《实际问题与二次函数(第2课时)》课件-(公开课)2022年人教版3-
《《实际问题与二次函数(第2课时)》课件-(公开课)2022年人教版3-》由会员分享,可在线阅读,更多相关《《实际问题与二次函数(第2课时)》课件-(公开课)2022年人教版3-(25页珍藏版)》请在装配图网上搜索。
1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,实际问题与二次函数,(1),目标,:,应用二次函数的有关知识解决一些生活实际问题,进而培养学生理解实际问题、从数学角度抽象分析问题和运用数学知识解决实际问题的能力。通过实践体会到数学来源于生活又服务于生活。,前面我们结合实际问题,讨论了二次函数,看到了二次函数在解决实际问题中的一些应用,下面我们进一步用二次函数讨论一些实际问题。,某商品现在的售价为每件,60,元,每星期可卖出,300,件,市场调查反映:如调整价格,每涨价,1,元,每星期要少卖出,10,件;每降价,1,元,每星期可多卖出,20,件,已知商品的
2、进价为每件,40,元,如何定价才能使利润最大?,探究,1,(,1,)设每件涨价,x,元,则每星期售出商品的利润,y,随之变化。我们先来确定,y,随,x,变化的函数式。,涨价,x,元时,,每星期少卖,_,件,实际卖出,_,件,销售额为,_.,怎样确定,x,的取值范围,分析:,调查价格包括涨价 和降价两种情况。我们先看涨价的情况。,即,y=(300-10 x)(20+x),10 x,(,300-10 x,),(,60+x)(300-10 x,),(0 x30),即,y=-10 x +100 x+6000,其中,,0 x30.,根据上面的函数,填空:,当,x,_,时,,y,最大,也就是说,在涨价的情
3、况下,涨价,_,元,即定价,_,元时,利润最大,最大利润是,_.,2,5,5,65,6250,(2),在降价的情况下,最大利润是多少?请你参考,(1),的讨论自己得出答案。,由,(1)(2),的讨论及现在的销售状况,你知道应如何定价能使利润最大了吗?,设每件降价,x,元,y=(300+20 x)(20-x),当,x,时,,y,最大为,6125,涨价,5,元时,利润最大为,6250,练习:,某商人若将进货单价为,8,元的商品按每件,10,元出售,每天可销售,100,件。现在他为了增加利润,提高了售价。但他发现商品每涨一元,其销售量就减少,10,件。请你应用已学知识帮他决定:将售出价定为多少时,才
4、能使每天所赚利润最大?并预算出最大利润。,本题是确定提高利润的最佳方案问题。,解:设这种商品涨了,x,元,,(X,为正整数)每天所赚利,润为,y,元,,则,y=(2+x)(100,10 x)=,10 x,2,+80 x+200,=,10(x,4),2,+360,,,当,x=4,时,利润,y,最大,此时售价为,14,元,,每天所赚利润为,360,元。,1,)训练对文字信息的分析能力;,2,)体验将实际问题转化为数学问题的方法:,即在对实际问题理解的基础上,建立起商品涨价的钱数与所获利润的函数关系,再应用二次函数的性质求取利润最大值,提出解决问题的方案。,问题,2,:,某公司推出了一种高效环保型洗
5、涤用品,年初上,市后,公司经历了从亏损到盈利的过程,下面的二次函数,图象(部分)刻画了该公司年初以来累计利润,s,(万元),与销售时间,t,(月)之间的关系(即前,t,个月的利润总和,s,与,t,之间的关系)。根据图象提供的信息,解答下列问题:,0,1,2,3,4,5,-2,S,(万元),t,(月),1,2,3,-1,1,)由已知图象上的三点坐标求累积,利润,s,(万元)与时间,t,(月)之间,的函数关系式;,2,)求截止到几月末公司累,积利润可达到,30,万元;,3,)求第,8,个月公司所获利润是多少万元?,本题是涉及实际亏损与盈利的经济问题。,0,1,2,3,4,5,-2,S,(万元),t
6、,(月),1,2,3,-1,1,)由已知图象上的三点坐标求累积利润,s,(万元)与时,间,t,(月)之间的函数关系式;,关键点:,1,)观察二次函数的部分图像,用哪三点坐标解题更简便?,-,3,解:,设,s,与,t,的函数关系式为,s=at,2,+bt+c,图像过点(,),(1,-1.5,),(2,-,2),a+b+c=,1.5,4a+2b+c=,2,c=0,解得,a=,b=,2,c=0,s=t,2,2t,,(,t,的整数,),0,1,2,3,4,5,-2,S,(万元),t,(月),1,2,3,-1,2,)求截止到几月末公司累积利润可达到,30,万元;,1,)累积利润,s,(万元)与时 间,t
7、,(月)之间的函数关系,式为,s=t,2,2t,解,:,把s=30代入 s=t,2,2t,得:30=t,2,2t,解得:t,1,=10,t,2,=,6(舍),答:截止到,10,月末公司累积,利润可达到,30,万元,关键点:,2,)实际问题必须考虑自变量,t,的取值范围,并结合实际决定计算结果中,t,值的取舍;,(,t,的整数,),0,1,2,3,4,5,-2,S,(万元),t,(月),1,2,3,-1,2,)截止到,10,月末公司累积利润可达到,30,万元;,1,)累积利润,s,(万元)与时 间,t,(月)之间的函数关系,式为,s=t,2,2t,解,:,把,t=7,代入,:,s=7,2,27=
8、10.5,答:第,8,个月公司获利润万元,3,)求第,8,个月公司所获利润是多少,万元?,把,t=8,代入,:,s=8,2,28=16,16,关键点:,3,)要认真审题,准确理解题意。体会第,8,个月利润与累计利润的区别和如何求取?(应用二次函数的对应关系),本题归纳,:,1,)训练学生从图像获取信息的能力;,2,)复习巩固三点确定二次函数解析式的方法;体验生活中两个变量间的对应关系,是如何应用数学知识体现的。,探究,3,如图中,是抛物线形拱桥,当水面在,L,时,拱顶离水面,2,米,水面宽,4,米。水面下降,4,米,水面宽度增加多少?,分析:,我们知道,二次函数的图像是抛物线,建立适当的坐标系
9、,就可以求出这条抛物线表示的二次函数。为解题简便,,以抛物线的顶点为原点,以抛物线的对称轴为,y,轴,如图建立平面直角坐标系,可设这一条抛物线表示的二次函数为,y=ax,.,有抛物线经过点(,2,,,-2,),,可得:,-2=a,2,这条抛物线表示的二次函数为,当水面下降,4,米时,水面的纵坐标为,y=-6.,请你根据上面的函数表达式求出这时的水面宽度。,水面下降,4,米,水面宽度增加,_,米,.,X,Y,0,B,C,A,探究四,:,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子,OA,,,O,点恰在水面中心,米,由柱子顶端,A,处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路
10、线落下。为使水流较为漂亮,要求设计成水流在离,OA,距离为,1,米处达到距水面最大高度米。如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流落不到池外?,本题是涉及公园美化的应用性问题。,X,Y,0,B,C,A,解:如图建立坐标系,设抛物线顶点为,B,,水流 落水与,x,轴交于,C,点。由题意可知,A,(,)、,B,(,1,,,.25,)、,C,(,x,,,0,),关键点:,1,)根据题目条件该如何建立直角坐标系,X,Y,0,B,C,A,如图建立坐标系,设抛物线顶点为,B.,由题意可知,A,(,0,,,0,)、,B,(,1,,,1,)、,C,(,x,,,-1.25,),X,Y,0,
11、B,C,A,如图建立坐标系,设抛物线顶点为B.由题意可知,A(-1,-1),O,(,-1,,)、,B,(,O,,,0,)、,C,(,x,,),X,Y,0,B,C,A,解:如图建立坐标系,设抛物线顶点为,B,,水流落水与,x,轴交于,C,点。,由题意可知,A,(,)、,B,(,1,,,.25,)、,C,(,x,,,0,),解:如图建立坐标系,设抛物线顶点,为,B,,水流落水与,x,轴交于,C,点。,由题意可知,A,(,)、,B,(,1,,,.25,)、,C,(,x,,,0,),0,B,C,A,X,Y,设抛物线为,y=a(x,1),2,+2.25(a0),点,A,坐标代入,得,a=,1,当,y=0
12、,,即,(x,1),2,+2.25=0,时,,水池的半径至少要米。,x,=,0.5,(舍去),,x,=2.5,x,=,0.5,(舍去),水流沿抛物线落下,容易联想到二次函数的图像,但是转化为数学问题的关键是坐标系的建立。,选择了恰当的位置建立坐标系,就会给运算带来方便。,以,OA,所在直线为,y,轴,过,O,点垂直于,OA,的直线为,x,轴,点,O,为原点可作为最好选择。,X,Y,0,B,C,A,思考:公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子,OA,,,O,点恰在水面中心,米,由柱子顶端,A,处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下。为使水流较为漂亮,要求设计成水流在离,OA,距离为,1,米处达到距水面最大高度米。如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流落不到池外?,课后思考:若水流喷出的抛物线形状与(,1,)相同,水池的半径为米,要使水流刚好不落到池外,这时水流的最大高度是多少米?,二次函数的图象和性质在经济类问题的解决中,可以用来直观的体现两个变量间的关系,便于数据的分析,处理和寻找事物发展的规律。,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。