性质: 的图象是中心对称图形;的图象是轴对称图形;函数的值域为;方程有两个解其中描述正确个数是( )A.1 B.2 C.3 D.4二填空题13.已知与的夹角为,且,求_.14在等式的分母上的三个括号中各填入一个正整数,使得该等式成立,则所填三个正整数的和的最小值是_.15如图所示,正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、分别交于两点,设,给出以下四个结论:平面平面;直线

4、平面始终成立;四边形周长,是单调函数;四棱锥的体积为常数;以上结论正确的是_16 若关于的不等式在(0,+)上恒成立,则实数的取值范围是 三解答题17已知锐角中内角、所对边的边长分别为、,满足,且.()求角的值;()设函数,图象上相邻两最高点间的距离为,求的取值范围18已知命题:函数在内有且仅有一个零点命题:在区间内有解若命题“且”是假命题,求实数的取值范围19(本小题满分12分)数列的前项和为,且(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的前 项和.20如图,多面体中,四边形是边长为的正方形,且,.()求证:平面垂直于平面;()若分别为棱和的中点,求证:平

5、面;()求多面体的体积.21设函数(1)若函数是定义域上的单调函数,求实数的取值范围;(2)若,试比较当时,与的大小;(3)证明:对任意的正整数,不等式成立22已知函数,在处的切线与直线垂直,函数(1)求实数的值;(2)设是函数的两个极值点,若, 求的最小值数学(理)答案选择:CCCDD BAACD AB填空: 13.2 14.64 15. 16. 17();() .试题解析:()因为,由余弦定理知所以 又因为,则由正弦定理得:,所以,所以 6分()由已知,则 8分因为,由于,所以 10分所以,根据正弦函数图象,所以 12分18【解析】解:先考查命题p:若a0,则容易验证不合题意;故解得a1因

6、此a1再考查命题q:因为x ,所以a(x)在上有解可知当且仅当时等号成立,因此当命题p和命题q都真时因为命题“p且q”是假命题,所以命题p和命题q中一真一假或都为假综上,a的取值范围为19【答案】(1);(2);(3).试题解析:(1)当n1时,a1S12,当n2时,anSnSn1n(n1)(n1)n2n,a12满足该式,数列an的通项公式为an2n 3分(2), 得,得bn12(3n11),又当n=1时,b1=8,所以 (3)n(3n1)n3nn, 8分Tnc1c2c3 cn(13232333 n3n)(12 n),令Hn13232333 n3n, 则3Hn132233334 n3n1,得,

7、2Hn33233 3nn3n1n3n1 , .10分数列cn的前n项和. 12分20(1)略()作,是垂足.在中,,.在直角梯形中,.,四边形是平行四边形,.而平面,平面. 9分()21. 试题解析:(1)又函数在定义域上是单调函数 或在上恒成立若在上恒成立,即函数是定义域上的单调地增函数,则在上恒成立,由此可得;若在上恒成立,则在上恒成立即在上恒成立在上没有最小值不存在实数使在上恒成立综上所述,实数的取值范围是 (2)当时,函数令则显然,当时,所以函数在上单调递减又,所以,当时,恒有,即恒成立故当时,有 (3)法1:证明:由(2)知即令,即有所以()因此故对任意的正整数,不等式成立法2:数学归纳法证明:1、当时,左边=,右边=,原不等式成立2、设当时,原不等式成立,即则当时,左边=只需证明即证,即证由(2)知即令,即有所以当时成立由1、2知,原不等式成立考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、恒成立问题22. (1)由题可得由题意知,即 (2)由,令 即而由,即,解上不等式可得: 而 构造函数由,故在定义域内单调递减,所以的最小值为

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!